PHASE II SUBSURFACE INVESTIGATION REPORT Residential/Undeveloped Property 100 Kennedy Circle Newton, Massachusetts

SUBMITTED TO:

Ms. Amy Zarechian Newton Housing Authority 82 Lincoln Street Newton Highlands, Massachusetts 02641

PREPARED BY:

June 16, 2017 Coneco Project No. 9684

4 First Street, Bridgewater, MA 02324 (508) 697-3191 (800) 548-3355

Environmental ECOLOGICAL ENERGY SURVEY CIVIL

June 16, 2017 Coneco Project No. 9684

Ms. Amy Zarechian Newton Housing Authority 82 Lincoln Street Newton Highlands, Massachusetts 02641

RE: **Phase II Subsurface Investigation Report** Residential/Undeveloped Property 100 Kennedy Circle Newton, Massachusetts

Dear Ms. Zarechian:

Pursuant to our proposal. Coneco Engineers & Scientists. Incorporated (Coneco) has conducted a Phase II Subsurface Investigation at the above-referenced property, hereinafter, the "Site." This investigation was intended to obtain qualitative and quantitative data to determine whether potential oil and/or hazardous materials (OHM) have impacted soil and/or groundwater at the Site. Such a release could represent a liability to the property owner or operator under the Massachusetts Oil and Hazardous Materials Release Prevention and Response Act, Chapter 21E of the Massachusetts General Laws. Procedures employed in this Subsurface Investigation were performed in accordance with the "Massachusetts Contingency Plan" (MCP), 310 CMR 40.0000, and were consistent with guidelines as presented in the American Society for Testing and Materials (ASTM) Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process (ASTM E 1903-11).

Coneco's investigations and findings are detailed in the attached report. If there are any questions, please contact the undersigned.

Respectfully Submitted, Coneco Engineers & Scientists, Incorporated

Shannen N. Loll **Environmental Scientist**

Marc Project

Brochu, P.G., L.S.P

Manager

SNL:EMW:MEB Z:\\9684 - Phase II Subsurface Investigation

TABLE OF CONTENTS

1.0 SITE OVERVIEW	1
1.1 Site Parameters	1
1.2 Sensitive Receptors	2
1.3 Reporting Categories	2
1.3.1 Soil Categories	
1.3.2 Groundwater Categories	3
2.0 PREVIOUS WORKS	4
3.0 SUBSURFACE INVESTIGATION	5
3.1 Ground Penetrating Radar Survey	5
3.2 Soil Boring Advancement	5
3.3 Soil Boring Screening	6
3.4 Soil Sampling	6
3.5 Monitoring Well Installation	7
3.6 Groundwater Gauging and Sampling	7
4.0 LABORATORY ANALYTICAL RESULTS	8
4.1 Soil Analytical Results	8
4.2 Groundwater Analytical Results	9
4.3 Analytical Data Quality Assurance and Quality Control	10
5.0 SUMMARY OF FINDINGS	111
6.0 LIMITATIONS	12

TABLES

Table 1 - Soil Reporting Catagories	3
Table 2 - RCGW-1 Reporting Categories for Groundwater Samples	4
Table 3 - Groundwater Field Monitoring Data	8
Table 4 - Soil Analytical Results	9
Table 5 - Groundwater Analytical Results	10

FIGURES

Figure 1	Site Locus Map
Figure 2	Site Plan

- Site Plan
- Figure 2A Site Plan
- Figure 3 MassDEP Phase I Site Assessment Map

APPENDICES

Appendix 1	Site Photographs
Appendix 2	TPI Geophysical Survey Site Plan
Appendix 3	Standard Operating Procedures
Appendix 4	Soil Boring and Monitoring Well Logs
Appendix 5	Groundwater Sampling Field Sheets
Appendix 6	Laboratory Analytical Documentation

1.0 SITE OVERVIEW

Environmental conditions of the residential/undeveloped property located at 100 Kennedy Circle in the City of Newton, Massachusetts were evaluated in a manner consistent with guidelines as presented in the American Society for Testing and Materials (ASTM) *Phase II Environmental Site Assessment Process* (ASTM E1903-11). This investigation was intended to describe current subsurface Site conditions and to establish if there is evidence that a release of oil and/or hazardous materials (OHM) has occurred at the Site. Such a release could represent a liability to the property owner under Massachusetts Oil and Hazardous Materials Release Prevention and Response Act, Chapter 21E of the Massachusetts General Laws. Procedures employed in this Subsurface Investigation were performed in accordance with the "Massachusetts Contingency Plan" (MCP), 310 CMR 40.0000. The Site consists of a portion of the Jackson Gardens Housing Development and is approximately 25,200 square feet in size. The Site includes moderately to heavily wooded areas in the northeastern portion and a community building in the southwestern portion. The Site building is constructed on a poured concrete foundation with a brick and masonry frame and siding, and a pitched asphalt-shingled roof.

A Phase I Environmental Site Assessment (ESA) was prepared by McPhail Associates, LLC (McPhail) for the Site in May 2014. Based on the information provided in the Phase I ESA, historical and municipal records indicate that the Site was previously occupied by a contractor's yard from the late 1800s to the early 1900s. Sanborn Maps depict the Site as an automotive junk yard and second hand automotive part storage area with several residential structures in the northern portion of the Site until the 1960s. Findings of Phase I ESA are discussed in Section 2.0.

A Site Locus Map and Site Plans are provided for reference as Figure 1 and Figure 2 & 2A, respectively. Site Photographs are included in Appendix 1.

1.1 Site Parameters

Assessor's Designation:	The Newton Assessor's Off 98 on Assessor's Map 290.	The Newton Assessor's Office identifies the Site as a portion of Lot 98 on Assessor's Map 290.		
Coordinates:	Latitude 41.21316° UTM 4,691,947 meters N	Longitude -71.11449° UTM 319,171 meters E (Zone 19)		
Ownership:	The Newton County Registr Housing Authority has own The Middlesex County Regi Site is recorded in Book 099	y of Deeds indicates that the Newton ed the Site since December 15, 1961. Istry of Deeds legal description of the 954, beginning on Page 206.		
Structures:	A one-story building with a portion of the Site and was of The Site building is construed.	basement is located in the southwestern originally constructed in the early 1960s. eted on a poured concrete foundation with		

	a brick and masonry frame with brick exterior walls, and a pitched asphalt-shingled roof.
Current Occupancy:	The Site building is utilized as a community center for the Jackson Gardens Housing Development.
Utilities:	The Site building is currently serviced by overhead electric and telecommunication lines, as well as underground municipal water and sewer lines. The Site building is currently heated by natural gas. The Site building was previously heated by fuel oil, which was stored in an underground storage tank (UST) located southwest of the building. According to the Phase I ESA, the UST was reportedly filled with sand and abandoned in place. The date of UST abandonment is unknown.
Site Access/ Barriers:	The Site can be accessed from the northwest by curb cuts along Kennedy Circle. Chain-link fencing bounds the Site to the east and south.
Surface Water:	Coneco did not observe surface water bodies at the Site. The nearest surface water body is identified as Charles River, located approximately 2,500 feet northeast of the Site.

1.2 Sensitive Receptors

A Massachusetts Office of Geographic Information (MassGIS) DEP Phase I Site Assessment Map, generated online at <u>http://maps.massgis.state.ma.us/images/dep/mcp/mcp.htm</u>, was prepared for the Site and the surrounding area on June 5, 2017. Based on data presented in the MassGIS DEP Phase I Site Assessment Map, a portion of the Site is located within a Protected Open Space. No additional relevant features were noted with a 500-foot radius of the Site. Based on Coneco's review of available information, the Site is not located within the geographic boundaries of a current or potential groundwater resource area. Based on information provided by the City of Newton Department of Health and Human Services, no public or private potable water wells are located in the vicinity of the Site. The nearest body of water is approximately 2,700 feet to the northeast of the Site. The MassGIS DEP Phase I Site Assessment Map is available for reference as Figure 3.

1.3 Reporting Categories

Under the MCP, soil and groundwater at a specific property is classified into reporting categories based upon its location relative to sensitive receptors. These reporting categories have specific RCs for soil and groundwater and are used in evaluating concentrations of OHM. The reporting categories for the Site are presented below.

1.3.1 Soil Categories

The soil reporting categories for the Site, based upon observations made during Coneco's field activities and information obtained from the MassDEP Phase I Site Assessment Map for the Site, are presented in Table 1.

Table 1 - Soil Reporting Categories				
RCS-1 Criteria	RCS-1 Classification			
1) at or within 500 feet of a residential dwelling, a residentially- zoned property, school, playground, recreational area or park	Yes			
2) within the geographic boundaries of a groundwater resource area categorized as RCGW-1 No				
Note: Reporting Category for soil based on 310 CMR 40.0361.				

The Site is zoned for residential purposes; therefore, soil at the Site is subject to the RCS-1 classification.

1.3.2 Groundwater Categories

In accordance with 310 CMR 40.0362, groundwater samples at the Site are classified as either RCGW-1 or RCGW-2 based on the criteria presented in Table 2. The groundwater classification evaluation for the Site is based upon a MassDEP Phase I Site Assessment Map included for reference as Figure 3, and information available from the City of Newton Department of Health and Humans Services and the DEP.

Table 2 - RCGW-1 Reporting Categories for Groundwater Samples				
RCGW-1 Criteria	RCGW-1 Classification			
1) within the Zone II for a public water supply and/or Town Water Protection District?	No			
2) within an Interim Wellhead Protection Area	No			
3) within a Potentially Productive Aquifer	No			
 within the Zone A of a Class A surface water body used as a public water supply 	No			
5) at any point located 500 or more feet from a public water supply distribution pipeline unless the groundwater is located under a parcel of land where any portion of that parcel is less than 500 feet from a public water supply distribution pipeline.	No			
6) within a Municipal Aquifer Protection District	No			
 at any groundwater sampling point located within 500 feet of a private water supply well 	No			
Note: Reporting Category for groundwater based on 310 CMR 40.0362.				

Groundwater monitoring wells installed at the Site are not located within the limits of a current or potential surface water or groundwater resource area. Personnel of the City of Newton Department of Health and Human Services were unaware of any public or private water supply wells within the vicinity of the Site. Additionally, no records pertaining to private water supply wells within 500 feet of the Site were identified at the City of Newton Department of Health and Human Services, City of Newton Water Supply Division, or in the DEP Well Search Program. As a result, none of the RCGW-1 criteria apply to the Site, and groundwater at the Site is subject to RCGW-2 classification.

2.0 PREVIOUS WORKS

McPhail completed a Phase I ESA for the Site dated May 20, 2014. The investigation identified the following Recognized Environmental Conditions (RECs).

- The historic use of the Site as an automotive junk yard and second-hand automotive part storage yard from the 1930s to the 1960s; and
- The presence of a fuel oil UST adjacent to the Site building. The tank was reportedly filled with sand and abandoned in place. The Newton Fire Department did not have permits or records of removal on-file for the UST. Therefore, McPhail determined that the UST is likely still in place.

Based on the identified RECs, Coneco conducted a limited subsurface investigation at the Site to determine if soil and/or groundwater conditions have been impacted in relation to the identified RECs.

3.0 SUBSURFACE INVESTIGATION

3.1 Ground Penetrating Radar Survey

On May 26, 2017, TPI Environmental, Incorporated (TPI) of Hanson, Massachusetts, with oversight provided by Coneco, conducted a geophysical survey across the southwestern portion of the Site in the concrete sidewalk area and within the landscaped area at the Site. The purpose of the geophysical survey was to aid in the identification of the UST.

The geophysical survey was accomplished utilizing Fisher TW-6 electromagnetic metal detection (TW-6 EM) and ground penetrating radar (GPR). The GPR system locates underground objects and layers by transmitting a pulse of electromagnetic energy into the ground and recording any reflections off interfaces between materials with differing dielectric properties. Since the dielectric constant of most soils and metals are vastly different, metallic tanks, pipelines, and often foundations produce strong characteristic reflected pulses. Disturbed soils, miscellaneous fill, and high soil moisture content may attenuate the transmitted radar signal and make targets more difficult to recognize and limit the depth of investigation. The geophysical survey was performed in accordance with accepted industry standards to the full capabilities of the instruments employed. Coneco accepts no responsibility for limits of the survey resolution due to unforeseen, Site-specific subsurface conditions.

Based on the findings of the geophysical survey, TPI detected the presence of a suspected UST and associated fill lines located approximately 20 feet southwest of the Site building. This UST is likely the abandoned UST identified by McPhail in the 2014 Phase I ESA. Additionally, an underground natural gas line was identified approximately 40 feet southwest of the Site building. A copy of the TPI Geophysical Survey Site Plan is included as Appendix 2.

3.2 Soil Boring Advancement

Coneco provided oversight for the advancement of seven (7) Geoprobe[®] soil borings at the Site, designated GP-01 through GP-07, on May 26, 2017. The soil borings were advanced by personnel of New England Geotech (NEG) of Jamestown, Rhode Island. Soil boring locations were selected in order to collect data to evaluate potential areas of concern based on historical Site use and identified RECs. GP-02 through GP-04 were advanced near the abandoned UST to identify a potential release from this tank. GP-01 and GP-05 through GP-07 were advanced throughout the remainder of the Site to assess overall subsurface conditions. Geoprobe[®] soil borings were advanced to a depth of approximately 12 to 25 feet below grade, or until refusal was encountered, using a Geoprobe[®] 6600 truck-mounted drill rig. Soil samples were collected continuously from grade to the maximum depth of each boring utilizing a 5-foot long, 2-inch inner diameter MacroCore[®] sampler. Bedrock was

encountered during the advancement of the soil boring GP-04 at 18.5 feet below surface grade. The presence of groundwater was apparent in all seven (7) borings at depths ranging from approximately 8 to 18 feet below grade. Coneco's standard operating procedures for Geoprobe[®] soil borings are provided for reference in Appendix 3. The locations of the soil borings can be referenced on Figure 2 and Figure 2A.

Overburden stratigraphy within the borings generally consisted of gravelly sand, underlain by gravelly, fine sand to the bottom of the borings. Olfactory evidence of potential OHM impact was observed in soil borings GP-01 from 1 to 5 feet below grade. Complete soil boring logs are provided for reference in Appendix 4.

3.3 Soil Boring Screening

Representative soil samples collected from the Geoprobe[®] soil borings were placed in clean, tightly sealed glass jars topped with aluminum foil cover liners for in-field headspace screening of volatile compounds using a RAE Systems MiniRae 2000 PID with a 10.6 eV lamp, calibrated to an isobutylene standard. Headspace screening procedures were performed in accordance with DEP Policy WSC 94-400. PID results indicated headspace concentrations for soil samples collected from the Site ranging from below the instrument quantification limit of 0.2 parts per million (ppm) to 158.4 ppm [in GP-01 (1'-3')]. Headspace concentrations are displayed on the soil boring logs provided for reference in Appendix 4.

3.4 Soil Sampling

Following PID screening, select soil samples collected on May 26, 2017 were submitted to Eurofins Spectrum Analytical, Incorporated (ESAI), an independent, Massachusetts and National Environmental Laboratory Accreditation Program (NELAP)-certified analytical laboratory located in Agawam, Massachusetts for one or more of the following analyses: extractable petroleum hydrocarbons (EPH) by the DEP Method, volatile organic compounds (VOCs) by EPA Method 8260, polychlorinated biphenyls (PCBs) by EPA Method 8082, RCRA 8 Metals by EPA 6000/7000 series and/or volatile petroleum hydrocarbons (VPH) by DEP Method. Soil samples were selected for submittal based on quantitative field screening data as well as visual and olfactory evidence of OHM impact. If no evidence of a release of OHM was identified, submitted soil samples were selected for analysis based on depth relative to the groundwater table to best evaluate the potential for release(s) of OHM at the Site. Laboratory analytical results for soil are discussed in Section 4.1.

Soil samples were labeled based on the soil boring identification and depth [e.g. GP-01(1'-3')]. Soil samples were preserved as follows: EPH, PCBs, and RCRA 8 Metals in 8-ounce amber glass jars; VPH in 40-mil volatile organic analysis (VOA) vials preserved with 15-mL CH₃OH with a 1:1 ratio of sample to preservative; and VOCs in 40-mil VOA vials preserved with 15-mL CH₃OH and 5-mL de-ionized water with a 1:1 ratio of sample to preservative according to the standard field collection and preservation techniques. Soil samples were either kept on ice in a cooler or in a refrigerator cooled to 4 degrees Celsius during transport.

3.5 Monitoring Well Installation

Groundwater monitoring wells identified as CMW-01 through CMW-03 were installed in soil borings GP-03, GP-01, and GP-06, respectively, on May 26, 2017. Monitoring wells CMW-01 through CMW-03 were each constructed with a 10-foot long, 2-inch ID, schedule 40 slotted PVC well screen from the base of the well with solid PVC riser pipe from the top of the slotted screen to grade. The monitoring wells were installed in accordance with the Massachusetts DEP Standard Reference for Monitoring Wells (BWSC-Policy 310-91 and SDDW Supplement). Following monitoring well installation, No. 2 sand was placed in the annulus surrounding the screened portion of each well. A layer of bentonite was then placed atop the No. 2 sand, and native materials were installed from above the bentonite to just below surface grade. The standard operating procedures for the installation of monitoring wells are provided for reference in Appendix 3. Complete monitoring well construction reports are provided for reference in Appendix 4. The locations of the monitoring wells and other relevant Site features can be referenced in Figure 2 and Figure 2A.

3.6 Groundwater Gauging and Sampling

Prior to the collection of groundwater samples on June 1, 2017, Coneco gauged the newly installed monitoring wells, designated CMW-01 and CMW-02, for depth to groundwater. Gauging and sampling was conducted with respect to monitoring wells CMW-01 and CMW-02 based on their proximity to the abandoned UST and the former salvage yard, respectively; CMW-03 was omitted due to its location in the undeveloped portion of the Site and was installed in the event that further assessment of groundwater was required. Depth to groundwater measurements were made at each groundwater monitoring well to the nearest 0.01-foot from the reference point located at the top of the PVC well casing using a Solinst[®] oil/water interface probe. No measurable non-aqueous phase liquid (NAPL) was detected during groundwater gauging activities conducted on June 1, 2017 in the gauged monitoring wells at the Site.

Following groundwater gauging activities on June 1, 2017, Coneco collected groundwater samples from monitoring wells CMW-01 and CMW-02. The standard operating procedure for the sampling of monitoring wells is provided for reference in Appendix 3. No sheen or odors indicative of a release of OHM were observed during monitoring well development associated with the sampling event. Coneco measured the temperature, specific conductivity, and pH of groundwater in each well using an Oakton model 35 temperature, pH, and conductivity meter. A summary of the groundwater screening results is included in Table 3. Groundwater sampling field sheets are provided for reference in Appendix 5.

Table 3 - Groundwater Field Monitoring Data (June 1, 2017)						
Monito	oring Well	Depth to Water ⁽¹⁾	Total Well Depth ⁽¹⁾	pH ⁽²⁾	Temperature ⁽³⁾	Specific Conductivity ⁽⁴⁾
CM	1W-01	13.35	16.91	7.88	14.9	222
CM	1W-02	14.19	18.66	7.64	12.5	913
Notes: 1) Gauging data presented in feet. 2) pH presented in standard units. 3) Temperature presented in degrees Celsius. 4) Specific Conductivity presented in microsiemens.						

The groundwater samples collected on June 1, 2017 were submitted to ESAI for analysis of EPH by the DEP Method, VPH by the DEP Method, RCRA-8 Metals (dissolved) by EPA 6000/7000 series methods, and VOCs by EPA Method 8260. The groundwater samples were preserved as follows: EPH samples in 1-liter amber glass jars preserved with hydrochloric acid (HCl), RCRA 8 Metals samples in 500-mL plastic jars preserved with nitric acid (HNO₃), and VPH and VOC samples in 40-mL VOA vials preserved with HCl, according to the standard field collection and preservation techniques. Samples were either kept on ice in a cooler or in a refrigerator cooled to 4 degrees Celsius during transport from the field to the laboratory. Groundwater analytical results are presented in Section 4.2.

4.0 LABORATORY ANALYTICAL RESULTS

4.1 Soil Analytical Results

Select soil samples collected from soil borings GP-01, GP-02, GP-04, GP-06, and GP-07 were submitted to ESAI for one or more the following analyses: EPH by the DEP Method, PCBs by EPA Method 8082, VPH by the DEP Method, RCRA-8 by EPA series 6000/7000 series, and VOCs by EPA Method 8260. Soil samples were identified according to soil boring designation and depth collected. Laboratory analytical results for the samples are presented in Table 4. The laboratory narrative, analytical data, quality assurance/quality control (QA/QC), analytical methods, and chain of custody form are included for reference in Appendix 6.

Table 4 - Soil Analytical Results (Detections Only)						
Analyte	GP-01 (1-3) ⁽¹⁾	GP-02 (11-13)	GP-04 (13-15)	GP-06 (3-5)	GP-07 (3-5)	RCS-1 ⁽²⁾
EPH by DEP Method	<u> </u>		. ,			
Benzo (a) anthracene	0.423(3)	< 0.347(4)	< 0.341	< 0.360	< 0.389	40
Benzo (a) Pyrene	0.396	< 0.347	< 0.341	< 0.360	< 0.389	7
Benzo (b) fluoranthene	0.356	< 0.347	< 0.341	< 0.360	< 0.389	40
C ₁₁ -C ₂₂ Aromatic Hydrocarbons	12.4	<10.4	<10.3	<10.8	<11.7	3,000
C ₉ -C ₁₈ Aliphatic Hydrocarbons	32.2	12.8	<10.3	<10.8	<11.7	3,000
Chrysene	0.415	< 0.347	< 0.341	< 0.360	< 0.389	400
Fluorathene	0.892	< 0.347	< 0.341	< 0.360	< 0.389	3,000
Phenathrene	0.715	< 0.347	< 0.341	< 0.360	< 0.389	1,000
Pyrene	0.777	< 0.347	< 0.341	< 0.360	< 0.389	3,000
Total Metals by 6000/7000	0					
Arsenic	5.43	N/A ⁽⁵⁾	N/A	2.85	9.99	20
Barium	37.5	N/A	N/A	27.1	33.1	3,000
Cadmium	2.58	N/A	N/A	1.31	2.08	100
Chromium	12.5	N/A	N/A	14.4	13.2	3,000
Lead	119	N/A	N/A	3.36	40.3	600
Mercury	0.375	N/A	N/A	< 0.0310	0.0726	30
PCBs by EPA Method 808	82					
Aroclor- 1260	0.129	< 0.00209	< 0.00208	< 0.00216	< 0.00236	4
VOCs by EPA Method 8260						
4-Isoproptoluene	0.0103	< 0.00555	< 0.00526	< 0.00546	< 0.00683	NS ⁽⁶⁾
Trichlorofluoromethane	< 0.00482	< 0.00555	< 0.00526	< 0.00546	< 0.1751	1,000
Notes: 1) Sample identifi 2) RCS-1 Reports 3) Analytical resu 3) < indicates the single si	ication and dept able Concentration able Concentration its and Reportation analyte was not hat the sample wo obtandard in the	h collected (feet ons are listed in ole Concentratio detected above t vas not analyzed MCP for this sp). 310 CMR 40.09 ns are reported i he specified lab for this specific ecific method.	974 and derived in milligrams pe oratory quantific method.	in Section 2.1. r kilogram (mg/k cation limit.	(g).

As summarized in Table 4, no concentrations of EPH, VPH, VOCs, PCBs, or RCRA 8 Metals were detected above the applicable RCS-1 RCs in the soil samples submitted for laboratory analysis from GP-01, GP-02, GP-04, GP-06, and GP-07. The laboratory quantification limits for the non-detected target analytes achieved during analysis of the soil samples collected from the Site are below the applicable RCs.

4.2 Groundwater Analytical Results

Groundwater samples collected from monitoring wells CMW-01 and CMW-02 on June 2, 2017 were submitted to ESAI for one or more of the following analyses: EPH by the DEP

Method, VOCs by EPA Method 8260, VPH by DEP Method, and dissolved RCRA 8 Metals by EPA Method 6000/7000 series. Laboratory analytical results for dissolved Soluble Metals carbon fraction ranges are presented in Table 5. For non-detected analytes, the laboratory quantification limits achieved during the analysis of the groundwater samples were below the applicable RCs. The laboratory narrative, analytical data, QA/QC, analytical methods, and chain of custody form are included for reference in Appendix 6.

Table 5 - Groundwater Analytical Results (Detections Only)						
AnalyteCMW-01(1)CMW-02RCGW-2						
Soluble Metals by EPA 6000/7000 Series						
Barium (dissolved)	0.0871 ⁽³⁾	0.284	50			
Notes: 1) Sample identification. 2) RCGW-2 Reportable Concentrations are listed in 310 CMR 40.1600 and derived in Section 5.2. 3) Analytical results and Reportable Concentrations are reported in milligrams per liter (mg/l).						

As summarized above in Table 5, laboratory analysis of groundwater samples indicated no concentrations of EPH, VOCs, VPH, or soluble metals (with the exception of Barium) in excess of the applicable RCGW-2 Reportable Concentrations. The laboratory quantification limits for the non-detect target analytes achieved during analysis of the groundwater samples collected at the Site are below the applicable RCs.

4.3 Analytical Data Quality Assurance and Quality Control

Coneco has reviewed laboratory procedures, field sample QA/QC, and laboratory reporting requirements for analytical data used in support of assessment and evaluation decisions at the Site pursuant to DEP's Compendium of Quality Assurance and Quality Control Requirements and Performance Standards for Selected Analytical Methods Used in Support of Response Actions for the Massachusetts Contingency Plan (MCP) (DEP Publication WSC-02-320). This Compendium of Analytical Methods (CAM) provides (a) information and guidance to all parties on analytical and data quality issues, and (b) requirements and specifications for those parties who wish to obtain "Presumptive Certainty" for satisfying the data quality requirements of the MCP at 310 CMR 40.0017 and 310 CMR 40.0191(2)(c). Sample collection, preservation, and logging procedures at the Site were conducted in accordance with Coneco's standard operating procedures, the Standard Reference for *Monitoring Wells*, the CAM guidelines, and the MCP. Laboratory procedures conducted by ESAI included method-specific QA/QC requirements and performance standards. Coneco's review of laboratory documentation, including analytical results, narratives, and chain of custodies provided by ESAI for samples collected from the Site, identified no departures from the requirements specified at 310 CMR 40.0017 and 40.0191.

Coneco evaluated information provided by ESAI concerning sample integrity, chain-ofcustody procedures, quality assurance and quality control, and necessary report components. Details regarding any identified non-conformances can be found in the laboratory data, laboratory QA/QC, methods, and the chain-of-custody forms included as Appendix 6. It is the opinion of Coneco that the presented laboratory data is in compliance with the applicable MCP Analytical Method standards and laboratory QC requirements. As such, this data is considered to be usable without adjustment for Site Characterization decisions made pursuant to 310 CMR 40.0000.

5.0 SUMMARY OF FINDINGS

Results for the Subsurface Investigation conducted at the Site, identified as 100 Kennedy Circle in Newton, Massachusetts were evaluated in a manner consistent with guidelines as presented in the MCP (310 CMR 40.0000) and ASTM *Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process* (ASTM E 1903-11). Based on the information and observations described herein, the following is a summary of findings:

- On May 26, 2017, TPI, with oversight provided by Coneco, conducted a geophysical survey of portions of the Site to aid in the identification of an abandoned UST. Based on the results of GPR survey, TPI detected a UST to the southwest of the Site building.
- On May 26, 2017, Coneco provided oversight for the advancement of seven (7) soil borings at the Site, three (3) of which were completed as groundwater monitoring wells. Soil boring and groundwater monitoring well locations were selected to collect data for evaluation of potential areas of concern relative to historical and current Site use.
- Select soil samples collected from the soil borings were submitted to ESAI for laboratory analysis of EPH, VOCs, RCRA 8 Metals, PCBs, and VPH. No analyte concentrations in excess of the applicable RCS-1 RCs, were identified in any of the submitted soil samples.
- On June 1, 2017, Coneco gauged and sampled the newly installed monitoring wells at the Site. Groundwater was encountered at depths ranging from 13.35 to 14.19 feet below surface grade. No measurable NAPL was detected during groundwater gauging activities in the monitoring wells at the Site.
- Groundwater samples collected from the newly installed on-Site groundwater monitoring wells were submitted to ESAI for laboratory analysis of dissolved RCRA 8 Metals, VPH, EPH, and VOCs. No analyte concentrations in excess of the applicable RCGW-2 RCs were identified in any of the submitted groundwater samples.

Based on the findings of the subsurface investigation, no concentrations of EPH, PCBs, VOCs, VPH and/or metals were detected in excess of the applicable DEP RCS-1 Reportable Concentrations in soil or in excess of the applicable RCGW-2 Reportable Concentrations in groundwater at the Site. The laboratory quantification limits for the non-detect target analytes achieved during the analysis of the soil and groundwater samples collected from the Site are below the applicable RCs.

The soil and groundwater data collected during this investigation do not indicate a release of OHM to soil or groundwater associated with former automotive repair operations at the Site. No release condition requiring notification to the DEP has been identified as a result of the findings of this subsurface investigation. However, based on the findings of the geophysical survey conducted as part of the subsurface investigation, a suspected UST and associated fuel lines were identified southwest of the Site building. As such, Coneco recommends the following:

• Coneco recommends the removal of the UST and associated fuel lines in accordance with applicable regulations, including the collection and analysis of post-UST removal confirmatory soil and/or groundwater samples.

6.0 LIMITATIONS

This assessment was performed at the Client's request utilizing methods and procedures consistent with good commercial or customary practice designed to conform with acceptable industry standards. This report is exclusively for the use and benefit of the Client, identified on the cover page of this report, and is not for the use or benefit of, nor may it be relied upon by, any other person or entity without the advance written consent of Coneco.

The conclusions expressed by Coneco in this report are based solely on the references cited. Observations were made under the conditions stated. Information provided by federal, state, and local agencies contacted was relied upon as accurate and complete. The purpose of this study was to establish via a limited scope of work whether there is evidence that a release of OHM has occurred at the Site or that a threat of release exists. This report represents Coneco's opinion relative to such evidence. Unless otherwise specified in the scope of work, Coneco accepts no responsibility for client performance of recommendations as may be offered in this report. No attempt was made to investigate Site owner or operator compliance with federal, state, or local laws and regulations in connection with Site usage.

With specific regard to subsurface explorations, data obtained from specific soil and groundwater sampling points may not be wholly representative of the nature of subsurface conditions at locations other than the actual test boring and monitoring well location on the date the samples were obtained. Variable conditions may only become evident upon further sampling, analysis, and/or exploration or prior to anticipated future construction activities. Should additional information become available concerning this Site or neighboring properties in the future, that information should be made available to Coneco for review so that the conclusions presented in this report may be modified as necessary.

THIS DOCUMENT IS INTENDED FOR GENERAL PLANNING & INFORMATION PURPOSES ONLY. ALL MEASUREMENTS & LOCATIONS ARE APPROXIMATE.

FIGURE 3

SITE PHOTOGRAPHS

Photo 1

View of the Site looking in a southwesterly direction towards Building 105 on May 26, 2017.

Photo 2

Overview of the Site looking in a southeasterly direction between building 105 and the community building on May 26, 2017.

Photo 3

View of the GP-02 through GP-04, and the marked UST looking from a southly direction on May 26, 2017.

Photo 4

View of GP-07 in the eastern portion of the Site looking in a westerly direction on May 26, 2017.

	S		SITE PHOTOGRAPHS
CON Engineers & Offices Throughout New E	<u>E C O</u> Scientists NGLAND (800) 548-3355		RESIDENTIAL/ UNDEVELOPED PROPERTY 100 KENNEDY CIRCLE NEWTON, MASSA CHUSETTS
PHOTOGRAPHER	DATE	CHECKED	New ION, MASSACHUSEI IS
PHL	6/7/2017	MEB	CONECO PROJECT NO. 9684

TPI GEOPHYSICAL SURVEY REPORT

June 5th, 2017

Emily Wassmer Coneco Engineers and Scientists 4 First St Bridgewater, MA 02324

Project: Geophysical Survey – 100 Kennedy Circle, Newton, MA

Dear Emily;

The following is a brief letter report detailing the results of the geophysical survey performed at the above referenced site. Site maps and/or pertinent ground penetrating radar (GPR) transects are contained in the report and Appendix A. It would be helpful to review Appendix A and the site maps when reading this report. TPI's standard practice is to indicate the results of the geophysical survey by marking all identified utility lines, tanks, and GPR anomalies etc. with chalk, paint or flags. It should be noted that this report is a means of transferring data and results of data interpretation, which was performed during the time allotted for the fieldwork.

Project Scope and Visual Site Inspection

TPI Environmental, Inc. (TPI) was contracted by Coneco Engineers and Scientists (client) to scan areas of concern (AOC) at the above referenced location to confirm or deny the presence of a potential underground storage tank (UST). Additionally, TPI was tasked with tracing an electric line that descends a utility pole in the northeast section of the work area. The site consists of an apartment complex located at the above address and as indicated in Figure 1. Upon arrival to the site on May 26th, 2017, TPI reviewed the site history with the client and performed a site walk to search for evidence of USTs. During the site walk the following areas of interest were noted;

• TPI noted a fill port in the walkway as indicated in Figure 1. A cutoff vent pipe was also noted in the vicinity.

Methodology

Geophysical surveys are typically accomplished by employing the following techniques; GPR, Fisher TW6 electromagnetic metal detection (TW6 EM), a Geonics EM61-MK2 Time – Domain Electromagnetic Detector unit (EM61), radio frequency line locating (RF), and magnetics. Known utilities are typically traced with the RF unit, GPR, and the TW6 EM unit depending on the size, matrix and conductive properties of the line. The EM61 is a high power, high sensitivity metal detector capable of detecting both ferrous and non-ferrous metal. The TW6 EM unit sounds an audible alarm in the presence of a large mass of metal such as an UST. A description and discussion of these geophysical methods as well as TPI's standard procedures for performing geophysical surveys is found in Appendix A. In general, "blind surveys" are typically performed by initially scanning the site with a TW6 EM unit and/or an EM61 unit and noting areas of relatively high EM response. Then locations with high EM response are further investigated with GPR. EM units are typically not effective and practical in areas underlain with reinforced concrete and/or the presence of ubiquitous metallic objects.

Geophysical Survey Results

The geophysical survey at this site was accomplished with the TW6 EM, RF, and GPR units. The EM survey was performed throughout accessible sections of the UST Scan Area with the exception of areas within four feet of metallic objects (reinforced concrete slabs, metal fences, metal doors etc.). The GPR survey was performed around known metallic objects and over metallic anomalies identified during the EM survey. Known utilities were traced with RF and confirmed with GPR. Results of the geophysical survey were marked on the ground with paint and a map of the survey results is contained in this report. Results of the geophysical survey are as follows;

- TPI detected a 14' x 9' UST-style anomaly at ~3' below grade as indicated in Figure 1. TPI marked private utilities in the immediate vicinity of the anomaly and cleared three soil borings.
- The utility pole electric line was traced and marked as indicated in Figure 1.

TPI completes non-intrusive geophysical surveys using equipment and techniques representing best available technology. TPI does not accept responsibility for survey limitations due to inherent technological limitations or unforeseen and varying site-specific conditions such as metal-reinforced concrete. In practical terms, TPI serves to reduce the risk of encountering subsurface utilities during excavation operations or greatly increase the chance of locating man made subsurface objects depending on the goal of the project. The results of this investigation should only be used as a tool and should not be considered a guarantee regarding the presence or absence of USTs or piping.

If you should have any questions or concerns, please do not hesitate to contact us.

Your Project Team at TPI:

Frank Fendler, M.S., P.G. President <u>ffendler@tpienv.com</u>

Mike Robbins, M.S. Geologist/Boston Manager <u>mrobbins@tpienv.com</u>

Dustin Lutz Geologist/P.M. <u>dlutz@tpienv.com</u>

724 S. 27 th St, Easton, PA 18045		888-204-3266	<u>www.tpienv.com</u>
Serving	New Jersey	Pennsylvania	Massachusetts

Appendix A

GPR Transect, Site Photo, and Survey Methods

GPR Transect 222

Site Photo 1 Looking south across UST

Attachment A TPI's Geophysical Survey Equipment & Methods

Geonics EM61-MK2

The EM61 is a high resolution time-domain metal detector which is used to detect ferrous and non-ferrous metallic objects. It consists of a powerful transmitter that generates a pulsed primary magnetic field, which induces eddy currents in nearby metallic objects. The decay of these currents is measured by two receiver coils mounted on the coil assembly. The responses are recorded and displayed by an integrated computer based digital data logger with real time numeric and graphic display. Two ports on the logger allows simultaneous collection of EM and GPS data. For further processing and interpretation data can be transferred to a laptop computer in the field and a color contoured map of the EM61 reponse is prepared (see below).

EM61 Color Contoured Map

The EM61-MK2 detects a single 55 gallon drum at a depth of over 10-feet beneath the instrument, yet it is relatively insentsitive to interference from nearby surface metal such as fences, buildings, cars, etc. By making the measurement at a relatively long time after termination of the primary pulse, the response is practically independent of the electrical conductivity of the ground.

Due to its unique coil arrangements, the response curve is a single well defined positive peak greatly facilitating quick and accurate location of the target, the depth of which can usually be estimated from the width of the response and/or from relative response from each of the two receiver coils.

<u>GPR</u>

This method is one of the most powerful and cost effective methods of locating man made objects and stratigraphic layers in the subsurface. It is an active method that transmits electromagnetic pulses into the ground, the radar pulses are reflected from materials or layers of differing dielectric and electrical conductive properties. The GPR computer measures the elapsed time in billionths of a second (nanoseconds) from when the pulses are sent and when they are received back at the surface that can then be converted to depth. Results of the radar scan are displayed as a continuous crosssection of the subsurface on the computer screen in real time. Metallic materials such as tanks, pipes, conduits, rebar etc. have vastly different dielectric properties then soils so there reflections are striking and relatively easy to identify. Pipes and tanks constructed of PVC, concrete, and terracotta also produce distinct reflections, however, these reflections are typically not as striking as metallic materials. A typical radar image of two metallic underground storage tanks is found below.

GPR Image of Two Metallic USTs

GPR surveys are conducted with the most advanced GPR equipment currently available

ffendler@tpienv.com www.tpienv.com

Attachment A TPI's Geophysical Survey Equipment & Methods

including a Geophysical Survey Systems (GSSI) SIR-3000 subsurface radar unit with a 400 MHz antenna. The 400 MHz antenna has a depth range of approximately 20-feet and other antennas may be employed with the system depending on specific site conditions and objectives of the survey. The GPR transect data may be saved on the internal hard drive and transferred to a PC for storage, printing, and post processing. GSSI is the world leader in the development of GPR systems and was the first company to commercialize GPR in 1970. GPR software has hardware and improved dramatically over the last several years allowing for relatively rapid and economical GPR surveys. With 3-dimensional capabilities, the latest GPR software takes data processing a step farther then the former 2-dimensional viewing method. Three-dimensional visualization helps you to see the whole picture, giving you a powerful tool to interpret complex utility layouts and identify subtle linear features that may have otherwise been missed.

GPR surveys are typically conducted by searching for GPR hyperbolas indicative of subsurface pipes or tanks signatures in the vicinity of known entities. Theses signatures are marked on the ground and areas progressively further from the known entity are scanned and marked. This process is continued until the GPR operator performed enough scans to determine and mark the subsurface pipe, tank or anomaly. During this process the GPR data is typically not saved due to the immense size of the data files. After this phase of the GPR survey is completed, representative GPR transects or grids are performed and saved for the report and post processing. Some of the factors that may negatively affect GPR results include clay soils, rebar in concrete, high moisture content, depth of the target, and the integrity, size, and material of the target.

TW-6 EM Unit

TPI routinely employs a Fisher TW-6 electromagnetic metal detector when performing GPR surveys. The TW-6 creates an electromagnetic field with a transmitting coil and measures the strength of that field with a receiving coil. As the TW-6 passes over electrically conductive materials such as metal tanks or drums the field is distorted and the instrument produces an audible alarm based on the degree of the distortion. The TW-6 can detect conductive materials the size of drums or small tanks to depths of 10-feet. The instrument is actually a relatively poor metal detector which makes it ideal for locating large conductive materials such as metal drums, medium to large metal pipes, reinforced concrete pipes, and metal tanks. A more sensitive metal detector would produce "false positives" on small pieces of metal that are typically found in fill and throughout developed sites. If the survey area is underlain by reinforced concrete or cars and other large surficial metallic features are within 10-feet, the TW-6 will not be useful.

Line Locating

Line locating is performed with a Radiodetection RD400 PXL-2 line locator with a 433 HCTX-2 transmitter. The transmitter emits a specific radio or electromagnetic signal which is indirectly induced or directly conducted onto the metallic line. The transmitter is capable of producing frequencies of 512 Hz, 8 kHz, or 33 kHz and the receiver is configured for the specific transmitted frequency. The induced signal is coupled with the line by either using an induction clamp which surrounds an exposed line or placing the transmitter above a buried line and transmitting the signal to it. The receiver may also be used in a passive locate mode (power) to identify the presence of current carrying lines. Nonmetallic lines may also be located by snaking a sonde down accessible lines with push rods. A sonde is a small transmitter that emits a specific electromagnetic frequency which can be detected by the receiver at depths of 12 to 16-feet.

Inductive Sweep With Transmitter/Receiver

ffendler@tpienv.com www.tpienv.com 888-204-3266-Phone 888-204-3266-Fax

Attachment A TPI's Geophysical Survey Equipment & Methods

Resistivity

TPI conducts subsurface resistivity surveys using the AGI SuperSting R8 IP Earth Resistivity and IP Meter. The SuperSting unit measures the voltage drop of an induced electrical current across numerous electrodes as it travels through the electrically heterogenous subsurface. Multiple survey profiles are completed in this manner based upon the specific conditions of the field area in order to assemble a complete characterization of the ground resistivity properties. The resistivity data is then processed and examined for evidence of significant subsurface features including bedrock surfaces, perched groundwater tables, cavities/sinkholes, or potential contaminant plumes.

AGI SuperSting R8 IP Earth Resistivity and IP Meter assembly.

Field Instr

Resistivity pseudosection across a backfilled canal. Approximately 10' of high resistivity/low conductivity surficial fill (blue) over low resistivity/high conductivity canal backfill (orange-red).

Down-hole Conductivity

TPI is also able to collect down-hole soil conductivity data with an electric conductivity probe. The EC probe is driven into the subsurface by a direct push unit. A current is induced in the native soil between two contacts at opposite ends of the probe. The soil conductivity is then calculated based upon the ratio of induced current to resultant voltage across the probe. Down-hole EC profiling is particularly useful in the efficient determination of soil grain size (permeable sands vs impermeable clays), water content, and metal content.

Electrical conductivity probe

724 S. 27th Street Easton, PA 18045

ffendler@tpienv.com www.tpienv.com 888-204-3266-Phone 888-204-3266-Fax

Geoprobe® Machine

with hydraulic ham driving tool into soi

STANDARD OPERATING PROCEDURES

Discussion:

Test boring programs in unconsolidated overburden materials may be conducted using a variety of drilling techniques. While most borings associated with site assessment techniques are performed using a hollow-stem auger, a less expensive method of obtaining soil samples is using Geoprobe® equipment. The powerful aspect of this technique is the versatility and mobility of the equipment both on the interior and exterior of site buildings. Samples can be obtained at depths up to 100 feet in a variety of geological conditions and locations. A 1.5-inch inside diameter (ID) macro core sampler is driven through overburden deposits using a pneumatically or electrically operated hammer. Collected within this macro core is a continuous soil sample available for field screening or more detailed laboratory analysis.

Procedure:

- 1) All Geoprobe® activities are continuously inspected by a qualified CONECO geologist or engineer. The inspector is familiar with the selected sampling program and is responsible for QA/QC procedures. Boring logs and field notes, as well as procedural changes, are the responsibility of the inspector.
- 2) All Geoprobe® equipment is decontaminated prior to initial use and during activities at the site
- 3) The 4-foot long macro core sampler (2 inch ID) is prepared by inserting a PETG (acetate) liner inside the macro core. Depending on the desired sampling depths, 3-foot or 1-foot extension rods are then placed on the opposite end of the macro core. Acetate liners are replaced after each sampling run.
- 4) Beginning from the surface, the macro core sampler is driven through overburden materials using a pneumatically or electrically operated hammer. Once the core sampler has been driven through the desired depths, it is removed using an extractor jack. The PETG liner containing the soil sample is then removed from the macro core and emptied onto a clean surface.
- 5) Descriptions of the sample materials, stratigraphy, as well as sampling activities are recorded on the test boring log. Soil samples, when recovered, are placed in appropriate containers for PID screening and laboratory analysis, if required.
- 6) Any excess soil samples obtained during boring activities will remain on-Site. Those soils exhibiting PID levels of 10 ppm or greater will be segregated and either containerized or placed on and covered with 6-mil polyethylene.

Discussion:

Proper installation of monitoring wells is an essential element to an accurate hydrologic or site assessment investigation. Installation of monitoring wells typically consists of a 2 inch inside diameter (ID) Schedule 40 PVC well screen (0.1 inch slot size) and similar solid riser pipe. The screened interval is usually 10 feet in length and is centered at the apparent groundwater surface at the time of installation. One inch or four inch ID screen and riser may also be used depending on the constraints and objectives of the drilling program.

Procedure:

- 1) Upon completion of the test boring, the preassembled well screen and riser, with bottom plug siltation trap, is inserted into the borehole or more commonly, into the hollow stem auger or casing, as removing the auger flights can cause the surrounding formation to prematurely collapse on the well screen.
- 2) The well assembly is positioned at the desired depth and the annular space between the sidewall and well casing assembly is then backfilled with a clean, well sorted silica sand to a depth at least one foot above the well screen/riser connection. The screen and riser pipe is installed to be vertically plumb.
- 3) Once the sand filter pack is emplaced to the proper depth below grade (measured with tape), a divider seal, most commonly bentonite pellets, is inserted into to the annular space until a six-inch to 1-foot thick impermeable seal is formed around the casing.
- 4) The method for the backfilling the remainder of the annular space is determined by the qualified CONECO personnel. Typically, native material removed from the borehole having a PID reading below 10 ppm is then used to backfill the remaining annular space. Alternative backfill materials include concrete slurry or bentonite/water mixtures. The well riser is then fitted with a top plug and a locking protective casing or road box.
- 5) The protective casing or road box is securely cemented in place over the well. The cement seal is at a minimum one foot thick. If a road box is used, it is cemented flush with the pavement surface. If used, other protective casings should be grouted in place at least 0.5 feet above grade and identified with flagging.

Discussion:

Water standing in a well prior to development and sampling may not be representative of true groundwater quality in the aquifer. It is therefore necessary to first purge the well of all stagnant water so that a representative groundwater sample can be obtained. Depending upon the monitoring well construction and hydraulic characteristics of the aquifer, well development may be conducted by manual bailing or with a submersible pump. Bailing is most appropriate for low yield or deep wells, whereas a pump may be suitable for higher yield wells or where sampling within a discrete zone is necessary.

Procedure:

1) Using a clean groundwater sensor indicator determine the depth to the water table and determine the total depth of the well and record in the field logbook. Depth to groundwater should be measured from a specified reference point on the PVC riser pipe.

Then calculate the volume of standing water using the following equation:

 $v = \pi r^2 h$ where:

v = one well volume of water (generally converted to gallons)

- for inches multiply by 4.33×10^{-3}
- for feet multiply by 7.48 to give gallons

 $\pi = 3.14$

r = the radius of the well, measured as the inside diameter of the well divided by 2

h = the height of the water column in the well

Sample Calculation:

Assume: r = 2-inch ID = 0.16-foot ID h = 1 foot $v = 3.14 * (0.16 \text{ ft}/2)^2 * (1 \text{ foot}) * (7.48 \text{ gal/ft}^3)$ v = 0.16 gal3v = 0.48 gal

Therefore, as a rule of thumb, approximately 0.5 gallons of water must be purged from the well for each foot of water present in the monitoring well column.

- 2) Calculate the number of bailer volumes or the duration of pumping required to evacuate at least three well volumes.
- 3) Evacuate well water to a small bucket or vessel (<0.5 gallons) in which the pH and specific conductivity probes have been placed.

Standard Operating Procedure: Monitoring Well Sampling (Cont'd)

- 4) Purging should continue until pH, temperature, and specific conductivity values do not vary appreciably; a minimum of three well volumes have been removed; and a stabilization in the silt content of the evacuated water has been achieved. Care should be taken so that the bailer line does not come in contact with the ground.
- 5) Record final pH, temperature, and specific conductivity values in field log book.
- 6) Prior to sampling, allow an equilibration period (minimum of 10 minutes).
- 7) Decontaminate all downhole purging equipment after use in one well using applicable standard operating procedures. If a disposable bailer or tubing is used, discard after one use. Discard the line used to support the bailer between wells.
- 8) A new pair of disposable gloves shall be worn for each individual well sampling.
- 9) Samples should be collected and containerized in order of decreasing sensitivity to volatilization.

The following order should be used in collection of samples:

VOCs semi-VOCs Petroleum Hydrocarbons Metals PCBs

- 10) Minimize agitation of sample during collection to prevent possible volatilization of components present in the sample.
- 11) Care must be taken to eliminate entry of or contact with any substance other than the water sample and the interior surface of the sampling container.
- 12) Samples submitted for VOC analysis should not contain any air bubbles.
- 13) Samples submitted for dissolved metals analysis should be filtered in the field, using CONECO's filtration and pump system. Acidification of the sample should not be performed until the sample has been properly filtered.
- 14) When full, sampling containers should be securely capped, wiped off, appropriately labeled, and refrigerated until their delivery to the laboratory.
- 15) Complete the chain of custody form.

updated: 3/94 bfk/c13
Discussion:

Sample materials collected in the field are placed in tightly sealed clean glass jars to be screened for volatile compounds using either a HNU Model PI-101 or HW-101 photoionization detector (PID). CONECO utilizes the HW-101 when the field personnel consider moisture to be a potential variable. The PIDs can be used to detect organic or inorganic compounds with specific ionization potentials, however, individual compounds cannot be discriminated. Therefore, the results for total volatile vapor concentrations are expressed in the meter reading which the manufacturer defines as parts per million (ppm) of an equivalent amount of benzene. The limit of detectability of the screening procedure is 0.1 ppm.

Each instrument is cleaned and calibrated in accordance with the manufacturer's specifications on a regular basis. CONECO maintains individual maintenance and calibration logs for each PID. Prior to use in the field, the PID is calibrated using a benzene standard or equivalent (isobutylene) and the calibration data is logged.

Procedure:

- 1) Prior to use in the field, the photoionization detector (PID) is to be calibrated in accordance to manufacturers specifications.
- 2) Place the sample in an eight or ten-ounce jar until the jar is approximately half-full. Place thick aluminum foil over the mouth of the jar to create an effective seal. Shake the sample jar for 15 seconds and let stand at temperatures above 50° F.
- 3) After 10 to 15 minutes of equilibration time, shake the sample jar a second time and position the container for sampling. Puncture the aluminum foil seal with the PID probe tip, making sure that the probe tip does not come in contact with the sample material.
- 4) Observe the instrument meter and record the highest reading. The meter reading will most often peak within five seconds and steadily decrease as ambient air is introduced into the medium. If erratic variation is noted in the meter reading, the sample will be retested. Weather conditions are to be noted in conjunction with the PID data.

updated: 3/94 bfk/c13

Discussion:

In most cases sampling equipment will either be dedicated on-Site or disposed of following use in a specific well, eliminating the need for decontamination of sampling equipment. In those cases where decontamination of sampling equipment is required, the method chosen will be one that removes Site contaminants from the equipment without interference with the chemical analyses to be performed. The general decontamination methodology for in-lab and field decontamination procedures is as follows:

Procedure:

- 1) Wash equipment with a non-phosphate detergent solution (e.g. Alconox, Liqui-nox).
- 2) Rinse thoroughly with de-ionized water.
- 3) Rinse thoroughly with methanol.
- 4) Rinse thoroughly with de-ionized water.
- 5) Repeat procedure between each sampling location.
- 6) If sampling for dissolved metals is being conducted, an additional rinse with a weak hydrochloric acid solution and de-ionized water should be performed.
- 7) If sampling for PCBs is being performed, an additional rinse with a weak hexane solution and de-ionized water should be conducted.
- 8) Care should be taken to ensure that no rinse waters runoff to environmentally sensitive area.

SOIL BORING AND MONITORING WELL LOGS

	CON	IECO EN	GINEER	S & SCIENTISTS	GEOPROBE SOIL I	BORING &	MONITORIN	IG WELL I	REPORT
PROJ	ECT:	9684			BORING NO.	GP-01/CMW-	02		_
LOCA	TION:	100 Kennedy	/ Circle, Ne	wtown, MA	PAGE 1 OF	2			_
DRIL	LING CO:	New England	d Geotech		DATE STARTED:	5/26/2017			-
EQUI	PMENT:	Traack-Mour	nted Geopro	be 7822DT	DATE FINISHED:	5/26/2017			-
DRIL	LED BY:	Maynor Men	idoza		SURFACE ELEVATION:	Unknown			-
INSPI	ECTED BY:	Pat Lydon							
	GROUNDW	ATER OBS	SERVATIO	DNS		ROD	SAMPLER	CORE BAR	
	NOT EN DEPTH	NCOUNTER STAF	ED: BILIZATIO	N TIME	TYPE: SIZE ID [.]	Geoprobe 1" ID	Macro-core 2" ID	Geoprobe 2.25" OD	-
	~18'	0111	In-situ		PENETRATION:	5'	5'	5'	-
				SAM	IPLE DATA				
DEPTH	SAMPLING	WELL	WATER		THOLOGY		SAMPLE	PEN/	FIELD
(ft)	DEPTH FROM - TO	DATA	TABLE (ft)	(Descrip	tion of materials)		ID	RECOV (in./in.)	SCREENING (ppm)
0.0	0-1'			0'-1' : Top soil			SS-01	60/36	8.9
	1-3'	I I		1'-2' : Gravelly sand : 80% medium sand	, 20% fine gravel; dark brown, d	ry, no	SS-02		158.4
_				odor	, , , ,	<i>,</i>			
				2'-4.5' : Urban Fill : brick and concrete					
	3-5'						SS-03		95.4
-									
5.0				4.5'-9' : Gravely Sand : 75% medium san	d, 25% fine gravel, trace concre	te, brown to			
	5-7'						SS-04	60/22	26.7
							22.45		
	7-9'						SS-05		7.9
	9-11'			9'-18' Gravelly Sand : 70% medium sand	. 20% cobbles. 10% fine gravel	light	SS-06		0.8
10.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			brown, dry, no odor, brick 15'-16'	,		55 00		
								60/30	
	11-13'						SS-07		0.9
	13-15'		¥				SS-08		1.5
-									
15.0	15 17						88.00	(0)(0)	A A 7
	15-17						55-09	60/60	44.6
_									
	17-19'						SS-10		7.9
				18-25': Sand : 100% fine sand; light gra	y, wet, no odor				
	19-21'						SS-11		0.7
20.0				CENEDAL DEMADUS.					<u> </u>
		Native Mater Bentonite Sand	rials	GENERAL REMARKS: Soil samples submitted for laborate Headspace screening conducted us ND means "Not Detected" above i	ory analysis of EPH, VPH, VC ing a MiniRAE Model 3000 P	OCs, MCP 14 M ID, calibrated to tection limit (0	etals and PCBs f a 100 ppm isobu	rom the 1'-3' de	epth interval. d.
	Ħ	2" PVC Well 2" PVC Well	l Screen l Riser	Bottom of Boring: 25'			ir /		
	$\mathbf{\Sigma}$	Denotes appr	roximate	Screen Interval: 7-17'					
	=	groundwater	elevation	Sand: 14-25'					

CONECO ENGIN	EERS & SCIENTISTS	GEOPROBE SOIL E	BORING & I	MONITORIN	IG WELL F	REPORT
PROJECT: 9684		BORING NO.	GP-01/CMW-	02		_
LOCATION: 100 Kennedy Circl	le, Newtown, MA	PAGE 2 OF	2			_
DRILLING CO: New England Geo	tech	DATE STARTED:	5/26/2017			
EQUIPMENT: Traack-Mounted G	Geoprobe 7822DT	DATE FINISHED:	5/26/2017			-
DRILLED BY: Maynor Mendoza		SURFACE ELEVATION:	Unknown			
INSPECTED BY: Pat Lydon						
GROUNDWATER OBSERV	ATIONS		ROD		CORE	
NOT ENCOUNTERED:		TYPE:	Geoprobe	SAMPLER Macro-core	Geoprobe	
DEPTH STABILIZ	ATION TIME	SIZE ID:	1" ID	2" ID	2.25" OD	- -
~18' In	n-situ	PENETRATION:	5'	5'	5'	
	SAM	IPLE DATA			1	I
DEPTH SAMPLING WELL WA (ft) DEPTH DATA TAU FROM - TO (ft)	TER LII BLE (Descript ft)	(HOLOGY tion of materials)		SAMPLE ID	PEN/ RECOV (in./in.)	FIELD SCREENING (ppm)
20.0 0-1'					60/42	
1-3'				SS-12		3.7
3-5'				SS-13		1.4
25.0	25': Bottom of Boring					
<u> </u>						
7-9'						

9-11'						
30.0						
11-13						
13-15'	¥					
35.0						
15-17'						
17.10						
1/-19						
19-21'						
4.0						
Native Materials Bentonite Sand 2" PVC Well Scree 2" PVC Well Rise	GENERAL REMARKS: Soil samples submitted for laborate Headspace screening conducted us ND means "Not Detected" above in en r Bottom of Boring: 25' ate Screen Interval: 7-17'	ory analysis of EPH, VPH, VC ing a MiniRAE Model 3000 PI nstrument above instrument det	Cs, MCP 14 M D, calibrated to tection limit (0.1	etals and PCBs f a 100 ppm isobu l ppm)	rom the 1'-3' de tylene standard	epth interval. l.
groundwater elevat	tion Sand: 14-25'					

CONI	ECO ENO	GINEERS & SCIENTISTS	GEOP	ROBE SO	DIL BORING F	REPORT	
PROJECT:	9684		BORING NO.	GP-02			
LOCATION:	100 Kenned	y Circle, Newtown, MA	PAGE 1 OF	1			-
DRILLING CO:	New Englan	d Geotech	DATE STARTED:	5/26/2017			-
EQUIPMENT:	Track-Moun	ted GeoProbe 7822DT	DATE FINISHED:	5/26/2017			-
DRILLED BY:	Maynor Mer	ndoza	SURFACE ELEVATION	√: Unknown			-
GROUNDV	VATER OBS	SERVATIONS				CORE	
	CONTER		771 / 771	ROD	SAMPLER	BAR	
DEPTH	STAI	ED: <u>X</u> BILIZATION TIME	SIZE ID:	Geoprobe 1" ID	1.25" ID	NA	-
			PENETRATION:	2'	2'	NA	-
	WATED	SAMPLE DA				DEN/	FIELD
(ft) DEPTH FROM - TO	WATEK TABLE (ft)	(Description of ma	aterials)		ID	PEN/ RECOV (in./in.)	FIELD SCREENING (ppm)
0.0 0-1'		0'-1' : Top Soil			SS-01	60 / 21	10.1
1-3'		1'-9' : Gravelly sand: 65% medium sand, 20% col dry, no odor, Brick at 9'	bble, 15% fine gravel; mediu	m brown,	SS-02		ND
3-5'					SS-03		4.7
5.0				-			
5-7'					SS-04	60 / 16	ND
7-9'					SS-05		ND
				-			
0.11'					50 DC		A 1
10.0		9'-12' : Gravelly sand: 80% medium sand, 20% fi	ne gravel; light brown, dry, r	no odor	55-00		4.1
						60 / 44	
11-13'					SS-07		6
13-15'		12'-13.5' : Cobble/boulder			SS-08		5.5
		13.5'-14' · Gravely sand: 80% medium sand 20%	fine aravel: light brown dry	no odor			
15.0		14'-18' : Sand: 100% fine sand; gray, wet, no odo	f				
15-17'					SS-09	60 / 20	ND
17-19'					SS-10		ND
				-			
19-20'							
20.0		19'-20' : Boulder		-	SS-11		ND
		<u>GENERAL REMARKS</u> Headspace screening conducted using a MiniRae ND indicates "Not detected" above instrument det	Model 3000 PID, calibrated t tection limit (0.1 ppm)	to a 100 ppm	isobutylene standard		

CON	NECO EN	GINEER	S & SCIENTISTS	GEOPROBE SOIL	BORING	& MONITORI	NG WELL F	REPORT
PROJECT:	9684			BORING NO.	GP-03/CMV	W-01		_
LOCATION:	100 Kennedy	y Circle, Ne	wtown, MA	PAGE 1 OF	1			_
DRILLING CO:	New England	d Geotech		DATE STARTED:	5/26/2017			_
EQUIPMENT:	Traack-Mour	nted Geopro	be 7822DT	DATE FINISHED:	5/26/2017			_
DRILLED BY:	Maynor Men	ndoza		SURFACE ELEVATION	I: Unknown			_
INSPECTED BY:	Pat Lydon							
GROUND	WATER OBS	SERVATIO	DNS		ROD	SAMPLER	CORE BAR	
NOT E	NCOUNTER	ED:		TYPE:	Geoprobe	Macro-core	Geoprobe	_
	STAE	In-situ	N TIME	SIZE ID: PENETRATION:	1" ID 5'	2" ID 5'	2.25" OD 5'	-
	•							-
DEPTH SAMPLING	WELL	WATER	LITHO	JE DATA DLOGY	ſ	SAMPLE	PEN/	FIELD
(ft) DEPTH FROM - TO	DATA	TABLE (ft)	(Description	of materials)		ID	RECOV (in./in.)	SCREENING (ppm)
0.0 0-1'			0'-1' : Top soil			SS-01	60/26	23.2
1-3'			1'-4' : Gravelly sand : 70% medium sand no odor	, 20% cobble; brown to black,	dry,	SS-02		ND
3-5'				2007 111 1007 5		SS-03		2.6
5.0			4'13': Gravelly samd: 70% medium sand, brown, dry, no odor, 13'-14' boulders	, 20% cobble, 10% fine gravel	l; light			
5-7'						SS-04	60/31	0.9
					40.00			
7-9'						SS-05		1.4
9-11'						SS-06		ND
10.0					-	55 00		
							60/41	
11-13'			13'-17': Sand: 100% fine sand, light brow	vn, wet, no odor		SS-07		0.7
		_			_			
13-15'		$ \geq$				SS-08		1.0
15.0			17'-20' : Cobble/boulders		-	55.00	60/25	1.4
13-17			17-20 . Cobbic/bounders			33-09	00/33	1.4
17-19'					-	SS-10		0.7
					_			
19-21'			20' : Bottom of Boring		An an a			
20.0		riale	GENERAL REMARKS:			1. 100		<u> </u>
	Bentonite Sand 2" PVC Wel 2" PVC Wel Denotes appr groundwater	rials l Screen l Riser roximate elevation	Headspace screening conducted us ND means "Not Detected" above i Bottom of Boring: 20' Screen Interval: 7-17' Sand: 14-25' Bentonite: 0-1'	ing a MiniRAE Model 3000 nstrument above instrument	PID, calibrate detection limit	d to a 100 ppm isob t (0.1 ppm)	utylene standard	

	CONI	ECO EN	GINEERS & SCIENTISTS	GEOP	ROBE SO	DIL BORING H	REPORT	
PROJ	ECT:	9684		BORING NO.	GP-04			_
LOCA	ATION:	100 Kenned	y Cirlce, Newtown, MA	PAGE 1 OF	1			_
DRIL	LING CO:	New Englan	d Geotech	DATE STARTED:	5/26/2017			-
EQUI	PMENT:	Track-Moun	nted GeoProbe 7822DT	DATE FINISHED:	5/26/2017			-
DRIL	LED BY:	Maynor Mei	ndoza	SURFACE ELEVATION	I: Unknown			-
INSPI	CROWNER	Pat Lydon					CODE	
	GROUNDV	VATER OB	SERVATIONS		ROD	SAMPLER	BAR	
	NOT E	NCOUNTER		TYPE:	Geoprobe	Macro-core	Geoprobe	_
	DEPTH	51A	BILIZATION TIME	SIZE ID: PENETRATION:	2'	1.25" ID 2'	NA NA	_
	_		SAMPI F DA	T A			-	_
DEPTH	SAMPLING	WATER	LITHOLOG	Y 		SAMPLE	PEN/	FIELD
(ft)	DEPTH FROM - TO	TABLE (ft)	(Description of ma	aterials)		ID	RECOV (in./in.)	SCREENING (ppm)
0.0	0-1'		0'-1' : Top soil			SS-01	60/40	1.0
	1-3'		1'-2' : Gravelly sand: 80% medium sand, 20% col	bble; black, dry, no odor		SS-02		3.2
			2'-5' · Gravelly sand 90% fine sand 10% gravel	light brown dry no odor	-			
	3-5'		2 5 . Charteny sana. 5070 mile sana, 1070 graver,	nght brown, dry, no odor		SS-03		1.4
5.0	5 7'		5'-6.5' : Gravelly sand: 70% medium sand, 30% b	ooulders; light brown, dry, no	odor,	SS 04	60/12	ND
	5-7		glass fragments		55-04	00/12	ND	
			6.5' 11' · Gravally and 70% madium and 30%					
5.45 S	7-9'		odor	graver, orange to light brown	i, diy, no	SS-05		ND
-								
10.0	9-11'					SS-06		ND
10.0	****						60/45	
	11-13'		11'-15' : Gravelly sand: 90% sand, 10% gravel; li	ght brown, boulder 13'-14', d	ry, no	SS-07		1.3
			odor					
					-			
1.00	13-15'					SS-08		4.8
15.0	16.15				_	00.00	(0)0(
	15-17		15'-17' : Gravelly sand: 90% sand, 10% fine grav	el: grav damp, no odor		88-09	60/26	ND
				, g,,				
	17-18'					SS-10		ND
			17-18.5 Cobble/boulders					
20.0			18.5' Bottom of Boring					
20.0			GENERAL REMARKS					
			Headspace screening conducted using a MiniRae ND indicates "Not detected" above instrument det	Model 3000 PID, calibrated t tection limit (0.1 ppm)	to a 100 ppm	isobutylene standard		
				(pp)				
1								

CON	ECO EN	GINEERS & SCIENTISTS	GEOF	PROBE SC	DIL BORING H	REPORT	
PROJECT:	9684		BORING NO.	GP-05			_
LOCATION:	100 Kenned	y Cirlce, Newtown, MA	PAGE 1 OF	1			-
DRILLING CO:	New Englan	nd Geotech	DATE STARTED:	5/26/2017			-
EQUIPMENT:	Track-Mour	nted Geoprobe 7822DT	DATE FINISHED:	5/26/2017			_
DRILLED BY:	Maynor Mer	ndoza	SURFACE ELEVATIO	N: Unknown			-
CROUND		CEDVATIONIC				CODE	
GROUND	WAIER OD	SERVA HUNS		ROD	SAMPLER	BAR	
NOT I DEPTH	ENCOUNTER STAI	RED: BULIZATION TIME	TYPE: SIZE ID:	Geoprobe	Macro-core	Geoprobe	-
~4'	517	In-situ	PENETRATION:	2'	2'	NA	-
		SAMPLE DA	TA				
DEPTH SAMPLING (ft) DEPTH	WATER TABLE	LITHOLOG (Description of ma	Y aterials)		SAMPLE ID	PEN/ RECOV	FIELD SCREENING
0.0 0-1'	(11)	0'-1' : Top soil			SS-01	48/18	(ppm) ND
1-3'		1'-6' · Gravelly sand 60% medium sand 40% fin	e gravel: dark brown dry to	wet no	\$\$-02		ND
		odor,	. g,,,,		55 02		
3-5'					SS-03		ND
					55-05		ND
5.0	_ ≚						
5-7'					SS-04	48/36	ND
		6'-12' : Gravelly sand: 80% coarse sand; 20% fine	e gravel				
7-9'				10.100 A	\$\$-05		0.2
							0.2
9-11'	nur			none none	SS-06		ND
10.0	~~~					48/42	
11-12'	_				SS-07		ND
	_	12' : Bottom of Boring					
	ner			nerne			
	_			_			
15.0	_						
	-						
				_			
20.0							
		GENERAL REMARKS Headspace screening conducted using a MiniRae ND indicates "Not detected" above instrument de	Model 3000 PID, calibrated tection limit (0.1 ppm)	to a 100 ppm	isobutylene standard		

CO	NECO EN	GINEER	S & SCIENTISTS	GEOPROBE SOIL I	BORING & I	MONITORIN	NG WELL I	REPORT
PROJECT:	9684			BORING NO.	GP-06/CMW-	03		_
LOCATION:	100 Kennedy	y Circle, Nev	wton, MA	PAGE 1 OF	1			-
DRILLING CO:	New England	d Geotech		DATE STARTED:	5/26/2017			_
EQUIPMENT:	Track-Moun	ted GeoProb	pe 7822DT	DATE FINISHED:	5/26/2017			_
DRILLED BY:	Maynor Mer	ndoza		SURFACE ELEVATION:	Unknown			_
INSPECTED BY:	Pat Lydon							
GROUND	WATER OBS	SERVATIO	NS		ROD	SAMPLER	CORE BAR	
NOT	ENCOUNTER	RED:		TYPE:	Geoprobe	Macro-core	Geoprobe	_
DEPTH	STAI	BILIZATIO	N TIME	SIZE ID:	1" ID	2" ID	2.25" OD	-
~4		III-situ		PENETRATION.			3	-
	Т	T	SAN	IPLE DATA			T	T
DEPTH SAMPLING (ft) DEPTH FROM - TO	WELL DATA	WATER TABLE (ft)	(Descrip	THOLOGY tion of materials)		SAMPLE ID	PEN/ RECOV (in./in.)	FIELD SCREENING (ppm)
0.0 0-1'			0'-1' : Top soil			SS-01	48/12	NR
1-3'			1'-3' : Gravelly sand: 80% medium grave	el sand, 20% fine gravel; black, c	lry, no odor	SS-02		NR
3-5'			3'-7' : Gravelly sand: 60% course sand, 4	0% fine gravel; light brown, we	t at 4', no odor			
						SS-03		NR
5.0	┤▋					SS-04	48/15	NR
5-7						55-04	40/15	INK
7-9'			7'-12' : Sand: 100% fine sand; light brow	/n, wet		SS-05		NR
	- 8							
9-11'						SS-06		NR
10.0	- ♥						48/12	
						22.45		
11-12'	-					SS-07		NR
			12' Bottom of Boring					
15.0								
15.0								
20.0								
20.0		1	GENERAL REMARKS:			L	L	I
	Native Mate Bentonite Sand 2" PVC Wel 2" PVC Wel Denotes app groundwater	rials Il Screen Il Riser roximate elevation	Soil samples submitted for laborate Headspace screening conducted us ND means "Not Detected" abo NR means not enough recovery fo Bottom of Boring: 12' Screen Interval: 1-10' Sand: .5-10'	ory analysis EPH, VPH, VOCs sing a MiniRAE Model 3000 P ve instrument above instrur r headspace screenings.	, MCP-14 Meta ID, calibrated to nent detectior	ls, and PCBs at 3 a 100 ppm isobu l limit (0.1 ppm	8'-5' depth inter atylene standard)	val. d.

CON	ECO EN	GINEERS & SCIENTISTS	GEOP	ROBE SC	DIL BORING F	REPORT	
PROJECT:	9684		BORING NO.	GP-07			_
LOCATION:	100 Kenned	y Cirlce, Newtown, MA	PAGE 1 OF	1			-
DRILLING CO:	New Englan	d Geotech	DATE STARTED:	5/26/2017			-
EQUIPMENT:	Track Moun	tted GeoProbe 7822 DT	DATE FINISHED:	5/26/2017			-
DRILLED BY:	Maynor Mer	ndoza	SURFACE ELEVATION	N: Unknown			-
GROUND	VATER OR	SERVATIONS				CORE	
GROUND	WATER OD	SERVATIONS		ROD	SAMPLER	BAR	
NOT E DEPTH	NCOUNTEI STAI	RED: BILIZATION TIME	TYPE: SIZE ID:	Geoprobe 1" ID	Macro-core 1.25" ID	Geoprobe NA	-
~3'		In-situ	PENETRATION:	2'	2'	NA	-
		SAMPLE DA	TA				
DEPTH SAMPLING (ft) DEPTH FROM - TO	WATER TABLE (ft)	LITHOLOG (Description of ma	Y aterials)		SAMPLE ID	PEN/ RECOV (in./in.)	FIELD SCREENING (ppm)
0.0 0-1'		0'-1' : Top soil			SS-01	48/27	ND
1-3'	-	l'-3' : Gravelly sand: 60% medium sand, 40% fin	e gravel; dark brown, dry, no	o odor	SS-02		ND
3-5'		3'-7' : Sand: 100% medium sand; Brown, damp to	o wet, no odor		SS-03		ND
5.0 5-7'	-				SS-04	48/28	ND
	-						
7-9'	-	7'-12' : Clay: 100% silty clay; light gray, wet, no	odor		SS-05		ND
9-12'	-				SS-06		ND
						48/34	-
	-	12' : Bottom of boring					-
15.0	-						
15.0	-						
	-						
				adaata aaraa			
20.0		GENERAL REMARKS					<u> </u>
		Headspace screening conducted using a MiniRae ND indicates "Not detected" above instrument det	Model 3000 PID, calibrated eection limit (0.1 ppm)	to a 100 ppm i	isobutylene standard		

GROUNDWATER SAMPLING FIELD SHEETS

CONE	CONECO ENGINEERS & SCIENTISTS							LOW FLOW GROUNDWATER SAMPLING				
PROJECT:	9684					WELL ID:		CMW-01				
LOCATION:	100 Kenned	y Circle Newto	n, MA			DATE:		6/1/2017				
SAMPLED BY:	MPB					TIME:		1:15pm				
WELL INTEGRITY	YES	PROTE No FROM	CTIVE CA	ASING STICK-UP		WELL DEPTH 16.91		REFERE	ENCE PO	INT Top of riser		
Protective casing secure Concrete collar intact PVC stick-up intact		□ RISER □ FROM	STICK-UI GROUNE	D (ft) n/a		WATER DEPTH 13.35				Top of casing Pen mark North		
Well cap present Security lock present PID SCREENING (ppmV) (it Background	f required)	WELL	DIAMETE	$ER \qquad 2 inch \\ 4 inch \\ 6 inch \\ \Box \qquad 6$		DEPTH OF PUM feet	P INTAK	Œ		16 gal/ft (2 in) 65 gal/ft (4 in) 5 gal/ft (6 in)		
Well mouth	n/a					WATER COLUM	IN HEIGI	HT 5.56	ft x	gal/ft (in)		
DEPTH TO NAPL (ft) THICKNESS OF NAPL (ft) <u>n/a</u>		MATERIA /C	ıL □ SS		VOLUME OF WA VOLUME OF WA Note: Volume = (r^	ATER IN ATER PU 2)h(0.163	WELL JRGED	0.89 2.7	gallons gallons		
			FIELI	D WATER OUALI	TY ME	ASUREMENTS						
				, in the going								
Time	13:35											
Volume Purged (gallons)	2.7 gallons	(dry)										
Temperature (°C)	14.9											
Conductivity (µmhos/cm)	222.0											
Dissolved Oxygen (mg/L)												
pH (Std. units)	7.88											
ORP/Eh (millivolts)												
Turbidity (NTU)												
Flow (ml/min)												
Depth to water (ft)												
PUMP TYPE	Purge Sa	mple		DESCRI	PTION C	OF SAMPLING EQ	UIPMEN	T (MODEL AND	S/N)			
Peristaltic Pump												
Bladder pump												
Other:												
Analytical Parameter	Filt	tered (Y/N)		Preservation		Volume/Contianer	s	Time Collected		Date		
CMW-01		Y		HNO3		(2) 500mL P	astic	1:40PM		6/1/2017		
CMW-01		Ν		HCl		(2) 1L Amb	ber	1:43PM		6/1/2017		
CMW-01		Ν		HCl		(6) 40mL V	OA	1:47PM		6/1/2017		

CONE	CONECO ENGINEERS & SCIENTISTS							OW GI	ROUN	DWAT	ER SA	MPLING
PROJECT:	9684						WELL ID:		CMW-0	2		
LOCATION:	100 Kenn	edy Circ	le Newtor	n, MA			DATE:		6/1/2017	7		
SAMPLED BY:	MPB						TIME:		2:16pm			
WELL INTEGRITY			PROTEC	CTIVE CAS	ING STICK-UP		WELL DEPTH			REFERE	NCE PO	INT
Protective casing secure Concrete collar intact PVC stick-up intact	YES		FROM C RISER S FROM C	GROUND (f TICK-UP GROUND (f	t) <u>n/a</u>		16.91 WATER DEPTH 13.35					Top of riser Top of casing Pen mark North
Well cap present Security lock present			WELL D	IAMETER	2 inch							_
PID SCREENING (ppmV) (i Background	if required) n/a				4 inch 6 inch		DEPTH OF PUM	P INTAK	E			16 gal/ft (2 in) 65 gal/ft (4 in) . 5 gal/ft (6 in)
Well mouth DEPTH TO NAPL (ft)	<u>n/a</u>	n/a	WELL N	IATERIAL C	SS		VOLUME OF WA	N HEIGF ATER IN	WELL	4.47	^{ft x} 0.71	gallons
THICKNESS OF NAPL (ft)) 1	n/a					VOLUME OF WAN Note: Volume = (r^{2})	ATER PU 2)h(0.163)	RGED		2.1	gallons
				FIELD	WATER OUAL	TY ME	ASUREMENTS	, (,				
				TILLD								
Time	14:	30										
Temperature (°C)	12.	.5										
Conductivity (µmhos/cm)	913	8.0										
Dissolved Oxygen (mg/L)												
Dissolved Oxygen (ing E)												
pH (Std. units)	7.6	54										
ORP/Eh (millivolts)												
Turbidity (NTU)												
Flow (ml/min)												
Depth to water (ft)												
PUMP TYPE	Durgo	Sampla			DESCRI	PTION C	F SAMPLING EQ	UIPMEN	T (MOD	EL AND S	5/N)	
Peristaltic Pump												
Submersible Pump												
Other:												
	-											
A 1 (18	[P'14 ·					N 1 /2 *		T	11		
Analytical Parameter	-	Filtered	(Y/N)	Р	reservation		Volume/Contianer	s	Time Co	ollected		Date
CMW-02			Y		HNO3		(2) 500mL Pl	astic		2:34PM		6/1/2017
CMW-02			N		HCI		(2) 1L Am	ber		2:38PM		6/1/2017
CMW-02			N		HCl		(6) 40mL V	UA		2:42PM		6/1/2017

"

LABORATORY ANALYTICAL DOCUMENTATION

Spectrum Analytical

Final ReportRevised Report

Report Date: 06-Jun-17 16:54

Laboratory Report SC35241

Coneco Environmental 4 First Street Bridgewater, MA 02324 Attn: Marc Brochu

Project: 100 Kennedy Cir. - Newton, MA Project #: 9684

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

Christina White Laboratory Director

stinal. White

Eurofins Spectrum Analytical holds primary certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 55 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Sample Summary

 Work Order:
 SC35241

 President
 100 Kennada Cir.

Project: 100 Kennedy Cir. - Newton, MA

Project Number: 9684

Laboratory ID	<u>Client Sample ID</u>	Matrix	Date Sampled	Date Received
SC35241-01	GP-01 (1-3)	Soil	26-May-17 09:00	31-May-17 18:25
SC35241-02	GP-02 (11-13)	Soil	26-May-17 10:15	31-May-17 18:25
SC35241-03	GP-04 (13-15)	Soil	26-May-17 11:00	31-May-17 18:25
SC35241-04	GP-06 (3-5)	Soil	26-May-17 12:10	31-May-17 18:25
SC35241-05	GP-07 (3-5)	Soil	26-May-17 12:50	31-May-17 18:25

The following outlines the condition of all VPH samples contained within this report upon laboratory receipt.

Matrices	Soil			
Containers	✓ Satisfactory			
Sample Preservative	Aqueous (acid preserved)	✓ N/A pH≤2	pH>2	
	Soil or	N/A Samples not	received in Methanol	ml Methanol/g soil
	Sediment	✓ Samples received in Methanol:	 ✓ covering soil/sediment not covering soil/sediment 	✓ 1:1 +/-25% ✓ Other
		Samples received in air-tight co	ntainer	
Temperature	Received on ic	e Received at 4 ± 2 °C	✓ Other: 0.2°C	

Were all QA/QC procedures followed as required by the VPH method? *Yes* Were any significant modifications made to the VPH method as specified in section 11.3? *No* Were all performance/acceptance standards for required QA/QC procedures achieved? *Yes*

The following outlines the condition of all EPH samples contained within this report upon laboratory receipt.

Matrices	Soil			
Containers	✓ Satisfactory			
Aqueous Preservative	✓ N/A	pH <u>≤</u> 2	pH>2	pH adjusted to <2 in lab
Temperature	Received on ice		Received at 4 ± 2 °C	✓ Other: 0.2°C

Were all QA/QC procedures followed as required by the EPH method? Yes

Were any significant modifications made to the EPH method as specified in Section 11.3? No

Were all performance/acceptance standards for required QA/QC procedures achieved? Yes

I attest that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Authorized by:

Anotina O. White

Christina A. White Laboratory Director

MassDEP Analytical Protocol Certification Form

Labo	Laboratory Name: Eurofins Spectrum Analytical, Inc. Project #: 9684											
Proje	ect Location: 100	Kennedy Cir Newton,	MA	RTN:								
This	form provides cei	rtifications for the follow	ving data set: S	C35241-01 through SC35	5241-05							
Matr	ices: Soil											
CAM	l Protocol											
✓ 82 C	260 VOC Am II A	✓ 7470/7471 Hg CAM III B	✓ MassDEP VPH CAM IV A	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP APH CAM IX A						
82 C.	270 SVOC AM II B	7010 Metals CAM III C	✓ MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B						
✓ 60 C.)10 Metals AM III A	6020 Metals CAM III D	✓ 8082 PCB CAM V A	9012 Total Cyanide/PAC CAM VI A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B						
		Affirmative response	es to questions A through	F are required for P resu	mptive Certainty'status							
Α	Were all samples preserved (includ times?	s received in a condition ding temperature) in the	consistent with those desc field or laboratory, and pro-	ribed on the Chain of Cu epared/analyzed within m	stody, properly ethod holding	✓ Yes No						
В	B Were the analytical method(s) and all associated QC requirements specified in the selected CAM ✓ Yes No											
CWere all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?✓ YesNo												
DDoes the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?✓ YesNo												
Е	a. VPH, EPH, an b. APH and TO-	d APH Methods only: W 15 Methods only: Was th	as each method conducte the complete analyte list rep	d without significant mod ported for each method?	lification(s)?	✓ Yes NoYes No						
F	Were all applicat evaluated in a lat	ble CAM protocol QC ar boratory narrative (inclue	d performance standard n ling all "No" responses to	on-conformances identified questions A through E)?	ed and	✓ Yes No						
		Responses to que	stions G, H and I below a	re required for P resump	tive Certainty'status							
G	Were the reporting	ng limits at or below all (CAM reporting limits spec	cified in the selected CAM	A protocol(s)?	Yes 🗸 No						
<u>Data</u> requir	<u>User Note:</u> Data tha rements described in	at achieve P resumptive Cer n 310 CMR 40. 1056 (2)(k)	tainty'status may not necess and WSC-07-350.	carily meet the data usability	v and representativeness							
Н	Were all QC perf	formance standards speci	fied in the CAM protocol	(s) achieved?		Yes ✓ No						
Ι	Were results repo	orted for the complete an	alyte list specified in the s	selected CAM protocol(s))?	Yes 🗸 No						
All ne	gative responses ar	e addressed in a case narra	tive on the cover page of th	is report.								
I, the inforn	undersigned, attest nation, the material	under the pains and penal contained in this analytice	ties of perjury that, based up al report is, to the best of my	oon my personal inquiry of knowledge and belief, acci	those responsible for obtain ırate and complete.	ing the						
	Christina A. White											

Laboratory Director Date: 6/6/2017

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 0.2 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-1.0 degrees Celsius was used immediately upon receipt of the samples.

VOA vials preserved with deionized water were received frozen upon custody transfer to laboratory representative.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Soils are run on a manual load instrument. 100ug of sample (MEOH) is spiked into 5ml DI water along with the surrogate and added directly onto the instrument. Additional dilution factors may be required to keep analyte concentration within instrument calibration range.

Method SW846 5035A is designed to use on samples containing low levels of VOCs, ranging from 0.5 to 200 ug/Kg. Target analytes that are less responsive to purge and trap may be present at concentrations over 200ug/Kg but may not be reportable in the methanol preserved vial (SW846 5030). This is the result of the inherent dilution factor required for the methanol preservation.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

MADEP EPH 5/2004 R

Calibration:

1703011

MADEP EPH 5/2004 R

Calibration:

1703011

Analyte quantified by quadratic equation type calibration.

2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene C19-C36 Aliphatic Hydrocarbons C9-C18 Aliphatic Hydrocarbons Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene Unadjusted C11-C22 Aromatic Hydrocarbons

This affected the following samples:

S702868-ICV1 S702868-ICV2

MADEP VPH 5/2004 Rev. 1.1

Laboratory Control Samples:

1709064-BSD1

RPD out of acceptance range. The batch is accepted based upon LCS and/or LCSD recovery.

n-Decane

Samples:

SC35241-02 GP-02 (11-13)

The VOC preserved soil sample is not within the 1:1 weight to volume ratio as recommended by SW846 method 5035 A but may be within the 1:1 volume to volume ratio. This variance may affect the final reporting limit.

SC35241-03 GP-04 (13-15)

The VOC preserved soil sample is not within the 1:1 weight to volume ratio as recommended by SW846 method 5035A but may be within the 1:1 volume to volume ratio. This variance may affect the final reporting limit.

SW846 8260C

Calibration:

1705035

Analyte quantified by quadratic equation type calibration.

Bromoform

SW846 8260C

Calibration:

1705035

This affected the following samples:

1709058-BLK1 1709058-BS1 1709058-BSD1 1709128-BSD1 1709128-BSD1 GP-01 (1-3) GP-02 (11-13) GP-04 (13-15) GP-06 (3-5) GP-07 (3-5) S704867-ICV1 S704946-CCV1 S704946-CCV2 S704976-CCV1

Laboratory Control Samples:

1709058 BS/BSD

1,1,2-Trichlorotrifluoroethane (Freon 113) percent recoveries (138/130) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

GP-02 (11-13) GP-04 (13-15) GP-06 (3-5) GP-07 (3-5)

1,4-Dioxane percent recoveries (70/58) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

GP-02 (11-13) GP-04 (13-15) GP-06 (3-5) GP-07 (3-5)

Bromomethane percent recoveries (139/152) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

GP-02 (11-13) GP-04 (13-15) GP-06 (3-5) GP-07 (3-5)

Carbon disulfide percent recoveries (136/118) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

GP-02 (11-13) GP-04 (13-15) GP-06 (3-5) GP-07 (3-5)

Trichlorofluoromethane (Freon 11) percent recoveries (133/129) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

GP-02 (11-13) GP-04 (13-15) GP-06 (3-5) GP-07 (3-5)

SW846 8260C

Laboratory Control Samples:

1709128 BS/BSD

1,1,2-Trichlorotrifluoroethane (Freon 113) percent recoveries (136/129) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

GP-01 (1-3)

Bromomethane percent recoveries (161/141) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

GP-01 (1-3)

Trichlorofluoromethane (Freon 11) percent recoveries (139/128) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

GP-01 (1-3)

Samples:

S704946-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,1,2-Trichlorotrifluoroethane (Freon 113) (38.5%) 1,2,3-Trichloropropane (20.4%) 1,4-Dioxane (-29.7%) Carbon disulfide (36.3%) Carbon tetrachloride (27.1%) Trichlorofluoromethane (Freon 11) (33.1%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Bromomethane (39.2%)

This affected the following samples:

1709058-BLK1 1709058-BS1 1709058-BSD1 GP-02 (11-13) GP-04 (13-15) GP-06 (3-5) GP-07 (3-5)

S704946-CCV2

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,1,1,2-Tetrachloroethane (21.0%)
1,1,2-Trichlorotrifluoroethane (Freon 113) (82.0%)
1,1-Dichloroethene (33.7%)
1,4-Dioxane (-34.3%)
2-Hexanone (MBK) (-21.5%)
Bromodichloromethane (21.1%)
Carbon disulfide (197%)
Carbon tetrachloride (28.2%)
Naphthalene (-23.1%)
Trichlorofluoromethane (Freon 11) (38.7%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Bromomethane (54.9%)

SW846 8260C

Samples:

S704946-CCV2

This affected the following samples:

1709058-BLK1 1709058-BS1 1709058-BSD1 GP-02 (11-13) GP-04 (13-15) GP-06 (3-5) GP-07 (3-5)

S704976-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,1,2-Trichlorotrifluoroethane (Freon 113) (35.5%) 1,1-Dichloroethene (28.8%) 1,4-Dioxane (-27.4%) Carbon disulfide (26.8%) Carbon tetrachloride (28.8%) Naphthalene (-20.1%) Trichlorofluoromethane (Freon 11) (38.7%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Bromomethane (61.0%)

This affected the following samples:

1709128-BLK1 1709128-BS1 1709128-BSD1 GP-01 (1-3)

Sample Acceptance Check Form

Client:	Coneco Environmental - Bridgewater, MA
Project:	100 Kennedy Cir Newton, MA / 9684
Work Order:	SC35241
Sample(s) received on:	5/31/2017

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

Were custody seals present?
Were custody seals intact?
Were samples received at a temperature of $\leq 6^{\circ}$ C?
Were samples refrigerated upon transfer to laboratory representative?
Were sample containers received intact?
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?
Were samples accompanied by a Chain of Custody document?
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?
Did sample container labels agree with Chain of Custody document?

Were samples received within method-specific holding times?

I

Summary of Hits

Lab ID: SC35241-01			Client ID: GP-01 ((1-3)		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method	
Benzo (a) anthracene	0.423		0.351	mg/kg	MADEP EPH 5/2004 R	
Benzo (a) pyrene	0.396		0.351	mg/kg	MADEP EPH 5/2004 R	
Benzo (b) fluoranthene	0.356		0.351	mg/kg	MADEP EPH 5/2004 R	
C11-C22 Aromatic Hydrocarbons	12.4		10.5	mg/kg	MADEP EPH 5/2004 R	
C9-C18 Aliphatic Hydrocarbons	32.2		10.5	mg/kg	MADEP EPH 5/2004 R	
Chrysene	0.415		0.351	mg/kg	MADEP EPH 5/2004 R	
Fluoranthene	0.892		0.351	mg/kg	MADEP EPH 5/2004 R	
Phenanthrene	0.715		0.351	mg/kg	MADEP EPH 5/2004 R	
Pyrene	0.777		0.351	mg/kg	MADEP EPH 5/2004 R	
Unadjusted C11-C22 Aromatic Hydrocarbons	17.5		10.5	mg/kg	MADEP EPH 5/2004 R	
Arsenic	5.43		1.51	mg/kg	SW846 6010C	
Barium	37.5		1.01	mg/kg	SW846 6010C	
Cadmium	2.58		0.504	mg/kg	SW846 6010C	
Chromium	12.5		1.01	mg/kg	SW846 6010C	
Lead	119		1.51	mg/kg	SW846 6010C	
Mercury	0.375		0.0293	mg/kg	SW846 7471B	
Aroclor-1260 [2C]	129		20.7	µg/kg	SW846 8082A	
4-Isopropyltoluene	10.3		4.82	µg/kg	SW846 8260C	
Lab ID: SC35241-02			Client ID: GP-02 ((11-13)		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method	
C9-C18 Aliphatic Hydrocarbons	12.8		10.4	mg/kg	MADEP EPH 5/2004 R	
Lab ID: SC35241-04			Client ID: GP-06 ((3-5)		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method	
Arsenic	2.85		1.54	mg/kg	SW846 6010C	
Barium	27.1		1.03	mg/kg	SW846 6010C	
Cadmium	1.31		0.514	mg/kg	SW846 6010C	
Chromium	14.4		1.03	mg/kg	SW846 6010C	
Lead	3.36		1.54	mg/kg	SW846 6010C	
Lab ID: SC35241-05			Client ID: GP-07 ((3-5)		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method	
Arsenic	9.99		1.69	mg/kg	SW846 6010C	
Barium	33.1		1.13	mg/kg	SW846 6010C	
Cadmium	2.08		0.564	mg/kg	SW846 6010C	
Chromium	13.2		1.13	mg/kg	SW846 6010C	
Lead	40.3		1.69	mg/kg	SW846 6010C	
Mercury	0.0726		0.0317	mg/kg	SW846 7471B	
Trichlorofluoromethane (Freon 11)	7.51		6.83	µg/kg	SW846 8260C	

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

Sample Id	entification			Climt D			Matrix Collection Date/Time			/T:	Received			
GP-01 (1-	3)			Client P	roject #		<u>Matrix</u>	<u>Conc</u>	Max 17.00	<u>/ 11me</u>	21 N	<u>served</u>		
SC35241-	01			900	54		5011	20	-wiay-17 05	9.00	51-1	/lay-1 /		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Volatile O	rganic Compounds													
<u>Flepareu</u>	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1709054		
Volatile O	rganic Compounds by SW	846 8260 Seil (lew level)				انما	iol woight	5 01 a						
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 4.82		µg/kg dry	4.82	<u>1110</u> 2.44	1	SW846 8260C	02-Jun-17	02-Jun-17	MP	1709128		
67-64-1	Acetone	< 48.2		µg/kg dry	48.2	19.3	1	•		"				
107-13-1	Acrylonitrile	< 4.82		µg/kg dry	4.82	4.63	1			"		"		
71-43-2	Benzene	< 4.82		µg/kg dry	4.82	1.28	1			"				
108-86-1	Bromobenzene	< 4.82		µg/kg dry	4.82	1.29	1			"				
74-97-5	Bromochloromethane	< 4.82		µg/kg dry	4.82	2.43	1			"		"		
75-27-4	Bromodichloromethane	< 4.82		µg/kg dry	4.82	3.21	1			"				
75-25-2	Bromoform	< 4.82		µg/kg dry	4.82	4.60	1			"				
74-83-9	Bromomethane	< 9.63		µg/kg dry	9.63	4.35	1			"				
78-93-3	2-Butanone (MEK)	< 9.63		ua/ka drv	9.63	8.61	1							
104-51-8	n-Butvlbenzene	< 4.82		ua/ka drv	4.82	1.38	1			"				
135-98-8	sec-Butvlbenzene	< 4.82		ua/ka drv	4.82	0.88	1							
98-06-6	tert-Butvlbenzene	< 4.82		ua/ka drv	4.82	1.08	1			"				
75-15-0	Carbon disulfide	< 9.63		ua/ka drv	9.63	3.08	1			"				
56-23-5	Carbon tetrachloride	< 4.82		ua/ka drv	4 82	3.94	1			"				
108-90-7	Chlorobenzene	< 4.82		ua/ka drv	4 82	1 51	1			"				
75-00-3	Chloroethane	< 9.63		ua/ka dry	9.63	2.67	1			"				
67-66-3	Chloroform	< 4.82		ua/ka dry	4 82	2.59	1							
74-87-3	Chloromethane	< 9.63		ua/ka dry	9.63	1 99	1							
95-49-8	2-Chlorotoluene	< 4.82		ua/ka dry	4 82	1.00	1							
106-43-4		< 1.82		ua/ka dry	1.82	1 13	1							
96-12-8	1 2-Dibromo-3-chloroprop	< 9.63		ua/ka dry	9.63	6.96	1							
	ane	10.00		µg/kg ury	0.00	0.00								
124-48-1	Dibromochloromethane	< 4.82		µg/kg dry	4.82	3.27	1		"	"				
106-93-4	1,2-Dibromoethane (EDB)	< 4.82		µg/kg dry	4.82	3.23	1			"		"		
74-95-3	Dibromomethane	< 4.82		µg/kg dry	4.82	2.50	1			"		"		
95-50-1	1,2-Dichlorobenzene	< 4.82		µg/kg dry	4.82	1.25	1			"		"		
541-73-1	1,3-Dichlorobenzene	< 4.82		µg/kg dry	4.82	1.05	1			"		"		
106-46-7	1,4-Dichlorobenzene	< 4.82		µg/kg dry	4.82	1.43	1		"	"				
75-71-8	Dichlorodifluoromethane (Freon12)	< 9.63		µg/kg dry	9.63	1.83	1		"	"		"		
75-34-3	1,1-Dichloroethane	< 4.82		µg/kg dry	4.82	1.26	1			"		"		
107-06-2	1,2-Dichloroethane	< 4.82		µg/kg dry	4.82	1.72	1			"		"		
75-35-4	1,1-Dichloroethene	< 4.82		µg/kg dry	4.82	2.52	1			"		"		
156-59-2	cis-1,2-Dichloroethene	< 4.82		µg/kg dry	4.82	1.79	1			"		"		
156-60-5	trans-1,2-Dichloroethene	< 4.82		µg/kg dry	4.82	2.55	1			"				
78-87-5	1,2-Dichloropropane	< 4.82		µg/kg dry	4.82	2.52	1	"	"	"	"			
142-28-9	1,3-Dichloropropane	< 4.82		µg/kg dry	4.82	2.50	1	"	"	"				
594-20-7	2,2-Dichloropropane	< 4.82		µg/kg dry	4.82	2.27	1	"	"	"				
563-58-6	1,1-Dichloropropene	< 4.82		µg/kg dry	4.82	1.55	1	"	"	"				
10061-01-5	cis-1,3-Dichloropropene	< 4.82		µg/kg dry	4.82	2.90	1	"		"	"	"		
10061-02-6	trans-1,3-Dichloropropene	< 4.82		µg/kg dry	4.82	2.53	1	"	"					

Sample Id	lentification		Client D	Project #		Matrix	Call	action Data	/Time	Pa	caived	
GP-01 (1-	-3)		<u>06</u>	<u>10jeet #</u> 84		Soil	26	-May-17 00	<u>).00</u>	31-1	May-17	
SC35241-	01		70	04		5011	20	-widy-17 02	.00	51-1	viay-17	
CAS No.	Analyte(s)	Result Flag	g Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds											
Volatile O	rganic Compounds by SW	<u>846 8260</u>										
100 11 1					<u>Init</u>	tial weight:	<u>5.91 g</u>					
100-41-4	Ethylbenzene	< 4.82	µg/kg dry	4.82	0.69	1	SW846 8260C	02-Jun-17	02-Jun-17	MP	1709128	j
87-68-3	Hexachlorobutadiene	< 4.82	µg/kg dry	4.82	2.42	1						
00.00.0	2-Hexanone (MBK)	< 9.63	µg/ĸg ary	9.63	5.91	1						
98-82-8	Isopropylbenzene	< 4.82	µg/kg dry	4.82	0.95	1						
99-87-6	4-Isopropyltoluene	10.3	µg/kg dry	4.82	1.04	1						
1634-04-4	Methyl tert-butyl ether	< 4.82	µg/kg dry	4.82	1.77	1						
108-10-1	4-Methyl-2-pentanone (MIBK)	< 9.63	µg/kg dry	9.63	2.48	1	"	"				
75-09-2	Methylene chloride	< 9.63	µg/kg dry	9.63	1.91	1		"	"	"	"	
91-20-3	Naphthalene	< 4.82	µg/kg dry	4.82	2.87	1		"	"	"	"	
103-65-1	n-Propylbenzene	< 4.82	µg/kg dry	4.82	0.78	1		"	"	"	"	
100-42-5	Styrene	< 4.82	µg/kg dry	4.82	0.97	1		"	"		"	
630-20-6	1,1,1,2-Tetrachloroethane	< 4.82	µg/kg dry	4.82	4.09	1		"	"		"	
79-34-5	1,1,2,2-Tetrachloroethane	< 4.82	µg/kg dry	4.82	4.07	1		"	"		"	
127-18-4	Tetrachloroethene	< 4.82	µg/kg dry	4.82	1.65	1		"	"		"	
108-88-3	Toluene	< 4.82	µg/kg dry	4.82	1.56	1		"	"	"	"	
87-61-6	1,2,3-Trichlorobenzene	< 4.82	µg/kg dry	4.82	1.69	1		"	"	"	"	
120-82-1	1,2,4-Trichlorobenzene	< 4.82	µg/kg dry	4.82	3.55	1		"	"	"	"	
108-70-3	1,3,5-Trichlorobenzene	< 4.82	µg/kg dry	4.82	1.51	1		"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 4.82	µg/kg dry	4.82	1.60	1		"	"	"	"	
79-00-5	1,1,2-Trichloroethane	< 4.82	µg/kg dry	4.82	3.49	1		"	"	"	"	
79-01-6	Trichloroethene	< 4.82	µg/kg dry	4.82	1.31	1		"	"	"	"	
75-69-4	Trichlorofluoromethane (Freon 11)	< 4.82	µg/kg dry	4.82	2.60	1	u	"			"	
96-18-4	1,2,3-Trichloropropane	< 4.82	µg/kg dry	4.82	3.61	1		"	"	"		
95-63-6	1,2,4-Trimethylbenzene	< 4.82	µg/kg dry	4.82	1.17	1		"	"	"	"	
108-67-8	1,3,5-Trimethylbenzene	< 4.82	µg/kg dry	4.82	0.83	1		"	"	"	"	
75-01-4	Vinyl chloride	< 4.82	µg/kg dry	4.82	1.63	1			"	"	"	
179601-23-1	m,p-Xylene	< 9.63	µg/kg dry	9.63	0.87	1			"	"	"	
95-47-6	o-Xylene	< 4.82	µg/kg dry	4.82	1.35	1			"	"	"	
109-99-9	Tetrahydrofuran	< 9.63	µg/kg dry	9.63	7.59	1			"	"	"	
60-29-7	Ethyl ether	< 4.82	µg/kg dry	4.82	4.36	1			"	"	"	
994-05-8	Tert-amyl methyl ether	< 4.82	µg/kg dry	4.82	1.61	1			"	"	"	
637-92-3	Ethyl tert-butyl ether	< 4.82	µg/kg dry	4.82	2.60	1			"	"	"	
108-20-3	Di-isopropyl ether	< 4.82	µg/kg dry	4.82	0.90	1			"		"	
75-65-0	Tert-Butanol / butyl alcohol	< 48.2	µg/kg dry	48.2	31.5	1		"	"	"	"	
123-91-1	1,4-Dioxane	< 96.3	µg/kg dry	96.3	83.7	1			"	"	"	
110-57-6	trans-1,4-Dichloro-2-buten	< 24.1	µg/kg dry	24.1	11.0	1	u	"	"		"	
64-17-5	Ethanol	< 963	µg/kg dry	963	180	1	"	"	"		"	
Surrogate i	recoveries:											
460-00-4	4-Bromofluorobenzene	94		70-13	80 %		"	"	"	"	"	
2037-26-5	Toluene-d8	99		70-13	80 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	116		70-13	80 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	108		70-13	80 %		"	"	"	"	"	

This laboratory report is not valid without an authorized signature on the cover page.

Sample Ic	dentification		Client D	roject #		Matrix	Call	action Data	Time	Pa	aivad	
GP-01 (1-	-3)		<u>Chent 1</u> 96	<u>10ject #</u> 84		Soil	26	$-May_17.00$	$\frac{7100}{2}$	31_1	May_17	
SC35241	Identification -3) -01 Analyte(s) Result Ite Organic Compounds by GC inated Biphenyls by method SW846 3546 Aroclor-1016 < 20.7)0	0-		5011	20	-1v1ay-1702	2.00	51-1	/1ay-17	
CAS No.	Analyte(s)	Result Fla	ıg Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by (GC										
Polychlor	inated Biphenyls											
Prepared	by method SW846 3546											
12674-11-2	Aroclor-1016	< 20.7	µg/kg dry	20.7	9.28	1	SW846 8082A	01-Jun-17	01-Jun-17	IMR	1709052	
11104-28-2	Aroclor-1221	< 20.7	µg/kg dry	20.7	11.0	1						
F2460 24 0	Aroclor-1232	< 20.7	µg/kg ary	20.7	10.4	1						
12672 20 6	Aroclor-1242	< 20.7	µg/kg ary	20.7	20.4	1						
11007 60 1	Aroclor-1248	< 20.7	µg/kg ary	20.7	18.9	1						
11096-82-5	Aroclor 1260 [2C]	< 20.7	µg/kg diy	20.7	12.0	1					"	
37324-23-5	Aroclor-1200 [20]	< 20.7	µg/kg diy	20.7	12.0	1					"	
11100-14-4	Aroclor-1268	< 20.7	µg/kg dry	20.7	9.34	1					"	
		\$ 20.1	µg/kg ury	20.7	5.54	1						
Surrogate	recoveries:											
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	80		30-18	50 %							
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	85		30-15	50 %		"	"	"		"	
2051-24-3	Decachlorobiphenyl (Sr)	110		30-15	50 %			"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110		30-15	50 %		n	"	"		"	
Extractab	le Petroleum Hydrocarbons											
MADEP E	<u>PH</u>											
Prepared	by method SW846 3546											
	C9-C18 Aliphatic Hydrocarbons	32.2	mg/kg dry	10.5	1.47	1	MADEP EPH 5/2004 R	01-Jun-17	04-Jun-17	SM	1709048	I
	C19-C36 Aliphatic Hydrocarbons	< 10.5	mg/kg dry	10.5	1.49	1	n	"	"		"	
	C11-C22 Aromatic Hydrocarbons	12.4	mg/kg dry	10.5	5.03	1	"	"	"		"	
	Unadjusted C11-C22 Aromatic Hydrocarbons	17.5	mg/kg dry	10.5	5.03	1	"		"		"	
91-20-3	Naphthalene	< 0.351	mg/kg dry	0.351	0.312	1		"	"		"	
91-57-6	2-Methylnaphthalene	< 0.351	mg/kg dry	0.351	0.302	1	"	"	"		"	
208-96-8	Acenaphthylene	< 0.351	mg/kg dry	0.351	0.139	1			"	"	"	
83-32-9	Acenaphthene	< 0.351	mg/kg dry	0.351	0.348	1			"	"	"	
86-73-7	Fluorene	< 0.351	mg/kg dry	0.351	0.315	1			"	"	"	
85-01-8	Phenanthrene	0.715	mg/kg dry	0.351	0.304	1			"	"	"	
120-12-7	Anthracene	< 0.351	mg/kg dry	0.351	0.302	1	"	"	"	"	"	
206-44-0	Fluoranthene	0.892	mg/kg dry	0.351	0.133	1	"	"	"	"	"	
129-00-0	Pyrene	0.777	mg/kg dry	0.351	0.135	1	"	"	"		"	
56-55-3	Benzo (a) anthracene	0.423	mg/kg dry	0.351	0.333	1		"	"	"	"	
218-01-9	Chrysene	0.415	mg/kg dry	0.351	0.332	1		"	"	"	"	
205-99-2	Benzo (b) fluoranthene	0.356	mg/kg dry	0.351	0.289	1	"		"	"	"	
207-08-9	Benzo (k) fluoranthene	< 0.351	mg/kg dry	0.351	0.185	1	"	"	"	"	"	
50-32-8	Benzo (a) pyrene	0.396	mg/kg dry	0.351	0.314	1			"		"	
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.351	mg/kg dry	0.351	0.234	1	"	"	"	"	"	
53-70-3	Dibenzo (a,h) anthracene	< 0.351	mg/kg dry	0.351	0.225	1	"	"	"	"	"	
191-24-2	Benzo (g,h,i) perylene	< 0.351	mg/kg dry	0.351	0.230	1	"		"		"	
Surrogate	recoveries:											
3386-33-2	1-Chlorooctadecane	105		40-14	40 %				"	"	"	

This laboratory report is not valid without an authorized signature on the cover page.

Sample Id	dentification			Client P	roiect #		Matrix	Colle	Collection Date/Time			Received		
GP-01 (1	-3)			<u>069</u>	R/		Soil	26	-May-17 00	<u>).00</u>	31_1	$M_{\rm av} = 17$		
SC35241	-01			200	-		5011	20	-wiay-1702	2.00	01 1.1 u y 1,			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Extractab	le Petroleum Hydrocarl	bons												
MADEP E	PH													
84-15-1	Ortho-Terphenyl	63			40-14	0 %		MADEP EPH 5/2004 R	01-Jun-17	04-Jun-17	SM	1709048		
321-60-8	2-Fluorobiphenyl	57			40-14	0 %			"		"			
Total Met	als by EPA 6000/7000 S	eries Methods												
Prepared	by method SW846 30	<u>51A</u>												
7440-22-4	Silver	< 1.51		mg/kg dry	1.51	0.163	1	SW846 6010C	01-Jun-17	01-Jun-17	EDT	1709087		
7440-38-2	Arsenic	5.43		mg/kg dry	1.51	0.192	1		"	"	"			
7440-39-3	Barium	37.5		mg/kg dry	1.01	0.119	1		"	02-Jun-17	"			
7440-43-9	Cadmium	2.58		mg/kg dry	0.504	0.0261	1			01-Jun-17	"			
7440-47-3	Chromium	12.5		mg/kg dry	1.01	0.134	1			"	"			
7439-97-6	Mercury	0.375		mg/kg dry	0.0293	0.0081	1	SW846 7471B	"	01-Jun-17	LNB	1709088		
Prepared	by method SW846 30	<u>51A</u>												
7439-92-1	Lead	119		mg/kg dry	1.51	0.214	1	SW846 6010C		01-Jun-17	EDT	1709087		
7782-49-2	Selenium	< 1.51		mg/kg dry	1.51	0.289	1	"	"		"	"		
General C	hemistry Parameters													
	% Solids	94.0		%			1	SM2540 G (11) Mod.	01-Jun-17	01-Jun-17	CMB	1709080		

Sample Ic	lentification			Client P	roiect #		Matrix	Colle	ection Date	/Time	Re	ceived	
GP-02 (1	1-13)			96	84		Soil	26	-May-17 10):15	31-1	May-17	
SC35241-	-02								5			5	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds by method Volatiles												
roparoa	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1709054	
Volatile O	rganic Compounds by SW	846 8260											
Prepared	by method SW846 5035A	Soil (low level)				Init	tial weight:	<u>5.06 g</u>					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.55		µg/kg dry	5.55	2.81	1	SW846 8260C	01-Jun-17	01-Jun-17	MP	1709058	i
67-64-1	Acetone	< 55.5		µg/kg dry	55.5	22.2	1	"		"	"	"	
107-13-1	Acrylonitrile	< 5.55		µg/kg dry	5.55	5.34	1	"		"	"	"	
71-43-2	Benzene	< 5.55		µg/kg dry	5.55	1.47	1			"		"	
108-86-1	Bromobenzene	< 5.55		µg/kg dry	5.55	1.48	1			"		"	
74-97-5	Bromochloromethane	< 5.55		µg/kg dry	5.55	2.80	1			"		"	
75-27-4	Bromodichloromethane	< 5.55		µg/kg dry	5.55	3.70	1		"	"			
75-25-2	Bromoform	< 5.55		µg/kg dry	5.55	5.30	1		"	"	"		
74-83-9	Bromomethane	< 11.1		µg/kg dry	11.1	5.01	1			"			
78-93-3	2-Butanone (MEK)	< 11.1		µg/kg dry	11.1	9.93	1			"		"	
104-51-8	n-Butylbenzene	< 5.55		µg/kg dry	5.55	1.59	1			"		"	
135-98-8	sec-Butylbenzene	< 5.55		µg/kg dry	5.55	1.01	1			"		"	
98-06-6	tert-Butylbenzene	< 5.55		µg/kg dry	5.55	1.24	1			"			
75-15-0	Carbon disulfide	< 11.1		µg/kg dry	11.1	3.55	1			"			
56-23-5	Carbon tetrachloride	< 5.55		µg/kg dry	5.55	4.54	1			"		"	
108-90-7	Chlorobenzene	< 5.55		µg/kg dry	5.55	1.74	1			"			
75-00-3	Chloroethane	< 11.1		µg/kg dry	11.1	3.08	1			"			
67-66-3	Chloroform	< 5.55		µg/kg dry	5.55	2.98	1			"		"	
74-87-3	Chloromethane	< 11.1		µg/kg dry	11.1	2.29	1			"		"	
95-49-8	2-Chlorotoluene	< 5.55		µg/kg dry	5.55	1.38	1			"		"	
106-43-4	4-Chlorotoluene	< 5.55		ua/ka drv	5.55	1.30	1					"	
96-12-8	1 2-Dibromo-3-chloroprop	< 11 1		ua/ka drv	11 1	8.02	1			"			
	ane			µg/ng ary		0.02	•						
124-48-1	Dibromochloromethane	< 5.55		µg/kg dry	5.55	3.76	1		"	"			
106-93-4	1,2-Dibromoethane (EDB)	< 5.55		µg/kg dry	5.55	3.73	1			"			
74-95-3	Dibromomethane	< 5.55		µg/kg dry	5.55	2.89	1			"			
95-50-1	1,2-Dichlorobenzene	< 5.55		µg/kg dry	5.55	1.44	1			"			
541-73-1	1,3-Dichlorobenzene	< 5.55		µg/kg dry	5.55	1.20	1			"		"	
106-46-7	1,4-Dichlorobenzene	< 5.55		µg/kg dry	5.55	1.64	1			"		"	
75-71-8	Dichlorodifluoromethane (Freon12)	< 11.1		µg/kg dry	11.1	2.10	1	"	"	"	"	"	
75-34-3	1,1-Dichloroethane	< 5.55		µg/kg dry	5.55	1.45	1			"			
107-06-2	1,2-Dichloroethane	< 5.55		µg/kg dry	5.55	1.99	1			"		"	
75-35-4	1,1-Dichloroethene	< 5.55		µg/kg dry	5.55	2.90	1			"		"	
156-59-2	cis-1.2-Dichloroethene	< 5.55		ua/ka drv	5.55	2.06	1					"	
156-60-5	trans-1,2-Dichloroethene	< 5.55		µg/ka drv	5.55	2.94	1	"	"			"	
78-87-5	1.2-Dichloropropane	< 5.55		ua/ka drv	5.55	2.91	1	"					
142-28-9	1.3-Dichloropropane	< 5.55		ua/ka drv	5 55	2.88	1	"					
594-20-7	2.2-Dichloropropane	< 5.55		ua/ka drv	5 55	2.62	1	"					
563-58-6	1.1-Dichloropropene	< 5.55		ua/ka drv	5 55	1 79	1	"					
10061-01-5	cis-1 3-Dichloropropene	< 5.55		ug/ka dry	5.55	3.35	1						
10061-02-6	trans-1.3-Dichloropropene	< 5.55		ua/ka drv	5 55	2.91	1	"					
				r.aa	2.00		•						

Sample Id	entification		Client D	roject #		Matrix	Coll	action Data	/Time	Do	aivad	
GP-02 (11	-13)		<u>06</u>	<u>10jeet #</u> 84		Soil	26	$-M_{\rm av} = 17.10$)·15	31_N	May_17	
SC35241-	02		90	04		5011	20	-wiay-17 10	1.15	51-1	/lay-1/	
CAS No.	Analyte(s)	Result Fla	g Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds											
Volatile O	rganic Compounds by SW	<u>846 8260</u>										
					<u>Init</u>	ial weight:	<u>5.06 g</u>					
100-41-4	Ethylbenzene	< 5.55	µg/kg dry	5.55	0.80	1	SW846 8260C	01-Jun-17	01-Jun-17	MP	1709058	i
87-68-3	Hexachlorobutadiene	< 5.55	µg/kg dry	5.55	2.79	1		"			"	
591-78-6	2-Hexanone (MBK)	< 11.1	µg/kg dry	11.1	6.81	1		"			"	
98-82-8	Isopropylbenzene	< 5.55	µg/kg dry	5.55	1.09	1		"	"		"	
99-87-6	4-Isopropyltoluene	< 5.55	µg/kg dry	5.55	1.19	1		"	"	"	"	
1634-04-4	Methyl tert-butyl ether	< 5.55	µg/kg dry	5.55	2.04	1	"	"			"	
108-10-1	4-Methyl-2-pentanone (MIBK)	< 11.1	µg/kg dry	11.1	2.85	1	u	"	"	"	"	
75-09-2	Methylene chloride	< 11.1	µg/kg dry	11.1	2.20	1		"	"		"	
91-20-3	Naphthalene	< 5.55	µg/kg dry	5.55	3.30	1		"			"	
103-65-1	n-Propylbenzene	< 5.55	µg/kg dry	5.55	0.90	1		"			"	
100-42-5	Styrene	< 5.55	µg/kg dry	5.55	1.12	1		"			"	
630-20-6	1,1,1,2-Tetrachloroethane	< 5.55	µg/kg dry	5.55	4.72	1		"			"	
79-34-5	1,1,2,2-Tetrachloroethane	< 5.55	µg/kg dry	5.55	4.70	1		"			"	
127-18-4	Tetrachloroethene	< 5.55	µg/kg dry	5.55	1.90	1		"			"	
108-88-3	Toluene	< 5.55	µg/kg dry	5.55	1.80	1		"			"	
87-61-6	1,2,3-Trichlorobenzene	< 5.55	µg/kg dry	5.55	1.95	1		"			"	
120-82-1	1,2,4-Trichlorobenzene	< 5.55	µg/kg dry	5.55	4.09	1		"			"	
108-70-3	1,3,5-Trichlorobenzene	< 5.55	µg/kg dry	5.55	1.74	1		"			"	
71-55-6	1,1,1-Trichloroethane	< 5.55	µg/kg dry	5.55	1.84	1	"	"			"	
79-00-5	1,1,2-Trichloroethane	< 5.55	µg/kg dry	5.55	4.03	1	"	"			"	
79-01-6	Trichloroethene	< 5.55	µg/kg dry	5.55	1.52	1		"	"		"	
75-69-4	Trichlorofluoromethane (Freon 11)	< 5.55	µg/kg dry	5.55	2.99	1	"	"	"	"	u	
96-18-4	1,2,3-Trichloropropane	< 5.55	µg/kg dry	5.55	4.16	1	"	"			"	
95-63-6	1,2,4-Trimethylbenzene	< 5.55	µg/kg dry	5.55	1.35	1		"				
108-67-8	1,3,5-Trimethylbenzene	< 5.55	µg/kg dry	5.55	0.95	1		"				
75-01-4	Vinyl chloride	< 5.55	µg/kg dry	5.55	1.88	1		"			"	
179601-23-1	m,p-Xylene	< 11.1	µg/kg dry	11.1	1.00	1		"			"	
95-47-6	o-Xylene	< 5.55	µg/kg dry	5.55	1.55	1		"			"	
109-99-9	Tetrahydrofuran	< 11.1	µg/kg dry	11.1	8.75	1		"			"	
60-29-7	Ethyl ether	< 5.55	µg/kg dry	5.55	5.03	1		"				
994-05-8	Tert-amyl methyl ether	< 5.55	µg/kg dry	5.55	1.85	1		"				
637-92-3	Ethyl tert-butyl ether	< 5.55	µg/kg dry	5.55	2.99	1		"			"	
108-20-3	Di-isopropyl ether	< 5.55	µg/kg dry	5.55	1.03	1		"			"	
75-65-0	Tert-Butanol / butyl alcohol	< 55.5	µg/kg dry	55.5	36.3	1		"			"	
123-91-1	1,4-Dioxane	< 111	µg/kg dry	111	96.4	1		"			"	
110-57-6	rans-1.4-Dichloro-2-buten	< 27.8	ua/ka drv	27.8	12.7	1		"			"	
64-17-5	e Ethanol	< 1110	ug/kg dry	1110	207	1						
			rg///g/d/ j			•						
Surrogate r	ecoveries:			:	.							
400-00-4	4-Bromotluorobenzene	93		70-13	0%							
2037-26-5	Toluene-d8	100		70-13	0%		"	"		"	"	
17060-07-0	1,2-Dichloroethane-d4	115		70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	107		70-13	0%		"	"			"	

Sample Identification				Client Project # Matri				triv Collection Date/Time				Pagainad		
GP-02 (11	-13)			<u>0684</u>			Soil	26	May 17 10).15	31 May 17			
SC35241-	02						5011	Soli 20-May-1/10.13			51-May-17			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Volatile O	rganic Compounds													
MADEP V	PH		VC10											
Prepared	<u>by method VPH - EPA 503</u>	<u>5A Soil</u>				<u>Initi</u>	al weight:	<u>21.94 g</u>						
	C5-C8 Aliphatic Hydrocarbons	< 0.590	D	mg/kg dry	0.590	0.114	50	MADEP VPH 5/2004 Rev. 1.1	01-Jun-17	01-Jun-17	SD	1709064		
	C9-C12 Aliphatic Hydrocarbons	< 0.197	D	mg/kg dry	0.197	0.0819	50	u	"	"	"	"		
	C9-C10 Aromatic Hydrocarbons	< 0.197	D	mg/kg dry	0.197	0.0239	50	"	"	"		"		
	Unadjusted C5-C8 Aliphatic Hydrocarbons	< 0.590	D	mg/kg dry	0.590	0.0917	50	"	"	"		"		
	Unadjusted C9-C12 Aliphatic Hydrocarbons	< 0.197	D	mg/kg dry	0.197	0.104	50	п	"	"	"	"		
71-43-2	Benzene	< 0.0394	D	mg/kg dry	0.0394	0.0111	50		"	"		"		
100-41-4	Ethylbenzene	< 0.0394	D	mg/kg dry	0.0394	0.0140	50		"	"		"		
1634-04-4	Methyl tert-butyl ether	< 0.0394	D	mg/kg dry	0.0394	0.0192	50		"	"				
91-20-3	Naphthalene	< 0.0394	D	mg/kg dry	0.0394	0.0189	50			"				
108-88-3	Toluene	< 0.0394	D	ma/ka drv	0.0394	0.0140	50		"	"		"		
179601-23-1	m.p-Xvlene	< 0.0787	D	ma/ka drv	0.0787	0.0309	50		"	"				
95-47-6	o-Xvlene	< 0.0394	D	ma/ka drv	0.0394	0.0129	50					"		
Surragata				5 5 7										
Surroyate i	ecoveries.	405			70.40	0.0/								
015-59-0	2,5-Dibromotoluene (FID)	105			70-13	0%								
0/5-59-8	2,5-Dibromotoluene (PID)	105			70-13	0%		-						
Polychlori Prepared	le Organic Compounds by C nated Biphenyls by method SW846 3546	iC												
12674-11-2	Aroclor-1016	< 20.9		µg/kg dry	20.9	9.36	1	SW846 8082A	01-Jun-17	01-Jun-17	IMR	1709052	2	
11104-28-2	Aroclor-1221	< 20.9		µg/kg dry	20.9	11.1	1		"	"				
11141-16-5	Aroclor-1232	< 20.9		µg/kg dry	20.9	10.5	1		"	"		"		
53469-21-9	Aroclor-1242	< 20.9		µg/kg dry	20.9	20.6	1		"	"		"		
12672-29-6	Aroclor-1248	< 20.9		ua/ka drv	20.9	19.1	1		"	"				
11097-69-1	Aroclor-1254	< 20.9		ua/ka dry	20.9	13.7	1		"	"		"		
11096-82-5	Aroclor-1260	< 20.0		ua/ka dry	20.0	11.2	1		"					
37324-23-5	Aroclor 1262	< 20.0		ug/kg dry	20.0	18.2	1							
11100-14-4	Aroclor-1268	< 20.9		ua/ka dry	20.9	9.43	1		"			"		
		- 20.0		µg/kg di y	20.0	0.40	•							
Surrogate i	ecoveries:													
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	0 %		"	"	"		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	85			30-15	0 %		u	"	"	"			
2051-24-3	Decachlorobiphenyl (Sr)	125			30-15	0 %		"	"	"		"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	0 %		"	"	"	"	"		
Extractabl	e Petroleum Hydrocarbons													
MADEP E	<u>PH</u>													
Prepared	by method SW846 3546													
	C9-C18 Aliphatic Hydrocarbons	12.8		mg/kg dry	10.4	1.46	1	MADEP EPH 5/2004 R	01-Jun-17	04-Jun-17	SM	1709048		
	C19-C36 Aliphatic Hydrocarbons	< 10.4		mg/kg dry	10.4	1.47	1	u	n		"	"		
	C11-C22 Aromatic Hydrocarbons	< 10.4		mg/kg dry	10.4	4.97	1	"	"	"	"	"		

This laboratory report is not valid without an authorized signature on the cover page.

<u>Sample Identification</u> GP-02 (11-13) SC35241-02			<u>Client Project #</u> 9684			<u>Matrix</u> Soil	Collection Date/Time 26-May-17 10:15			Received 31-May-17			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Extractab	le Petroleum Hydrocarbons												
MADEP E	<u>PH</u>												
	Unadjusted C11-C22 Aromatic Hydrocarbons	< 10.4		mg/kg dry	10.4	4.97	1	MADEP EPH 5/2004 R	01-Jun-17	04-Jun-17	SM	1709048	
91-20-3	Naphthalene	< 0.347		mg/kg dry	0.347	0.309	1	"	"	"		"	
91-57-6	2-Methylnaphthalene	< 0.347		mg/kg dry	0.347	0.298	1			"	"	"	
208-96-8	Acenaphthylene	< 0.347		mg/kg dry	0.347	0.138	1	"	"	"		"	
83-32-9	Acenaphthene	< 0.347		mg/kg dry	0.347	0.344	1		"	"		"	
86-73-7	Fluorene	< 0.347		mg/kg dry	0.347	0.312	1		"	"		"	
85-01-8	Phenanthrene	< 0.347		mg/kg dry	0.347	0.300	1		"	"		"	
120-12-7	Anthracene	< 0.347		mg/kg dry	0.347	0.298	1		"	"		"	
206-44-0	Fluoranthene	< 0.347		mg/kg dry	0.347	0.131	1		"	"		"	
129-00-0	Pyrene	< 0.347		mg/kg dry	0.347	0.133	1		"	"		"	
56-55-3	Benzo (a) anthracene	< 0.347		mg/kg dry	0.347	0.330	1		"	"		"	
218-01-9	Chrysene	< 0.347		mg/kg dry	0.347	0.328	1		"	"		"	
205-99-2	Benzo (b) fluoranthene	< 0.347		mg/kg dry	0.347	0.286	1		"	"		"	
207-08-9	Benzo (k) fluoranthene	< 0.347		mg/kg dry	0.347	0.182	1		"	"		"	
50-32-8	Benzo (a) pyrene	< 0.347		mg/kg dry	0.347	0.311	1		"	"		"	
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.347		mg/kg dry	0.347	0.232	1	"	"	"		"	
53-70-3	Dibenzo (a,h) anthracene	< 0.347		mg/kg dry	0.347	0.222	1	"	"	"		"	
191-24-2	Benzo (g,h,i) perylene	< 0.347		mg/kg dry	0.347	0.227	1	"	"			"	
Surrogate	recoveries:												
3386-33-2	1-Chlorooctadecane	85		40-140 %					"	"	"	"	
84-15-1	Ortho-Terphenyl	74			40-14	0 %		"	"	"	"	"	
321-60-8	2-Fluorobiphenyl	64			40-14	0 %		"	"	"	"	"	
General C	hemistry Parameters												
	% Solids	94.2		%			1	SM2540 G (11) Mod.	01-Jun-17	01-Jun-17	CMB	1709080	

Sample Identification			Client Project #			<u>Matrix</u>	Colle	ection Date	/Time	Received			
SC35241-	-03			9684			Soil		-May-17 1	1:00	31-May-17		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Prepared	VOC Extraction	Field		N/A			1	VOC Soil Extraction			BD	1709054	ŀ
<u>Volatile O</u>	rganic Compounds by SW	846 8260											
<u>Prepared</u>	by method SW846 5035A	Soil (low level)				Init	ial weight:	<u>5.18 g</u>					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.26		µg/kg dry	5.26	2.67	1	SW846 8260C	01-Jun-17	01-Jun-17	MP	1709058	i
67-64-1	Acetone	< 52.6		µg/kg dry	52.6	21.0	1			"	"	"	
107-13-1	Acrylonitrile	< 5.26		µg/kg dry	5.26	5.05	1			"	"	"	
71-43-2	Benzene	< 5.26		µg/kg dry	5.26	1.39	1		"	"	"	"	
108-86-1	Bromobenzene	< 5.26		µg/kg dry	5.26	1.40	1		"	"	"	"	
74-97-5	Bromochloromethane	< 5.26		µg/kg dry	5.26	2.65	1		"	"	"	"	
75-27-4	Bromodichloromethane	< 5.26		µg/kg dry	5.26	3.51	1		"	"	"	"	
75-25-2	Bromoform	< 5.26		µg/kg dry	5.26	5.02	1		"	"	"	"	
74-83-9	Bromomethane	< 10.5		µg/kg dry	10.5	4.75	1		"	"	"	"	
78-93-3	2-Butanone (MEK)	< 10.5		µg/kg dry	10.5	9.40	1			"	"	"	
104-51-8	n-Butylbenzene	< 5.26		µg/kg dry	5.26	1.50	1			"	"	"	
135-98-8	sec-Butylbenzene	< 5.26		µg/kg dry	5.26	0.96	1			"	"	"	
98-06-6	tert-Butylbenzene	< 5.26		µg/kg dry	5.26	1.18	1			"	"	"	
75-15-0	Carbon disulfide	< 10.5		µg/kg dry	10.5	3.36	1			"	"	"	
56-23-5	Carbon tetrachloride	< 5.26		µg/kg dry	5.26	4.30	1			"	"	"	
108-90-7	Chlorobenzene	< 5.26		µg/kg dry	5.26	1.65	1			"	"	"	
75-00-3	Chloroethane	< 10.5		µg/kg dry	10.5	2.92	1			"	"	"	
67-66-3	Chloroform	< 5.26		µg/kg dry	5.26	2.82	1			"	"	"	
74-87-3	Chloromethane	< 10.5		µg/kg dry	10.5	2.17	1			"	"	"	
95-49-8	2-Chlorotoluene	< 5.26		µg/kg dry	5.26	1.31	1			"	"	"	
106-43-4	4-Chlorotoluene	< 5.26		µg/kg dry	5.26	1.24	1			"	"	"	
96-12-8	1,2-Dibromo-3-chloroprop ane	< 10.5		µg/kg dry	10.5	7.60	1	n	"	"		"	
124-48-1	Dibromochloromethane	< 5.26		µg/kg dry	5.26	3.56	1		"	"	"		
106-93-4	1,2-Dibromoethane (EDB)	< 5.26		µg/kg dry	5.26	3.53	1		"	"	"	"	
74-95-3	Dibromomethane	< 5.26		µg/kg dry	5.26	2.73	1			"	"		
95-50-1	1,2-Dichlorobenzene	< 5.26		µg/kg dry	5.26	1.37	1		"	"	"	"	
541-73-1	1,3-Dichlorobenzene	< 5.26		µg/kg dry	5.26	1.14	1		"	"	"	"	
106-46-7	1,4-Dichlorobenzene	< 5.26		µg/kg dry	5.26	1.56	1			"	"		
75-71-8	Dichlorodifluoromethane (Freon12)	< 10.5		µg/kg dry	10.5	1.99	1	u	"	"	"	"	
75-34-3	1,1-Dichloroethane	< 5.26		µg/kg dry	5.26	1.38	1			"	"	"	
107-06-2	1,2-Dichloroethane	< 5.26		µg/kg dry	5.26	1.88	1			"	"	"	
75-35-4	1,1-Dichloroethene	< 5.26		µg/kg dry	5.26	2.75	1			"	"	"	
156-59-2	cis-1,2-Dichloroethene	< 5.26		µg/kg dry	5.26	1.95	1			"	"	"	
156-60-5	trans-1,2-Dichloroethene	< 5.26		µg/kg dry	5.26	2.79	1			"	"	"	
78-87-5	1,2-Dichloropropane	< 5.26		µg/kg dry	5.26	2.75	1	"	"	"		"	
142-28-9	1,3-Dichloropropane	< 5.26		µg/kg dry	5.26	2.72	1	"		"	"	"	
594-20-7	2,2-Dichloropropane	< 5.26		µg/kg dry	5.26	2.48	1	"	"	"		"	
563-58-6	1,1-Dichloropropene	< 5.26		µg/kg dry	5.26	1.69	1	"		"		"	
10061-01-5	cis-1,3-Dichloropropene	< 5.26		µg/kg dry	5.26	3.17	1	"		"		"	
10061-02-6	trans-1,3-Dichloropropene	< 5.26		µg/kg dry	5.26	2.76	1	"		"		"	

Sample Identification GP-04 (13-15)			Cliant D	<u>Client Project #</u> 9684			Call	action Data	/Time	Da			
			<u>Client P</u> 96				26	-May-17 11		31_N			
SC35241-	.03)0	2001			20	-1v1ay-17 11	1.00	51-1v1ay-17			
CAS No.	Analyte(s)	Result Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Volatile Or	rganic Compounds												
<u>Volatile O</u>	rganic Compounds by SW	<u>846 8260</u>											
					Ini	ial weight:	<u>5.18 g</u>						
100-41-4	Ethylbenzene	< 5.26	µg/kg dry	5.26	0.76	1	SW846 8260C	01-Jun-17	01-Jun-17	MP	1709058		
87-68-3	Hexachlorobutadiene	< 5.26	µg/kg dry	5.26	2.64	1		"	"	"	"		
591-78-6	2-Hexanone (MBK)	< 10.5	µg/kg dry	10.5	6.45	1		"	"	"	"		
98-82-8	Isopropylbenzene	< 5.26	µg/kg dry	5.26	1.04	1		"	"	"	"		
99-87-6	4-Isopropyltoluene	< 5.26	µg/kg dry	5.26	1.13	1		"	"	"	"		
1634-04-4	Methyl tert-butyl ether	< 5.26	µg/kg dry	5.26	1.93	1		"	"	"	"		
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.5	µg/kg dry	10.5	2.70	1	u	"	"				
75-09-2	Methylene chloride	< 10.5	µg/kg dry	10.5	2.09	1		"	"		"		
91-20-3	Naphthalene	< 5.26	µg/kg dry	5.26	3.13	1		"	"	"	"		
103-65-1	n-Propylbenzene	< 5.26	µg/kg dry	5.26	0.85	1		"	"	"	"		
100-42-5	Styrene	< 5.26	µg/kg dry	5.26	1.06	1		"	"	"	"		
630-20-6	1,1,1,2-Tetrachloroethane	< 5.26	µg/kg dry	5.26	4.47	1		"	"	"	"		
79-34-5	1,1,2,2-Tetrachloroethane	< 5.26	µg/kg dry	5.26	4.45	1		"	"	"	"		
127-18-4	Tetrachloroethene	< 5.26	µg/kg dry	5.26	1.80	1			"	"	"		
108-88-3	Toluene	< 5.26	µg/kg dry	5.26	1.70	1			"	"	"		
87-61-6	1,2,3-Trichlorobenzene	< 5.26	µg/kg dry	5.26	1.85	1		"	"	"	"		
120-82-1	1,2,4-Trichlorobenzene	< 5.26	µg/kg dry	5.26	3.87	1		"	"	"	"		
108-70-3	1,3,5-Trichlorobenzene	< 5.26	µg/kg dry	5.26	1.65	1		"	"	"	"		
71-55-6	1,1,1-Trichloroethane	< 5.26	µg/kg dry	5.26	1.75	1		"	"	"	"		
79-00-5	1,1,2-Trichloroethane	< 5.26	µg/kg dry	5.26	3.81	1			"	"	"		
79-01-6	Trichloroethene	< 5.26	µg/kg dry	5.26	1.44	1				"	"		
75-69-4	Trichlorofluoromethane (Freon 11)	< 5.26	µg/kg dry	5.26	2.83	1	u	"	"	"	"		
96-18-4	1,2,3-Trichloropropane	< 5.26	µg/kg dry	5.26	3.94	1				"	"		
95-63-6	1,2,4-Trimethylbenzene	< 5.26	µg/kg dry	5.26	1.28	1				"	"		
108-67-8	1,3,5-Trimethylbenzene	< 5.26	µg/kg dry	5.26	0.90	1				"	"		
75-01-4	Vinyl chloride	< 5.26	µg/kg dry	5.26	1.78	1			"	"	"		
179601-23-1	m,p-Xylene	< 10.5	µg/kg dry	10.5	0.95	1			"	"	"		
95-47-6	o-Xylene	< 5.26	µg/kg dry	5.26	1.47	1			"	"	"		
109-99-9	Tetrahydrofuran	< 10.5	µg/kg dry	10.5	8.28	1			"	"	"		
60-29-7	Ethyl ether	< 5.26	µg/kg dry	5.26	4.76	1			"		"		
994-05-8	Tert-amyl methyl ether	< 5.26	µg/kg dry	5.26	1.76	1			"		"		
637-92-3	Ethyl tert-butyl ether	< 5.26	µg/kg dry	5.26	2.83	1			"		"		
108-20-3	Di-isopropyl ether	< 5.26	µg/kg dry	5.26	0.98	1			"	"			
75-65-0	Tert-Butanol / butyl alcohol	< 52.6	µg/kg dry	52.6	34.4	1			"	"			
123-91-1	1,4-Dioxane	< 105	µg/kg dry	105	91.3	1				"	"		
110-57-6	trans-1,4-Dichloro-2-buten	< 26.3	µg/kg dry	26.3	12.0	1	"	"	"				
64-17-5	e Ethanol	< 1050	µg/kg dry	1050	196	1	u	"	"				
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	92		70-13	0%		"	"	"	"	"		
2037-26-5	Toluene-d8	101		70-13	0%		"	"		"	"		
17060-07-0	1,2-Dichloroethane-d4	116		70-13	0%		"	"		"	"		
1868-53-7	Dibromofluoromethane	107		70-13	0%		"	"	"	"	"		
Sample Id	entification			Client P	roject#		Matrix	Colle	ection Date	/Time	Re	ceived	
--------------------------------------	---	----------------	--------	-----------	---------	-------------	------------	------------------------------	-------------	-----------	---------	---------	-------
GP-04 (13	8-15)				01		Soil	26	May 17 11	·00	21 1	May 17	
SC35241-	03			90	04		5011	20-	-wiay-1/11	.00	51-1	viay-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
MADEP V	<u>PH</u>		VC10										
Prepared	by method VPH - EPA 503	<u>5A Soil</u>				<u>Init</u>	al weight:	<u>21.48 g</u>					
	C5-C8 Aliphatic Hydrocarbons	< 0.580	D	mg/kg dry	0.580	0.112	50	MADEP VPH 5/2004 Rev. 1.1	01-Jun-17	01-Jun-17	SD	1709064	
	C9-C12 Aliphatic Hydrocarbons	< 0.193	D	mg/kg dry	0.193	0.0804	50	u	"	"		"	
	C9-C10 Aromatic Hydrocarbons	< 0.193	D	mg/kg dry	0.193	0.0235	50	"	"	"		"	
	Unadjusted C5-C8 Aliphatic Hydrocarbons	< 0.580	D	mg/kg dry	0.580	0.0900	50	u	"	"	"	"	
	Unadjusted C9-C12 Aliphatic Hydrocarbons	< 0.193	D	mg/kg dry	0.193	0.102	50	u		"	"	"	
71-43-2	Benzene	< 0.0386	D	mg/kg dry	0.0386	0.0109	50		"			"	
100-41-4	Ethylbenzene	< 0.0386	D	mg/kg dry	0.0386	0.0137	50		"			"	
1634-04-4	Methyl tert-butyl ether	< 0.0386	D	mg/kg dry	0.0386	0.0189	50		"				
91-20-3	Naphthalene	< 0.0386	D	ma/ka drv	0.0386	0.0186	50		"				
108-88-3	Toluene	< 0.0386	D	ma/ka drv	0.0386	0.0138	50		"				
179601-23-1	m p-Xvlene	< 0.0773	- D	ma/ka drv	0.0773	0.0304	50						
95-47-6	o-Xvlene	< 0.0386	D	ma/ka drv	0.0386	0.0126	50		"			"	
0			_										
Surrogate i	ecoveries:				70.40								
015-59-8	2,5-Dibromotoluene (FID)	107			70-13	<i>80 %</i>							
615-59-8	2,5-Dibromotoluene (PID)	105			70-13	80 %							
Semivolati Polychlori Prepared	le Organic Compounds by C <u>nated Biphenyls</u> by method SW846 3546	ЪС											
12674-11-2	Aroclor-1016	< 20.8		µg/kg dry	20.8	9.32	1	SW846 8082A	01-Jun-17	01-Jun-17	IMR	1709052	2
11104-28-2	Aroclor-1221	< 20.8		µg/kg dry	20.8	11.1	1		"				
11141-16-5	Aroclor-1232	< 20.8		µg/kg dry	20.8	10.4	1		"				
53469-21-9	Aroclor-1242	< 20.8		ua/ka drv	20.8	20.5	1		"				
12672-29-6	Aroclor-1248	< 20.8		ua/ka drv	20.8	19.0	1						
11097-69-1	Aroclor-1254	< 20.8		ua/ka dry	20.8	13.6	1		"				
11096-82-5	Aroclor-1260	< 20.8		ua/ka dry	20.0	11 1	1						
37324-23-5	Aroclor-1262	< 20.8		ua/ka dry	20.0	18.1	1						
11100-14-4	Aroclor 1268	< 20.0		ug/kg dry	20.0	0.38	1						
		\$ 20.0		µg/kg ury	20.0	9.00	I						
Surrogate i	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	80			30-15	50 %		"	"	"		"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	80			30-15	50 %		u	"	u	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	115			30-15	i0 %			"	"		"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	120			30-15	50 %		"	"	"	"	"	
Extractabl	e Petroleum Hydrocarbons												
MADEP E	<u>PH</u>												
Prepared	by method SW846 3546	(a -						····					
	C9-C18 Aliphatic Hydrocarbons	< 10.3		mg/kg dry	10.3	1.43	1	MADEP EPH 5/2004 R	01-Jun-17	04-Jun-17	SM	1709048	
	C19-C36 Aliphatic Hydrocarbons	< 10.3		mg/kg dry	10.3	1.45	1	"	u	u	"	"	
	C11-C22 Aromatic Hydrocarbons	< 10.3		mg/kg dry	10.3	4.89	1	"	"	"	"	"	

Sample Id GP-04 (12 SC35241-	<u>lentification</u> 3-15) -03			<u>Client Pr</u> 968	<u>roject #</u> 34		<u>Matrix</u> Soil	<u>Colli</u> 26	ection Date -May-17 11	/ <u>Time</u> 1:00	<u>Re</u> 31-1	<u>ceived</u> May-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Extractab	le Petroleum Hydrocarbons												
MADEP E	<u>PH</u>												
	Unadjusted C11-C22 Aromatic Hydrocarbons	< 10.3		mg/kg dry	10.3	4.89	1	MADEP EPH 5/2004 R	01-Jun-17	04-Jun-17	SM	1709048	
91-20-3	Naphthalene	< 0.341		mg/kg dry	0.341	0.303	1	"	"	"	"	"	
91-57-6	2-Methylnaphthalene	< 0.341		mg/kg dry	0.341	0.293	1	"		"	"	"	
208-96-8	Acenaphthylene	< 0.341		mg/kg dry	0.341	0.135	1	"	"	"	"	"	
83-32-9	Acenaphthene	< 0.341		mg/kg dry	0.341	0.338	1			"	"	"	
86-73-7	Fluorene	< 0.341		mg/kg dry	0.341	0.307	1			"	"	"	
85-01-8	Phenanthrene	< 0.341		mg/kg dry	0.341	0.295	1			"	"	"	
120-12-7	Anthracene	< 0.341		mg/kg dry	0.341	0.293	1			"		"	
206-44-0	Fluoranthene	< 0.341		mg/kg dry	0.341	0.129	1			"	"	"	
129-00-0	Pyrene	< 0.341		mg/kg dry	0.341	0.131	1			"		"	
56-55-3	Benzo (a) anthracene	< 0.341		mg/kg dry	0.341	0.324	1			"	"	"	
218-01-9	Chrysene	< 0.341		mg/kg dry	0.341	0.323	1			"		"	
205-99-2	Benzo (b) fluoranthene	< 0.341		mg/kg dry	0.341	0.281	1			"		"	
207-08-9	Benzo (k) fluoranthene	< 0.341		mg/kg dry	0.341	0.179	1			"	"	"	
50-32-8	Benzo (a) pyrene	< 0.341		mg/kg dry	0.341	0.306	1			"		"	
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.341		mg/kg dry	0.341	0.228	1			"		"	
53-70-3	Dibenzo (a,h) anthracene	< 0.341		mg/kg dry	0.341	0.218	1			"		"	
191-24-2	Benzo (g,h,i) perylene	< 0.341		mg/kg dry	0.341	0.224	1	"		"	"	"	
Surrogate	recoveries:												
3386-33-2	1-Chlorooctadecane	94			40-14	0 %				"	"	"	
84-15-1	Ortho-Terphenyl	67			40-14	0 %				"	"	"	
321-60-8	2-Fluorobiphenyl	64			40-14	0 %		"	"	"	"	"	
General C	hemistry Parameters												
	% Solids	95.8		%			1	SM2540 G (11) Mod.	01-Jun-17	01-Jun-17	CMB	1709082	

Sample Id	entification			Climt D			Matuin	C-11	antina Data	/T:	Da	:	
GP-06 (3-	5)			<u>Client P</u>	<u>roject #</u>		<u>Matrix</u>		Mars 17.12	<u>/11me</u>	21 N	<u>fan 17</u>	
SC35241-	04			908	54		5011	20	-wiay-1/12	2:10	31-1	/lay-1/	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1709054	
<u>Volatile Or</u>	rganic Compounds by SW	<u>846 8260</u>				l en il		5 00 m					
76-13-1	1,1,2-Trichlorotrifluoroetha	< 5.46		µg/kg dry	5.46	<u>1111</u> 2.77	1	<u>5.39 g</u> SW846 8260C	01-Jun-17	01-Jun-17	MP	1709058	
67-64-1	Acetone	< 54.6		µg/kg dry	54.6	21.9	1			"			
107-13-1	Acrylonitrile	< 5.46		µg/kg dry	5.46	5.25	1		"	"			
71-43-2	Benzene	< 5.46		µg/kg dry	5.46	1.45	1		"	"			
108-86-1	Bromobenzene	< 5.46		µg/kg dry	5.46	1.46	1			"			
74-97-5	Bromochloromethane	< 5.46		µg/kg dry	5.46	2.76	1		"	"			
75-27-4	Bromodichloromethane	< 5.46		µg/kg dry	5.46	3.64	1		"	"			
75-25-2	Bromoform	< 5.46		µg/kg dry	5.46	5.21	1		"	"			
74-83-9	Bromomethane	< 10.9		ua/ka drv	10.9	4.93	1						
78-93-3	2-Butanone (MEK)	< 10.9		ua/ka drv	10.9	9.77	1						
104-51-8	n-Butvlbenzene	< 5.46		ua/ka drv	5.46	1.56	1						
135-98-8	sec-Butvlbenzene	< 5.46		ua/ka drv	5.46	0.99	1						
98-06-6	tert-Butvlbenzene	< 5.46		ua/ka drv	5.46	1.22	1			"			
75-15-0	Carbon disulfide	< 10.9		ua/ka drv	10.9	3.50	1			"			
56-23-5	Carbon tetrachloride	< 5.46		ua/ka drv	5.46	4.47	1			"			
108-90-7	Chlorobenzene	< 5.46		ua/ka drv	5 46	1 71	1			"			
75-00-3	Chloroethane	< 10.9		ua/ka dry	10.9	3.03	1						
67-66-3	Chloroform	< 5.46		ua/ka dry	5 46	2.00	1						
74-87-3	Chloromethane	< 10.9		ua/ka dry	10.9	2.00	1						
95-49-8	2-Chlorotoluene	< 5.46		ua/ka dry	5 46	1.36	1						
106-43-4	4-Chlorotoluene	< 5.46		ua/ka dry	5.46	1.00	1			"			
96-12-8	1 2-Dibromo-3-chloroprop	< 10.9		ug/kg dry	10.40	7.20	1						
	ane	10.0		pg/kg di y	10.0	7.00							
124-48-1	Dibromochloromethane	< 5.46		µg/kg dry	5.46	3.70	1		"	"		"	
106-93-4	1,2-Dibromoethane (EDB)	< 5.46		µg/kg dry	5.46	3.67	1			"		"	
74-95-3	Dibromomethane	< 5.46		µg/kg dry	5.46	2.84	1			"		"	
95-50-1	1,2-Dichlorobenzene	< 5.46		µg/kg dry	5.46	1.42	1			"		"	
541-73-1	1,3-Dichlorobenzene	< 5.46		µg/kg dry	5.46	1.19	1			"		"	
106-46-7	1,4-Dichlorobenzene	< 5.46		µg/kg dry	5.46	1.62	1			"		"	
75-71-8	Dichlorodifluoromethane (Freon12)	< 10.9		µg/kg dry	10.9	2.07	1	"	"	"	"	"	
75-34-3	1,1-Dichloroethane	< 5.46		µg/kg dry	5.46	1.43	1			"		"	
107-06-2	1,2-Dichloroethane	< 5.46		µg/kg dry	5.46	1.96	1			"		"	
75-35-4	1,1-Dichloroethene	< 5.46		µg/kg dry	5.46	2.86	1			"		"	
156-59-2	cis-1,2-Dichloroethene	< 5.46		µg/kg dry	5.46	2.03	1			"		"	
156-60-5	trans-1,2-Dichloroethene	< 5.46		µg/kg dry	5.46	2.90	1	"	"	"	"	"	
78-87-5	1,2-Dichloropropane	< 5.46		µg/kg dry	5.46	2.86	1		"	"	"		
142-28-9	1,3-Dichloropropane	< 5.46		µg/kg dry	5.46	2.83	1	"	"	"			
594-20-7	2,2-Dichloropropane	< 5.46		µg/kg dry	5.46	2.58	1	"	"	"			
563-58-6	1,1-Dichloropropene	< 5.46		µg/kg dry	5.46	1.76	1	"	"	"			
10061-01-5	cis-1,3-Dichloropropene	< 5.46		µg/kg dry	5.46	3.29	1	"		"	"		
10061-02-6	trans-1,3-Dichloropropene	< 5.46		µg/kg dry	5.46	2.87	1	"	"				

Sample Id	entification		Client D	Project #		Matrix	Call	action Data	/Time	Pa	caived	
GP-06 (3-	5)		<u>Chent 1</u>	<u>10ject #</u> 84		Soil	26	May 17 1	2.10	31	May 17	
SC35241-	04		90	04		5011	20	-wiay-1/12	2.10	51-1	viay-17	
CAS No.	Analyte(s)	Result Fl	ag Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	ganic Compounds											
Volatile O	rganic Compounds by SW	<u>846 8260</u>										
					<u>Init</u>	ial weight:	<u>5.39 g</u>					
100-41-4	Ethylbenzene	< 5.46	µg/kg dry	5.46	0.79	1	SW846 8260C	01-Jun-17	01-Jun-17	MP	1709058	\$
87-68-3	Hexachlorobutadiene	< 5.46	µg/kg dry	5.46	2.74	1		"	"	"	"	
591-78-6	2-Hexanone (MBK)	< 10.9	µg/kg dry	10.9	6.70	1		"	"	"	"	
98-82-8	Isopropylbenzene	< 5.46	µg/kg dry	5.46	1.08	1		"	"	"	"	
99-87-6	4-Isopropyltoluene	< 5.46	µg/kg dry	5.46	1.17	1		"	"	"	"	
1634-04-4	Methyl tert-butyl ether	< 5.46	µg/kg dry	5.46	2.01	1		"	"	"	"	
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.9	µg/kg dry	10.9	2.81	1	п	"	"		"	
75-09-2	Methylene chloride	< 10.9	µg/kg dry	10.9	2.17	1		"	"	"	"	
91-20-3	Naphthalene	< 5.46	µg/kg dry	5.46	3.25	1		"	"	"	"	
103-65-1	n-Propylbenzene	< 5.46	µg/kg dry	5.46	0.89	1		"	"	"	"	
100-42-5	Styrene	< 5.46	µg/kg dry	5.46	1.10	1		"	"	"		
630-20-6	1,1,1,2-Tetrachloroethane	< 5.46	µg/kg dry	5.46	4.64	1			"	"	"	
79-34-5	1,1,2,2-Tetrachloroethane	< 5.46	µg/kg dry	5.46	4.62	1			"	"	"	
127-18-4	Tetrachloroethene	< 5.46	µg/kg dry	5.46	1.87	1		"	"	"		
108-88-3	Toluene	< 5.46	µg/kg dry	5.46	1.77	1		"	"	"	"	
87-61-6	1,2,3-Trichlorobenzene	< 5.46	µg/kg dry	5.46	1.92	1		"	"	"	"	
120-82-1	1,2,4-Trichlorobenzene	< 5.46	µg/kg dry	5.46	4.03	1		"	"	"	"	
108-70-3	1,3,5-Trichlorobenzene	< 5.46	µg/kg dry	5.46	1.72	1		"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 5.46	µg/kg dry	5.46	1.81	1				"	"	
79-00-5	1,1,2-Trichloroethane	< 5.46	µg/kg dry	5.46	3.96	1				"	"	
79-01-6	Trichloroethene	< 5.46	µg/kg dry	5.46	1.49	1				"	"	
75-69-4	Trichlorofluoromethane (Freon 11)	< 5.46	µg/kg dry	5.46	2.95	1	u	"	"	"	"	
96-18-4	1,2,3-Trichloropropane	< 5.46	µg/kg dry	5.46	4.10	1			"	"		
95-63-6	1,2,4-Trimethylbenzene	< 5.46	µg/kg dry	5.46	1.33	1			"	"		
108-67-8	1,3,5-Trimethylbenzene	< 5.46	µg/kg dry	5.46	0.94	1			"	"	"	
75-01-4	Vinyl chloride	< 5.46	µg/kg dry	5.46	1.85	1			"		"	
179601-23-1	m,p-Xylene	< 10.9	µg/kg dry	10.9	0.98	1			"		"	
95-47-6	o-Xylene	< 5.46	µg/kg dry	5.46	1.53	1			"		"	
109-99-9	Tetrahydrofuran	< 10.9	µg/kg dry	10.9	8.61	1			"	"		
60-29-7	Ethyl ether	< 5.46	µg/kg dry	5.46	4.95	1				"	"	
994-05-8	Tert-amyl methyl ether	< 5.46	µg/kg dry	5.46	1.83	1				"	"	
637-92-3	Ethyl tert-butyl ether	< 5.46	µg/kg dry	5.46	2.95	1				"	"	
108-20-3	Di-isopropyl ether	< 5.46	µg/kg dry	5.46	1.02	1				"	"	
75-65-0	Tert-Butanol / butyl alcohol	< 54.6	µg/kg dry	54.6	35.8	1			"	"		
123-91-1	1,4-Dioxane	< 109	µg/kg dry	109	94.9	1			"	"		
110-57-6	trans-1,4-Dichloro-2-buten	< 27.3	µg/kg dry	27.3	12.5	1	"	"	"	"	"	
64-17-5	Ethanol	< 1090	µg/kg dry	1090	204	1	"	"				
Surrogate i	ecoveries:											
460-00-4	4-Bromofluorobenzene	92		70-13	80 %		"			"	"	
2037-26-5	Toluene-d8	100		70-13	80 %		"	"		"	"	
17060-07-0	1,2-Dichloroethane-d4	117		70-13	80 %		"	"		"	"	
1868-53-7	Dibromofluoromethane	108		70-13	80 %		"			"	"	

Sample Ic	dentification		Client P	Project #		Matrix	Coll	ection Date	/Time	Re	ceived	
GP-06 (3-	-5)		<u>Chent 1</u> 06	<u>10ject #</u> 94		Soil	<u> </u>	May 17 1'	$\frac{7100}{2.10}$	31	May 17	
SC35241	-04		90	04		5011	20	-1v1ay-1 / 12	2.10	51-1	viay-17	
CAS No.	Analyte(s)	Result Fla	ig Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by (GC										
Polychlori	inated Biphenyls											
Prepared	by method SW846 3546											
12674-11-2	Aroclor-1016	< 21.6	µg/kg dry	21.6	9.66	1	SW846 8082A	01-Jun-17	01-Jun-17	IMR	1709052	
11104-28-2	Aroclor-1221	< 21.6	µg/kg dry	21.6	11.5	1		"	"	"	"	
11141-16-5	Aroclor-1232	< 21.6	µg/kg dry	21.6	10.8	1			"		"	
53469-21-9	Aroclor-1242	< 21.6	µg/kg dry	21.6	21.3	1			"		"	
12672-29-6	Aroclor-1248	< 21.6	µg/kg dry	21.6	19.7	1	"		"	"	"	
11097-69-1	Aroclor-1254	< 21.6	µg/kg dry	21.6	14.1	1			"		"	
11096-82-5	Aroclor-1260	< 21.6	µg/kg dry	21.6	11.5	1			"		"	
37324-23-5	Aroclor-1262	< 21.6	µg/kg dry	21.6	18.8	1		"	"	"	"	
11100-14-4	Aroclor-1268	< 21.6	µg/kg dry	21.6	9.72	1	"	"	"	"		
Surrogate	recoveries:											
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	80		30-15	50 %		n	"	"		"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90		30-18	50 %		"	"	"		"	
2051-24-3	Decachlorobiphenyl (Sr)	105		30-15	50 %				"		"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	120		30-15	50 %		"	"	"		"	
Extractab	le Petroleum Hydrocarbons											
MADEP E	<u>EPH</u>											
<u>Prepared</u>	by method SW846 3546											
	C9-C18 Aliphatic Hydrocarbons	< 10.8	mg/kg dry	10.8	1.51	1	MADEP EPH 5/2004 R	01-Jun-17	04-Jun-17	SM	1709048	i
	C19-C36 Aliphatic Hydrocarbons	< 10.8	mg/kg dry	10.8	1.53	1	"	"	u	"	"	
	C11-C22 Aromatic Hydrocarbons	< 10.8	mg/kg dry	10.8	5.15	1	"	"	u	"	"	
	Unadjusted C11-C22 Aromatic Hydrocarbons	< 10.8	mg/kg dry	10.8	5.15	1	"	"	"		"	
91-20-3	Naphthalene	< 0.360	mg/kg dry	0.360	0.320	1			"		"	
91-57-6	2-Methylnaphthalene	< 0.360	mg/kg dry	0.360	0.309	1			"		"	
208-96-8	Acenaphthylene	< 0.360	mg/kg dry	0.360	0.143	1			"		"	
83-32-9	Acenaphthene	< 0.360	mg/kg dry	0.360	0.357	1			"		"	
86-73-7	Fluorene	< 0.360	mg/kg dry	0.360	0.323	1	"	"	"		"	
85-01-8	Phenanthrene	< 0.360	mg/kg dry	0.360	0.311	1	"	"	"		"	
120-12-7	Anthracene	< 0.360	mg/kg dry	0.360	0.309	1			"	"	"	
206-44-0	Fluoranthene	< 0.360	mg/kg dry	0.360	0.136	1			"		"	
129-00-0	Pyrene	< 0.360	mg/kg dry	0.360	0.138	1			"		"	
56-55-3	Benzo (a) anthracene	< 0.360	mg/kg dry	0.360	0.342	1			"		"	
218-01-9	Chrysene	< 0.360	mg/kg dry	0.360	0.341	1			"		"	
205-99-2	Benzo (b) fluoranthene	< 0.360	mg/kg dry	0.360	0.296	1			"		"	
207-08-9	Benzo (k) fluoranthene	< 0.360	mg/kg dry	0.360	0.189	1	"	"	"	"	"	
50-32-8	Benzo (a) pyrene	< 0.360	mg/kg dry	0.360	0.322	1	"	"	"	"	"	
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.360	mg/kg dry	0.360	0.240	1	"		"		"	
53-70-3	Dibenzo (a,h) anthracene	< 0.360	mg/kg dry	0.360	0.230	1	"		"		"	
191-24-2	Benzo (g,h,i) perylene	< 0.360	mg/kg dry	0.360	0.236	1	"	"	"	"	"	
Surrogate	recoveries:											
3386-33-2	1-Chlorooctadecane	102		40-14	40 %				"			

Sample Io	dentification						Mari	C. 11		/ T	D		
GP-06 (3	-5)			Client P	<u>roject #</u>		Matrix		ection Date	<u>/11me</u>	<u>Ke</u>	ceived	
SC35241	-04			968	84		Soil	26	-May-17 12	2:10	31-1	May-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Extractab	le Petroleum Hydrocarl	bons											
MADEP E	<u>PH</u>												
84-15-1	Ortho-Terphenyl	75			40-14	0 %		MADEP EPH 5/2004 R	01-Jun-17	04-Jun-17	SM	1709048	
321-60-8	2-Fluorobiphenyl	67			40-14	0 %			"	"	"		
Total Met	als by EPA 6000/7000 Se	eries Methods											
Prepared	by method SW846 30	<u>51A</u>											
7440-22-4	Silver	< 1.54		mg/kg dry	1.54	0.167	1	SW846 6010C	01-Jun-17	01-Jun-17	EDT	1709087	
7440-38-2	Arsenic	2.85		mg/kg dry	1.54	0.195	1		"	"	"		
7440-39-3	Barium	27.1		mg/kg dry	1.03	0.121	1			02-Jun-17	"		
7440-43-9	Cadmium	1.31		mg/kg dry	0.514	0.0266	1			01-Jun-17	"		
7440-47-3	Chromium	14.4		mg/kg dry	1.03	0.137	1				"		
7439-97-6	Mercury	< 0.0310		mg/kg dry	0.0310	0.0086	1	SW846 7471B	"	01-Jun-17	LNB	1709088	
Prepared	by method SW846 30	<u>51A</u>											
7439-92-1	Lead	3.36		mg/kg dry	1.54	0.218	1	SW846 6010C		01-Jun-17	EDT	1709087	
7782-49-2	Selenium	< 1.54		mg/kg dry	1.54	0.294	1				"		
General C	Chemistry Parameters												
	% Solids	92.1		%			1	SM2540 G (11) Mod.	01-Jun-17	01-Jun-17	CMB	1709082	

Sample Id GP-07 (3-	lentification -5)			Client P	roject #		<u>Matrix</u>	Colle	ection Date	/Time	Rec	<u>ceived</u>	
SC35241-	.05			968	84		Soil	26	-May-17 12	2:50	31-1	/lay-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds by method Volatiles												
<u> </u>	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1709054	
Volatile O	rganic Compounds by SW	846 8260											
Prepared	by method SW846 5035A	Soil (low level)				<u>Init</u>	ial weight:	<u>5.06 g</u>				1700050	
76-13-1	ne (Freon 113)	< 6.83		µg/kg ary	6.83	3.46	1	SVV846 8260C	01-Jun-17	01-Jun-17	MP	1709058	
67-64-1	Acetone	< 68.3		µg/kg dry	68.3	27.3	1	"	"			"	
107-13-1	Acrylonitrile	< 6.83		µg/kg dry	6.83	6.56	1			"	"	"	
71-43-2	Benzene	< 6.83		µg/kg dry	6.83	1.81	1			"	"	"	
108-86-1	Bromobenzene	< 6.83		µg/kg dry	6.83	1.82	1		"		"	"	
74-97-5	Bromochloromethane	< 6.83		µg/kg dry	6.83	3.45	1			"	"	"	
75-27-4	Bromodichloromethane	< 6.83		µg/kg dry	6.83	4.55	1			"	"	"	
75-25-2	Bromoform	< 6.83		µg/kg dry	6.83	6.51	1			"	"	"	
74-83-9	Bromomethane	< 13.7		µg/kg dry	13.7	6.16	1		"	"		"	
78-93-3	2-Butanone (MEK)	< 13.7		µg/kg dry	13.7	12.2	1					"	
104-51-8	n-Butylbenzene	< 6.83		µg/kg dry	6.83	1.95	1					"	
135-98-8	sec-Butylbenzene	< 6.83		µg/kg dry	6.83	1.24	1			"		"	
98-06-6	tert-Butylbenzene	< 6.83		µg/kg dry	6.83	1.53	1			"		"	
75-15-0	Carbon disulfide	< 13.7		µg/kg dry	13.7	4.37	1			"		"	
56-23-5	Carbon tetrachloride	< 6.83		µg/kg dry	6.83	5.58	1			"		"	
108-90-7	Chlorobenzene	< 6.83		µg/kg dry	6.83	2.14	1			"		"	
75-00-3	Chloroethane	< 13.7		µg/kg dry	13.7	3.79	1		"	"	"	"	
67-66-3	Chloroform	< 6.83		µg/kg dry	6.83	3.67	1					"	
74-87-3	Chloromethane	< 13.7		µg/kg dry	13.7	2.82	1					"	
95-49-8	2-Chlorotoluene	< 6.83		µg/kg dry	6.83	1.70	1					"	
106-43-4	4-Chlorotoluene	< 6.83		µg/kg dry	6.83	1.60	1					"	
96-12-8	1,2-Dibromo-3-chloroprop ane	< 13.7		µg/kg dry	13.7	9.86	1	"	"	"	"	"	
124-48-1	Dibromochloromethane	< 6.83		µg/kg dry	6.83	4.63	1					"	
106-93-4	1,2-Dibromoethane (EDB)	< 6.83		µg/kg dry	6.83	4.58	1					"	
74-95-3	Dibromomethane	< 6.83		µg/kg dry	6.83	3.55	1		"	"	"	"	
95-50-1	1,2-Dichlorobenzene	< 6.83		µg/kg dry	6.83	1.77	1					"	
541-73-1	1,3-Dichlorobenzene	< 6.83		µg/kg dry	6.83	1.48	1					"	
106-46-7	1,4-Dichlorobenzene	< 6.83		µg/kg dry	6.83	2.02	1					"	
75-71-8	Dichlorodifluoromethane (Freon12)	< 13.7		µg/kg dry	13.7	2.59	1	"	"	"	"	"	
75-34-3	1,1-Dichloroethane	< 6.83		µg/kg dry	6.83	1.79	1			"		"	
107-06-2	1,2-Dichloroethane	< 6.83		µg/kg dry	6.83	2.44	1					"	
75-35-4	1,1-Dichloroethene	< 6.83		µg/kg dry	6.83	3.57	1					"	
156-59-2	cis-1,2-Dichloroethene	< 6.83		µg/kg dry	6.83	2.53	1		"	"	"	"	
156-60-5	trans-1,2-Dichloroethene	< 6.83		µg/kg dry	6.83	3.62	1	"	"		"	"	
78-87-5	1,2-Dichloropropane	< 6.83		µg/kg dry	6.83	3.58	1	"	"			"	
142-28-9	1,3-Dichloropropane	< 6.83		µg/kg dry	6.83	3.54	1	"	"			"	
594-20-7	2,2-Dichloropropane	< 6.83		µg/kg dry	6.83	3.22	1	"	"			"	
563-58-6	1,1-Dichloropropene	< 6.83		µg/kg dry	6.83	2.20	1	"	"			"	
10061-01-5	cis-1,3-Dichloropropene	< 6.83		µg/kg dry	6.83	4.12	1	"	"			"	
10061-02-6	trans-1,3-Dichloropropene	< 6.83		µg/kg dry	6.83	3.58	1	"	"		"	"	

Sample Id	entification		Client D	Project #		Matrix	Call	action Data	/Time	Pa	caived	
GP-07 (3-	5)		<u>Chent 1</u> 06	<u>10jeet #</u> 84		Soil	26	-May-17 12	2.50	31_N	May_17	
SC35241-	05		70	04		5011	20	-1 v1 ay-17 12	2.50	51-1	viay-17	
CAS No.	Analyte(s)	Result Flag	g Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds											
Volatile O	rganic Compounds by SW	<u>846 8260</u>										
100 11 1					<u>Init</u>	ial weight:	<u>5.06 g</u>					
100-41-4	Ethylbenzene	< 6.83	µg/kg dry	6.83	0.98	1	SW846 8260C	01-Jun-17	01-Jun-17	MP "	1709058	
87-68-3	Hexachlorobutadiene	< 6.83	µg/kg dry	6.83	3.43	1						
591-78-6	2-Hexanone (MBK)	< 13.7	µg/kg dry	13.7	8.38	1						
90-02-0	Isopropyipenzene	< 6.83	µg/kg ary	6.83	1.34	1						
99-87-6	4-Isopropyltoluene	< 6.83	µg/kg dry	6.83	1.47	1						
1634-04-4	Methyl tert-butyl ether	< 6.83	µg/kg dry	6.83	2.51	1						
108-10-1	4-Methyl-2-pentanone (MIBK)	< 13.7	µg∕kg dry	13.7	3.51	1	·					
75-09-2	Methylene chloride	< 13.7	µg/kg dry	13.7	2.71	1		"	"	"	"	
91-20-3	Naphthalene	< 6.83	µg/kg dry	6.83	4.06	1		"	"	"	"	
103-65-1	n-Propylbenzene	< 6.83	µg/kg dry	6.83	1.11	1		"	"	"	"	
100-42-5	Styrene	< 6.83	µg/kg dry	6.83	1.37	1		"	"		"	
630-20-6	1,1,1,2-Tetrachloroethane	< 6.83	µg/kg dry	6.83	5.80	1		"	"	"		
79-34-5	1,1,2,2-Tetrachloroethane	< 6.83	µg/kg dry	6.83	5.77	1		"	"		"	
127-18-4	Tetrachloroethene	< 6.83	µg/kg dry	6.83	2.33	1		"	"		"	
108-88-3	Toluene	< 6.83	µg/kg dry	6.83	2.21	1		"	"	"	"	
87-61-6	1,2,3-Trichlorobenzene	< 6.83	µg/kg dry	6.83	2.40	1		"	"	"	"	
120-82-1	1,2,4-Trichlorobenzene	< 6.83	µg/kg dry	6.83	5.03	1		"	"	"	"	
108-70-3	1,3,5-Trichlorobenzene	< 6.83	µg/kg dry	6.83	2.14	1		"	"	"		
71-55-6	1,1,1-Trichloroethane	< 6.83	µg/kg dry	6.83	2.27	1			"	"	"	
79-00-5	1,1,2-Trichloroethane	< 6.83	µg/kg dry	6.83	4.95	1			"	"	"	
79-01-6	Trichloroethene	< 6.83	µg/kg dry	6.83	1.86	1			"	"	"	
75-69-4	Trichlorofluoromethane (Freon 11)	7.51	µg/kg dry	6.83	3.68	1	u	"	"		"	
96-18-4	1,2,3-Trichloropropane	< 6.83	µg/kg dry	6.83	5.12	1			"	"		
95-63-6	1,2,4-Trimethylbenzene	< 6.83	µg/kg dry	6.83	1.66	1			"	"		
108-67-8	1,3,5-Trimethylbenzene	< 6.83	µg/kg dry	6.83	1.17	1			"	"	"	
75-01-4	Vinyl chloride	< 6.83	µg/kg dry	6.83	2.31	1			"	"	"	
179601-23-1	m,p-Xylene	< 13.7	µg/kg dry	13.7	1.23	1			"	"	"	
95-47-6	o-Xylene	< 6.83	µg/kg dry	6.83	1.91	1			"	"	"	
109-99-9	Tetrahydrofuran	< 13.7	µg/kg dry	13.7	10.8	1			"	"	"	
60-29-7	Ethyl ether	< 6.83	µg/kg dry	6.83	6.18	1			"	"	"	
994-05-8	Tert-amyl methyl ether	< 6.83	µg/kg dry	6.83	2.28	1			"	"	"	
637-92-3	Ethyl tert-butyl ether	< 6.83	µg/kg dry	6.83	3.68	1			"	"	"	
108-20-3	Di-isopropyl ether	< 6.83	µg/kg dry	6.83	1.27	1			"	"	"	
75-65-0	Tert-Butanol / butyl alcohol	< 68.3	µg/kg dry	68.3	44.7	1			"	"	"	
123-91-1	1,4-Dioxane	< 137	µg/kg dry	137	119	1			"			
110-57-6	trans-1,4-Dichloro-2-buten	< 34.1	µg/kg dry	34.1	15.6	1	"	"			"	
64-17-5	e Ethanol	< 1370	µg/kg dry	1370	255	1	u	"	"		"	
Surrogate i	ecoveries:											
460-00-4	4-Bromofluorobenzene	87		70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	100		70-13	0 %		"	"		"	"	
17060-07-0	1,2-Dichloroethane-d4	117		70-13	0 %		"	"		"	"	
1868-53-7	Dibromofluoromethane	109		70-13	0 %		"	"	"	"	"	

Sample Io	dentification		Client I	Project #		Matrix	Coll	ection Date	/Time	Re	ceived	
GP-07 (3	-5)		<u>enent 1</u> 06	<u>10jeet #</u>		Soil	26	$-Max - 17.1^{\circ}$	2·50	31_1	May_17	
SC35241	-05		Л	-04		5011	20	-1v1ay-1 / 12	2.50	51-1	viay=17	
CAS No.	Analyte(s)	Result Fla	ag Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by (GC										
Polychlor	inated Biphenyls											
Prepared	by method SW846 3546											
12674-11-2	Aroclor-1016	< 23.6	µg/kg dry	23.6	10.6	1	SW846 8082A	01-Jun-17	01-Jun-17	IMR	1709052	
11104-28-2	Aroclor-1221	< 23.6	µg/kg dry	23.6	12.6	1		"	"	"	"	
11141-16-5	Aroclor-1232	< 23.6	µg/kg dry	23.6	11.8	1	"		"		"	
53469-21-9	Aroclor-1242	< 23.6	µg/kg dry	23.6	23.3	1	"		"		"	
12672-29-6	Aroclor-1248	< 23.6	µg/kg dry	23.6	21.6	1	"		"	"	"	
11097-69-1	Aroclor-1254	< 23.6	µg/kg dry	23.6	15.5	1	"		"		"	
11096-82-5	Aroclor-1260	< 23.6	µg/kg dry	23.6	12.7	1	"		"	"	"	
37324-23-5	Aroclor-1262	< 23.6	µg/kg dry	23.6	20.6	1		"	"	"	"	
11100-14-4	Aroclor-1268	< 23.6	µg/kg dry	23.6	10.7	1	"	"	"	"		
Surrogate	recoveries:											
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85		30-15	50 %		"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90		30-18	50 %		"	"	"		"	
2051-24-3	Decachlorobiphenyl (Sr)	130		30-15	50 %				"		"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110		30-15	50 %		"	"	"		"	
Extractab	le Petroleum Hydrocarbons											
MADEP E	<u>EPH</u>											
<u>Prepared</u>	by method SW846 3546											
	C9-C18 Aliphatic Hydrocarbons	< 11.7	mg/kg dry	11.7	1.63	1	MADEP EPH 5/2004 R	01-Jun-17	04-Jun-17	SM	1709048	
	C19-C36 Aliphatic Hydrocarbons	< 11.7	mg/kg dry	11.7	1.65	1	"	"	"	"	"	
	C11-C22 Aromatic Hydrocarbons	< 11.7	mg/kg dry	11.7	5.57	1	"	"	"	"	"	
	Unadjusted C11-C22 Aromatic Hydrocarbons	< 11.7	mg/kg dry	11.7	5.57	1	n	"	"		"	
91-20-3	Naphthalene	< 0.389	mg/kg dry	0.389	0.346	1			"		"	
91-57-6	2-Methylnaphthalene	< 0.389	mg/kg dry	0.389	0.334	1			"		"	
208-96-8	Acenaphthylene	< 0.389	mg/kg dry	0.389	0.154	1			"		"	
83-32-9	Acenaphthene	< 0.389	mg/kg dry	0.389	0.386	1			"		"	
86-73-7	Fluorene	< 0.389	mg/kg dry	0.389	0.349	1		"	"		"	
85-01-8	Phenanthrene	< 0.389	mg/kg dry	0.389	0.336	1		"	"	"	"	
120-12-7	Anthracene	< 0.389	mg/kg dry	0.389	0.334	1			"	"	"	
206-44-0	Fluoranthene	< 0.389	mg/kg dry	0.389	0.147	1			"		"	
129-00-0	Pyrene	< 0.389	mg/kg dry	0.389	0.150	1			"		"	
56-55-3	Benzo (a) anthracene	< 0.389	mg/kg dry	0.389	0.369	1			"		"	
218-01-9	Chrysene	< 0.389	mg/kg dry	0.389	0.368	1		"	"	"	"	
205-99-2	Benzo (b) fluoranthene	< 0.389	mg/kg dry	0.389	0.320	1			"		"	
207-08-9	Benzo (k) fluoranthene	< 0.389	mg/kg dry	0.389	0.204	1	"	"	"	"	"	
50-32-8	Benzo (a) pyrene	< 0.389	mg/kg dry	0.389	0.348	1	"	"	"	"	"	
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.389	mg/kg dry	0.389	0.259	1	"	"	"	"	"	
53-70-3	Dibenzo (a,h) anthracene	< 0.389	mg/kg dry	0.389	0.249	1		"	"	"	"	
191-24-2	Benzo (g,h,i) perylene	< 0.389	mg/kg dry	0.389	0.255	1	"	"	"	"	"	
Surrogate	recoveries:											
3386-33-2	1-Chlorooctadecane	116		40-14	40 %		"		"		"	

Sample Id	<u>dentification</u>			Client P	roject #		Matrix	Colle	ection Date	/Time	Re	ceived	
GP-07 (3	-5)			968	84		Soil	26	-May-17 12	2:50	31-1	Mav-17	
SC35241	-05												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Extractab	le Petroleum Hydrocar	bons											
MADEP E	<u>PH</u>												
84-15-1	Ortho-Terphenyl	72			40-14	0 %		MADEP EPH 5/2004 R	01-Jun-17	04-Jun-17	SM	1709048	
321-60-8	2-Fluorobiphenyl	44			40-14	0 %			"		"		
Total Meta Prepared	als by EPA 6000/7000 Solution by method SW846 30	eries Methods <u>51A</u>											
7440-22-4	Silver	< 1.69		mg/kg dry	1.69	0.183	1	SW846 6010C	01-Jun-17	01-Jun-17	EDT	1709087	
7440-38-2	Arsenic	9.99		mg/kg dry	1.69	0.214	1		"		"		
7440-39-3	Barium	33.1		mg/kg dry	1.13	0.133	1		"	02-Jun-17	"		
7440-43-9	Cadmium	2.08		mg/kg dry	0.564	0.0292	1		"	01-Jun-17	"		
7440-47-3	Chromium	13.2		mg/kg dry	1.13	0.150	1		"		"		
7439-97-6	Mercury	0.0726		mg/kg dry	0.0317	0.0088	1	SW846 7471B	"	01-Jun-17	LNB	1709088	
Prepared	by method SW846 30	<u>51A</u>											
7439-92-1	Lead	40.3		mg/kg dry	1.69	0.239	1	SW846 6010C	"	01-Jun-17	EDT	1709087	
7782-49-2	Selenium	< 1.69		mg/kg dry	1.69	0.323	1		"		"		
General C	Chemistry Parameters												
	% Solids	84.1		%			1	SM2540 G (11) Mod.	01-Jun-17	01-Jun-17	CMB	1709082	

					a ''	<i>a</i>		ANDEG		
Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
MADEP VPH 5/2004 Rev. 1.1										
Batch 1709064 - VPH - EPA 5035A Soil										
Blank (1709064-BLK1)					Pre	epared & Ai	nalyzed: 01.	Jun-17		
C5-C8 Aliphatic Hydrocarbons	< 0.750	D	mg/kg wet	0.750						
C9-C12 Aliphatic Hydrocarbons	< 0.250	D	mg/kg wet	0.250						
C9-C10 Aromatic Hydrocarbons	< 0.250	D	mg/kg wet	0.250						
Unadjusted C5-C8 Aliphatic Hydrocarbons	< 0.750	D	mg/kg wet	0.750						
Unadjusted C9-C12 Aliphatic Hydrocarbons	< 0.250	D	mg/kg wet	0.250						
Benzene	< 0.0500	D	mg/kg wet	0.0500						
Ethylbenzene	< 0.0500	D	mg/kg wet	0.0500						
Methyl tert-butyl ether	< 0.0500	D	mg/kg wet	0.0500						
Naphthalene	< 0.0500	D	mg/kg wet	0.0500						
Toluene	< 0.0500	D	mg/kg wet	0.0500						
m,p-Xylene	< 0.100	D	mg/kg wet	0.100						
o-Xylene	< 0.0500	D	mg/kg wet	0.0500						
2-Methylpentane	< 0.0500	D	mg/kg wet	0.0500						
n-Nonane	< 0.100	D	mg/kg wet	0.100						
n-Pentane	< 0.100	D	mg/kg wet	0.100						
1,2,4-Trimethylbenzene	< 0.0500	D	mg/kg wet	0.0500						
2,2,4-Trimethylpentane	< 0.0500	D	mg/kg wet	0.0500						
n-Butylcyclohexane	< 0.0500	D	mg/kg wet	0.0500						
n-Decane	< 0.0500	D	mg/kg wet	0.0500						
Surrogate: 2,5-Dibromotoluene (FID)	49.6		µg/kg		50.0		99	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	49.4		µg/kg		50.0		99	70-130		
LCS (1709064-BS1)					Pre	epared & Ai	nalyzed: 01.	Jun-17		
C5-C8 Aliphatic Hydrocarbons	57.5	D	µg/kg		60.0		96	70-130		
C9-C12 Aliphatic Hydrocarbons	57.4	D	µg/kg		60.0		96	70-130		
C9-C10 Aromatic Hydrocarbons	20.5	D	µg/kg		20.0		102	70-130		
Unadjusted C5-C8 Aliphatic Hydrocarbons	197	D	µg/kg		200		98	70-130		
Unadjusted C9-C12 Aliphatic Hydrocarbons	77.8	D	µg/kg		80.0		97	70-130		
Benzene	19.4	D	µg/kg		20.0		97	70-130		
Ethylbenzene	19.9	D	µg/kg		20.0		99	70-130		
Methyl tert-butyl ether	19.3	D	µg/kg		20.0		97	70-130		
Naphthalene	19.1	D	µg/kg		20.0		96	70-130		
Toluene	19.6	D	µg/kg		20.0		98	70-130		
m,p-Xylene	40.9	D	µg/kg		40.0		102	70-130		
o-Xylene	20.2	D	µg/kg		20.0		101	70-130		
2-Methylpentane	16.7	D	µg/kg		20.0		83	70-130		
n-Nonane	16.1	D	µg/kg		20.0		81	70-130		
n-Pentane	17.6	D	µg/kg		20.0		88	70-130		
1,2,4-Trimethylbenzene	20.5	D	µg/kg		20.0		102	70-130		
2,2,4-Trimethylpentane	17.7	D	µg/kg		20.0		88	70-130		
n-Butylcyclohexane	17.1	D	µg/kg		20.0		86	70-130		
n-Decane	16.4	D	µg/kg		20.0		82	70-130		
Surrogate: 2,5-Dibromotoluene (FID)	48.8		µg/kg		50.0		98	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	50.8		µg/kg		50.0		102	70-130		
LCS Dup (1709064-BSD1)			-		Pre	epared & Ai	nalyzed: 01-	Jun-17		
C5-C8 Aliphatic Hydrocarbons	58.1	D	µg/ka		60.0		97	70-130	0.9	25
C9-C12 Aliphatic Hydrocarbons	72.1	D	µg/ka		60.0		120	70-130	23	25
C9-C10 Aromatic Hydrocarbons	20.9	D	μg/kg		20.0		104	70-130	2	25
Unadjusted C5-C8 Aliphatic Hydrocarbons	201	D	µg/ka		200		100	70-130	2	25

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>MADEP VPH 5/2004 Rev. 1.1</u>										
Batch 1709064 - VPH - EPA 5035A Soil										
LCS Dup (1709064-BSD1)					Pre	epared & Ar	nalyzed: 01-	-Jun-17		
Unadjusted C9-C12 Aliphatic Hydrocarbons	93.0	D	µg/kg		80.0		116	70-130	18	25
Benzene	19.7	D	µg/kg		20.0		99	70-130	2	25
Ethylbenzene	20.6	D	µg/kg		20.0		103	70-130	4	25
Methyl tert-butyl ether	19.7	D	µg/kg		20.0		98	70-130	2	25
Naphthalene	20.0	D	µg/kg		20.0		100	70-130	5	25
Toluene	20.2	D	µg/kg		20.0		101	70-130	3	25
m,p-Xylene	41.6	D	µg/kg		40.0		104	70-130	2	25
o-Xylene	20.8	D	µg/kg		20.0		104	70-130	3	25
2-Methylpentane	18.5	D	µg/kg		20.0		93	70-130	10	25
n-Nonane	20.1	D	µg/kg		20.0		101	70-130	22	25
n-Pentane	19.7	D	µg/kg		20.0		98	70-130	11	25
1,2,4-Trimethylbenzene	20.9	D	µg/kg		20.0		104	70-130	2	25
2,2,4-Trimethylpentane	19.6	D	µg/kg		20.0		98	70-130	11	25
n-Butylcyclohexane	21.3	D	µg/kg		20.0		107	70-130	22	25
n-Decane	24.2	QR9, D	µg/kg		20.0		121	70-130	38	25
Surrogate: 2,5-Dibromotoluene (FID)	53.7		µg/kg		50.0		107	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	54.9		µg/kg		50.0		110	70-130		

SW846 8260C

Batch 1709058 - SW846 5035A Soil (low level)

Blank (1709058-BLK1)

<u> </u>				
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 5.00	µg/kg wet	5.00	
Acetone	< 50.0	µg/kg wet	50.0	
Acrylonitrile	< 5.00	µg/kg wet	5.00	
Benzene	< 5.00	µg/kg wet	5.00	
Bromobenzene	< 5.00	µg/kg wet	5.00	
Bromochloromethane	< 5.00	µg/kg wet	5.00	
Bromodichloromethane	< 5.00	µg/kg wet	5.00	
Bromoform	< 5.00	µg/kg wet	5.00	
Bromomethane	< 10.0	µg/kg wet	10.0	
2-Butanone (MEK)	< 10.0	µg/kg wet	10.0	
n-Butylbenzene	< 5.00	µg/kg wet	5.00	
sec-Butylbenzene	< 5.00	µg/kg wet	5.00	
tert-Butylbenzene	< 5.00	µg/kg wet	5.00	
Carbon disulfide	< 10.0	µg/kg wet	10.0	
Carbon tetrachloride	< 5.00	µg/kg wet	5.00	
Chlorobenzene	< 5.00	µg/kg wet	5.00	
Chloroethane	< 10.0	µg/kg wet	10.0	
Chloroform	< 5.00	µg/kg wet	5.00	
Chloromethane	< 10.0	µg/kg wet	10.0	
2-Chlorotoluene	< 5.00	µg/kg wet	5.00	
4-Chlorotoluene	< 5.00	µg/kg wet	5.00	
1,2-Dibromo-3-chloropropane	< 10.0	µg/kg wet	10.0	
Dibromochloromethane	< 5.00	µg/kg wet	5.00	
1,2-Dibromoethane (EDB)	< 5.00	µg/kg wet	5.00	
Dibromomethane	< 5.00	µg/kg wet	5.00	
1,2-Dichlorobenzene	< 5.00	µg/kg wet	5.00	
1,3-Dichlorobenzene	< 5.00	µg/kg wet	5.00	
1,4-Dichlorobenzene	< 5.00	µg/kg wet	5.00	
Dichlorodifluoromethane (Freon12)	< 10.0	µg/kg wet	10.0	

Prepared & Analyzed: 01-Jun-17

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C		-								
3atch 1709058 - SW846 5035A Soil (low level)										
Black (1700059 - 5 11 640 5055A 5011 (10w level)					Dre	pared & Ar	alvzed: 01	lup 17		
1 1 Dichlereethane	< 5.00		ua/ka wot	5.00	<u>Fie</u>	pareu & Ai	lalyzeu. 01-	<u>Jun-17</u>		
1,2 Dichloroethane	< 5.00		µg/kg wet	5.00						
	< 5.00		µg/kg wet	5.00						
	< 5.00		µg/kg wet	5.00						
	< 5.00		µg/kg wet	5.00						
trans-1,2-Dichloroethene	< 5.00		µg/kg wet	5.00						
1,2-Dichloropropane	< 5.00		µg/kg wet	5.00						
1,3-Dichloropropane	< 5.00		µg/kg wet	5.00						
2,2-Dichloropropane	< 5.00		µg/kg wet	5.00						
1,1-Dichloropropene	< 5.00		µg/kg wet	5.00						
cis-1,3-Dichloropropene	< 5.00		µg/kg wet	5.00						
trans-1,3-Dichloropropene	< 5.00		µg/kg wet	5.00						
Ethylbenzene	< 5.00		µg/kg wet	5.00						
Hexachlorobutadiene	< 5.00		µg/kg wet	5.00						
2-Hexanone (MBK)	< 10.0		µg/kg wet	10.0						
Isopropylbenzene	< 5.00		µg/kg wet	5.00						
4-Isopropyltoluene	< 5.00		µg/kg wet	5.00						
Methyl tert-butyl ether	< 5.00		µg/kg wet	5.00						
4-Methyl-2-pentanone (MIBK)	< 10.0		µg/kg wet	10.0						
Methylene chloride	< 10.0		µg/kg wet	10.0						
Naphthalene	< 5.00		µg/kg wet	5.00						
n-Propylbenzene	< 5.00		µg/kg wet	5.00						
Styrene	< 5.00		µg/kg wet	5.00						
1,1,1,2-Tetrachloroethane	< 5.00		µg/kg wet	5.00						
1,1,2,2-Tetrachloroethane	< 5.00		µg/kg wet	5.00						
Tetrachloroethene	< 5.00		µg/kg wet	5.00						
Toluene	< 5.00		µg/kg wet	5.00						
1,2,3-Trichlorobenzene	< 5.00		µg/kg wet	5.00						
1,2,4-Trichlorobenzene	< 5.00		µg/kg wet	5.00						
1,3,5-Trichlorobenzene	< 5.00		µg/kg wet	5.00						
1,1,1-Trichloroethane	< 5.00		µg/kg wet	5.00						
1,1,2-Trichloroethane	< 5.00		µg/kg wet	5.00						
Trichloroethene	< 5.00		µg/kg wet	5.00						
Trichlorofluoromethane (Freon 11)	< 5.00		µg/kg wet	5.00						
1,2,3-Trichloropropane	< 5.00		µg/kg wet	5.00						
1,2,4-Trimethylbenzene	< 5.00		µg/kg wet	5.00						
1,3,5-Trimethylbenzene	< 5.00		µg/kg wet	5.00						
Vinyl chloride	< 5.00		µg/kg wet	5.00						
m,p-Xylene	< 10.0		µg/kg wet	10.0						
o-Xylene	< 5.00		µg/kg wet	5.00						
Tetrahydrofuran	< 10.0		µg/kg wet	10.0						
Ethyl ether	< 5.00		µg/kg wet	5.00						
Tert-amyl methyl ether	< 5.00		µg/kg wet	5.00						
Ethyl tert-butyl ether	< 5.00		µg/kg wet	5.00						
Di-isopropyl ether	< 5.00		µg/kg wet	5.00						
Tert-Butanol / butyl alcohol	< 50.0		µg/kg wet	50.0						
1,4-Dioxane	< 100		µg/ka wet	100						
trans-1.4-Dichloro-2-butene	< 25.0		µg/ka wet	25.0						
Ethanol	< 1000		µg/kg wet	1000						
Surrogate: 4-Bromofluorobenzene	46.8		µg/kg		50.0		94	70-130		
Surrogate: Toluene-d8	50.2		μg/kg		50.0		100	70-130		

<u>SW846 8260C</u>						
Batch 1709058 - SW846 5035A Soil (low level)						
Blank (1709058-BLK1)				Prepared &	Analyzed: 01	<u>-Jun-17</u>
Surrogate: 1,2-Dichloroethane-d4	58.8		µg/kg	50.0	118	70-130
Surrogate: Dibromofluoromethane	54.1		µg/kg	50.0	108	70-130
LCS (1709058-BS1)				Prepared &	Analyzed: 01-	-Jun-17
1,1,2-Trichlorotrifluoroethane (Freon 113)	27.7	QM9	µg/kg	20.0	138	70-130
Acetone	23.4		µg/kg	20.0	117	70-130
Acrylonitrile	20.8		µg/kg	20.0	104	70-130
Benzene	22.7		µg/kg	20.0	114	70-130
Bromobenzene	21.2		µg/kg	20.0	106	70-130
Bromochloromethane	22.6		µg/kg	20.0	113	70-130
Bromodichloromethane	23.9		µg/kg	20.0	120	70-130
Bromoform	22.3		µg/kg	20.0	111	70-130
Bromomethane	27.8		µg/kg	20.0	139	70-130
2-Butanone (MEK)	20.1		µg/kg	20.0	100	70-130
n-Butylbenzene	23.8		µg/kg	20.0	119	70-130
sec-Butylbenzene	21.8		µg/kg	20.0	109	70-130
tert-Butylbenzene	21.7		µg/kg	20.0	108	70-130
Carbon disulfide	27.3	QM9	µg/kg	20.0	136	70-130
Carbon tetrachloride	25.4		µg/kg	20.0	127	70-130
Chlorobenzene	21.4		µg/kg	20.0	107	70-130
Chloroethane	23.0		µg/kg	20.0	115	70-130
Chloroform	22.0		µg/kg	20.0	110	70-130
Chloromethane	22.7		µg/kg	20.0	114	70-130
2-Chlorotoluene	22.2		µg/kg	20.0	111	70-130
4-Chlorotoluene	22.0		µg/kg	20.0	110	70-130
1,2-Dibromo-3-chloropropane	23.7		µg/kg	20.0	118	70-130
Dibromochloromethane	22.8		µg/kg	20.0	114	70-130
1,2-Dibromoethane (EDB)	20.7		µg/kg	20.0	103	70-130
Dibromomethane	22.1		µg/kg	20.0	111	70-130
1,2-Dichlorobenzene	22.4		µg/kg	20.0	112	70-130
1,3-Dichlorobenzene	22.0		µg/kg	20.0	110	70-130
1,4-Dichlorobenzene	22.6		µg/kg	20.0	113	70-130
Dichlorodifluoromethane (Freon12)	22.6		µg/kg	20.0	113	70-130
1,1-Dichloroethane	23.4		µg/kg	20.0	117	70-130
1,2-Dichloroethane	22.0		µg/kg	20.0	110	70-130
1,1-Dichloroethene	23.8		µg/kg	20.0	119	70-130
cis-1,2-Dichloroethene	21.8		µg/kg	20.0	109	70-130
trans-1,2-Dichloroethene	22.2		µg/kg	20.0	111	70-130
1,2-Dichloropropane	23.1		µg/kg	20.0	116	70-130
1,3-Dichloropropane	21.4		µg/kg	20.0	107	70-130
2,2-Dichloropropane	23.4		µg/kg	20.0	117	70-130
	23.0		µg/kg	20.0	115	70-130
	21.9		µg/кg	20.0	110	70-130
	21.2		µg/kg	20.0	106	70-130
	21.6		µg/кg	20.0	108	70-130
	23.8		µg/кg	20.0	119	70-130
	17.3		µg/kg	20.0	80	70-130
	21.7		µg/кg	20.0	109	70-130
4-isopropyitoiuene	23.5		µg/кg	20.0	118	70-130

Units

Result

Flag

Spike

Level

*RDL

Source

Result

%REC

%REC

Limits

RPD

Limit

RPD

This laboratory report is not valid without an authorized signature on the cover page.

µg/kg

µg/kg

20.0

20.0

102

96

70-130

70-130

20.3

19.3

Methyl tert-butyl ether

4-Methyl-2-pentanone (MIBK)

Analyte(s)

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 1709058 - SW846 5035A Soil (low level)										
LCS (1709058-BS1)					Pre	epared & Ar	nalvzed [.] 01-	Jun-17		
Methylene chloride	22.2		ua/ka		20.0		111	70-130		
Naphthalene	17.6		ua/ka		20.0		88	70-130		
n-Propylbenzene	22.8		ua/ka		20.0		114	70-130		
Styrene	20.6		ua/ka		20.0		103	70-130		
1.1.1.2-Tetrachloroethane	23.2		ua/ka		20.0		116	70-130		
1,1,2,2-Tetrachloroethane	21.0		µq/kq		20.0		105	70-130		
Tetrachloroethene	22.5		µq/kq		20.0		112	70-130		
Toluene	22.8		µq/kq		20.0		114	70-130		
1.2.3-Trichlorobenzene	22.0		ua/ka		20.0		110	70-130		
1.2.4-Trichlorobenzene	22.7		ua/ka		20.0		113	70-130		
1.3.5-Trichlorobenzene	23.8		ua/ka		20.0		119	70-130		
1.1.1-Trichloroethane	23.3		ua/ka		20.0		116	70-130		
1.1.2-Trichloroethane	22.7		ua/ka		20.0		113	70-130		
Trichloroethene	22.0		ua/ka		20.0		110	70-130		
Trichlorofluoromethane (Freon 11)	26.6	QM9	ua/ka		20.0		133	70-130		
1.2.3-Trichloropropane	24.1		ua/ka		20.0		120	70-130		
1.2.4-Trimethylbenzene	21.4		ua/ka		20.0		107	70-130		
1.3.5-Trimethylbenzene	21.6		ua/ka		20.0		108	70-130		
Vinvl chloride	23.1		ua/ka		20.0		116	70-130		
m.p-Xvlene	21.4		ua/ka		20.0		107	70-130		
o-Xylene	21.0		µq/kq		20.0		105	70-130		
Tetrahydrofuran	19.6		µq/kq		20.0		98	70-130		
Ethyl ether	22.0		µg/kg		20.0		110	70-130		
Tert-amyl methyl ether	20.5		µq/kq		20.0		102	70-130		
Ethyl tert-butyl ether	21.1		µq/kq		20.0		106	70-130		
Di-isopropyl ether	22.6		µg/kg		20.0		113	70-130		
Tert-Butanol / butyl alcohol	180		µg/kg		200		90	70-130		
1,4-Dioxane	141		µg/kg		200		70	70-130		
trans-1,4-Dichloro-2-butene	20.8		µg/kg		20.0		104	70-130		
Ethanol	358		µg/kg		400		90	70-130		
Surragate: A Bromofluorobenzene	47.2		ug/kg		50.0		04	70 130		
Surrogate: Toluene-d8	50.5		µg/kg		50.0		34 101	70-130		
Surrogate: 1 2-Dichloroethane-d4	40.2		ug/kg		50.0		08	70-130		
	43.2 51.4		µg/kg		50.0		103	70-130		
	01.4		Pg/Ng		00.0	norod 9 Ar		10 100		
1 1 2 Trichlorotrifluoroethane (Freen 113)	26.0		ua/ka		20.0		130	70 130	7	30
Acetono	20.0		µg/kg		20.0		110	70-130	5	20
Acedonie	22.4		µg/kg		20.0		103	70-130	1	30
Renzene	20.5		µg/kg		20.0		103	70-130	0.5	20
Bromohonzono	22.0		µg/kg		20.0		109	70-130	0.5	30
Bromobleromothene	21.7		µg/kg		20.0		100	70-130	2	20
Bromochiolomethane	22.1		µg/kg		20.0		117	70-130	2	30
Bromotorm	23.4		µg/kg		20.0		112	70-130	2	30
Bromomethane	22.5		µg/kg		20.0		152	70-130	0.9	30
2-Butanone (MEK)	30.4		µg/kg		20.0		07	70-130	Э Л	30
	19.3		µy/ky		20.0		91 116	70 120	4	30
sec.Butylbenzere	20.2		µy/ky		20.0		110	70-130	3 1	30 30
see-Dutylbenzene	22.1 22.0		µg/kg		20.0		110	70 120	י ס	30
	22.0		µy/ky		20.0		110	70 120	۲ ۱۸	30
Carbon tetrachloride	23.0 24 E		µg/kg		20.0		102	70 120	14	30
	24.0		µу/кд		20.0		123	10-130	3	30

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
<u>SW846 8260C</u>											
Batch 1709058 - SW846 5035A Soil (low level)											
LCS Dup (1709058-BSD1)					Pre	epared & Ar	nalyzed: 01-	Jun-17			
Chlorobenzene	21.7		µg/kg		20.0		108	70-130	1	30	
Chloroethane	23.0		µg/kg		20.0		115	70-130	0.2	30	
Chloroform	21.4		µg/kg		20.0		107	70-130	3	30	
Chloromethane	22.0		µg/kg		20.0		110	70-130	3	30	
2-Chlorotoluene	22.4		µg/kg		20.0		112	70-130	0.9	30	
4-Chlorotoluene	22.3		µg/kg		20.0		112	70-130	2	30	
1,2-Dibromo-3-chloropropane	23.0		µg/kg		20.0		115	70-130	3	30	
Dibromochloromethane	22.3		µg/kg		20.0		112	70-130	2	30	
1.2-Dibromoethane (EDB)	20.3		µq/kq		20.0		102	70-130	2	30	
Dibromomethane	21.9		ua/ka		20.0		109	70-130	1	30	
1.2-Dichlorobenzene	22.2		ua/ka		20.0		111	70-130	1	30	
1.3-Dichlorobenzene	22.4		ua/ka		20.0		112	70-130	2	30	
1.4-Dichlorobenzene	22.0		ua/ka		20.0		110	70-130	3	30	
Dichlorodifluoromethane (Freon12)	22.1		ua/ka		20.0		110	70-130	2	30	
1.1-Dichloroethane	23.1		ua/ka		20.0		115	70-130	1	30	
1.2-Dichloroethane	21.6		ua/ka		20.0		108	70-130	2	30	
1.1-Dichloroethene	23.7		ua/ka		20.0		118	70-130	0.8	30	
cis-1.2-Dichloroethene	21.7		ua/ka		20.0		109	70-130	0.4	30	
trans-1.2-Dichloroethene	21.9		ua/ka		20.0		109	70-130	2	30	
1.2-Dichloropropane	22.8		ua/ka		20.0		114	70-130	1	30	
1.3-Dichloropropane	21.5		ua/ka		20.0		108	70-130	0.7	30	
2.2-Dichloropropane	23.0		ua/ka		20.0		115	70-130	2	30	
1.1-Dichloropropene	22.6		ua/ka		20.0		113	70-130	2	30	
cis-1.3-Dichloropropene	21.6		ua/ka		20.0		108	70-130	1	30	
trans-1 3-Dichloropropene	21.6		ua/ka		20.0		108	70-130	2	30	
Ethylbenzene	21.7		ua/ka		20.0		109	70-130	0.9	30	
Hexachlorobutadiene	22.7		ua/ka		20.0		114	70-130	5	30	
2-Hexanone (MBK)	15.9		ua/ka		20.0		79	70-130	8	30	
	22.0		ua/ka		20.0		110	70-130	1	30	
4-Isopropyltoluene	22.7		ua/ka		20.0		113	70-130	4	30	
Methyl tert-butyl ether	20.4		ua/ka		20.0		102	70-130	0.3	30	
4-Methyl-2-pentanone (MIBK)	18.4		ua/ka		20.0		92	70-130	4	30	
Methylene chloride	22.0		ua/ka		20.0		110	70-130	0.9	30	
Naphthalene	17.5		ua/ka		20.0		88	70-130	0.7	30	
n-Propylbenzene	23.1		ua/ka		20.0		116	70-130	1	30	
Styrene	21.0		ua/ka		20.0		105	70-130	2	30	
1.1.1.2-Tetrachloroethane	23.7		ua/ka		20.0		118	70-130	2	30	
1.1.2.2-Tetrachloroethane	21.3		ua/ka		20.0		106	70-130	1	30	
Tetrachloroethene	22.5		ua/ka		20.0		112	70-130	0	30	
Toluene	22.6		ua/ka		20.0		113	70-130	1	30	
1.2.3-Trichlorobenzene	21.5		ua/ka		20.0		107	70-130	3	30	
1 2 4-Trichlorobenzene	27.2		ua/ka		20.0		111	70-130	2	30	
1.3.5-Trichlorobenzene	23.1		ua/ka		20.0		115	70-130	3	30	
1 1 1-Trichloroethane	23.1		ua/ka		20.0		116	70-130	0.8	30	
1 1 2-Trichloroethane	22.1		ua/ka		20.0		111	70-130	3	30	
Trichloroethene	21 1		ua/ka		20.0		105	70-130	4	30	
Trichlorofluoromethane (Freon 11)	25.8		na/ku		20.0		129	70-130	3	30	
1 2 3-Trichloropropane	18.2		na/ka		20.0		91	70-130	28	30	
1.2.4-Trimethylbenzene	22.1		na/ku		20.0		110	70-130	3	30	
1.3.5-Trimethylbenzene	22.0		nu\ku		20.0		110	70-130	2	30	
.,0,0			M9/119		20.0		110	10-100	~	00	

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>SW846 8260C</u>										
Batch 1709058 - SW846 5035A Soil (low level)										
LCS Dup (1709058-BSD1)					Pre	epared & Ai	nalyzed: 01-	Jun-17		
Vinyl chloride	22.7		µg/kg		20.0		114	70-130	2	30
m,p-Xylene	21.7		µg/kg		20.0		108	70-130	1	30
o-Xylene	21.5		µg/kg		20.0		108	70-130	2	30
Tetrahydrofuran	21.6		µg/kg		20.0		108	70-130	10	30
Ethyl ether	22.2		µg/kg		20.0		111	70-130	0.9	30
Tert-amyl methyl ether	20.3		µg/kg		20.0		102	70-130	0.6	30
Ethyl tert-butyl ether	21.3		µg/kg		20.0		106	70-130	0.6	30
Di-isopropyl ether	22.6		µg/kg		20.0		113	70-130	0.09	30
Tert-Butanol / butyl alcohol	173		µg/kg		200		86	70-130	4	30
1,4-Dioxane	117		µg/kg		200		58	70-130	18	30
trans-1,4-Dichloro-2-butene	21.2		µg/kg		20.0		106	70-130	2	30
Ethanol	339		μg/kg		400		85	70-130	5	30
Surragate: 4-Bromofluorobenzene	48.0		ua/ka		50.0		08	70-130		
Surrogate: Toluono de	40.9 50.0		µg/kg		50.0		102	70-130		
Surrogate: 12 Dichloroethane d4	50.9		µg/kg		50.0		102	70-130		
Surrogate: Dibromofluoromethane	52.0		µg/kg		50.0		100	70-130		
Detable 1700129 SW946 5025 A SetU (Level Level)	52.0		µg/kg		50.0		104	70-730		
Blanch (4700400 BL (4)					Dec	norod 9 Au	aaluzadi 02	lup 17		
Blank (1709128-BLK1)	- 5 00			F 00	<u>PI6</u>	epareu & Al	lalyzed. Uz-	<u>-Jun-17</u>		
	< 5.00		µg/kg wet	5.00						
Acetone	< 50.0		µg/kg wet	50.0						
Activionimie	< 5.00		µg/kg wet	5.00						
Bromohonzono	< 5.00		µg/kg wet	5.00						
Bromochloromethana	< 5.00		µg/kg wet	5.00						
Bromodichloromethane	< 5.00		µg/kg wet	5.00						
Bromoform	< 5.00		µg/kg wet	5.00						
Bromomethane	< 10.0		ua/ka wet	10.0						
2 Butanone (MEK)	< 10.0		ug/kg wet	10.0						
	< 5.00		ua/ka wet	5.00						
sec Butylbenzene	< 5.00		ug/kg wet	5.00						
tert-Butylbenzene	< 5.00		ua/ka wet	5.00						
	< 10.00		ua/ka wet	10.0						
Carbon tetrachloride	< 5.00		ua/ka wet	5.00						
Chlorobenzene	< 5.00		ua/ka wet	5.00						
Chloroethane	< 10.0		ua/ka wet	10.0						
Chloroform	< 5.00		ua/ka wet	5.00						
Chloromethane	< 10.0		ua/ka wet	10.0						
2-Chlorotoluene	< 5.00		ua/ka wet	5.00						
4-Chlorotoluene	< 5.00		ua/ka wet	5.00						
1.2-Dibromo-3-chloropropane	< 10.0		ua/ka wet	10.0						
Dibromochloromethane	< 5.00		ua/ka wet	5.00						
1.2-Dibromoethane (EDB)	< 5.00		ua/ka wet	5.00						
Dibromomethane	< 5.00		ua/ka wet	5.00						
1,2-Dichlorobenzene	< 5.00		µg/ka wet	5.00						
1.3-Dichlorobenzene	< 5.00		ua/ka wet	5.00						
1.4-Dichlorobenzene	< 5.00		ua/ka wet	5.00						
Dichlorodifluoromethane (Freon12)	< 10 0		µa/ka wet	10.0						
1.1-Dichloroethane	< 5.00		ua/ka wet	5.00						
1,2-Dichloroethane	< 5.00		µg/ka wet	5.00						
1,1-Dichloroethene	< 5.00		µg/kg wet	5.00						

Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
<u>SW846 8260C</u>										
Batch 1709128 - SW846 5035A Soil (low level)										
Blank (1709128-BLK1)					Pre	epared & A	nalyzed: 02-	-Jun-17		
cis-1,2-Dichloroethene	< 5.00		µg/kg wet	5.00						
trans-1,2-Dichloroethene	< 5.00		µg/kg wet	5.00						
1,2-Dichloropropane	< 5.00		µg/kg wet	5.00						
1,3-Dichloropropane	< 5.00		µg/kg wet	5.00						
2,2-Dichloropropane	< 5.00		µg/kg wet	5.00						
1,1-Dichloropropene	< 5.00		µg/kg wet	5.00						
cis-1,3-Dichloropropene	< 5.00		µg/kg wet	5.00						
trans-1,3-Dichloropropene	< 5.00		µg/kg wet	5.00						
Ethylbenzene	< 5.00		µg/kg wet	5.00						
Hexachlorobutadiene	< 5.00		µg/kg wet	5.00						
2-Hexanone (MBK)	< 10.0		µg/kg wet	10.0						
lsopropylbenzene	< 5.00		µg/kg wet	5.00						
4-Isopropyltoluene	< 5.00		µg/kg wet	5.00						
Methyl tert-butyl ether	< 5.00		µg/kg wet	5.00						
4-Methyl-2-pentanone (MIBK)	< 10.0		µg/kg wet	10.0						
Methylene chloride	< 10.0		µg/kg wet	10.0						
Naphthalene	< 5.00		µg/kg wet	5.00						
n-Propylbenzene	< 5.00		µg/kg wet	5.00						
Styrene	< 5.00		µg/kg wet	5.00						
1,1,1,2-Tetrachloroethane	< 5.00		µg/kg wet	5.00						
1,1,2,2-Tetrachloroethane	< 5.00		µg/kg wet	5.00						
Tetrachloroethene	< 5.00		µg/kg wet	5.00						
Toluene	< 5.00		µg/kg wet	5.00						
1,2,3-Trichlorobenzene	< 5.00		µg/kg wet	5.00						
1,2,4-Trichlorobenzene	< 5.00		µg/kg wet	5.00						
1,3,5-Trichlorobenzene	< 5.00		µg/kg wet	5.00						
1,1,1-Trichloroethane	< 5.00		µg/kg wet	5.00						
1,1,2-Trichloroethane	< 5.00		µg/kg wet	5.00						
Trichloroethene	< 5.00		µg/kg wet	5.00						
Trichlorofluoromethane (Freon 11)	< 5.00		µg/kg wet	5.00						
1,2,3-Trichloropropane	< 5.00		µg/kg wet	5.00						
1,2,4-Trimethylbenzene	< 5.00		µg/kg wet	5.00						
1,3,5-Trimethylbenzene	< 5.00		µg/kg wet	5.00						
Vinyl chloride	< 5.00		µg/kg wet	5.00						
m,p-Xylene	< 10.0		µg/kg wet	10.0						
o-Xylene	< 5.00		µg/kg wet	5.00						
Tetrahydrofuran	< 10.0		µg/kg wet	10.0						
Ethyl ether	< 5.00		µg/kg wet	5.00						
Tert-amyl methyl ether	< 5.00		µg/kg wet	5.00						
Ethyl tert-butyl ether	< 5.00		µg/kg wet	5.00						
Di-isopropyl ether	< 5.00		µg/kg wet	5.00						
Tert-Butanol / butyl alcohol	< 50.0		µg/kg wet	50.0						

Spike

Source

%REC

RPD

06-Jun-17 16:54

1,4-Dioxane

Ethanol

trans-1,4-Dichloro-2-butene

Surrogate: Toluene-d8

LCS (1709128-BS1)

Surrogate: 4-Bromofluorobenzene

Surrogate: 1,2-Dichloroethane-d4

Surrogate: Dibromofluoromethane

This laboratory report is not valid without an authorized signature on the cover page.

µg/kg wet

µg/kg wet

µg/kg wet

µg/kg

µg/kg

µg/kg

µg/kg

100

25.0

1000

50.0

50.0

50.0

50.0

93

100

119

108

Prepared & Analyzed: 02-Jun-17

70-130

70-130

70-130

70-130

< 100

< 25.0

< 1000

46.6

50.1

59.4

54.0

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>SW846 8260C</u>										
Batch 1709128 - SW846 5035A Soil (low level)										
LCS (1709128-BS1)					Pre	epared & Ar	nalyzed: 02-	Jun-17		
1,1,2-Trichlorotrifluoroethane (Freon 113)	27.1	QM9	µg/kg		20.0		136	70-130		
Acetone	22.0		µg/kg		20.0		110	70-130		
Acrylonitrile	20.4		µg/kg		20.0		102	70-130		
Benzene	22.6		µg/kg		20.0		113	70-130		
Bromobenzene	20.6		µg/kg		20.0		103	70-130		
Bromochloromethane	22.0		µg/kg		20.0		110	70-130		
Bromodichloromethane	23.2		µg/kg		20.0		116	70-130		
Bromoform	21.6		µq/kq		20.0		108	70-130		
Bromomethane	32.2	QM9	µq/kq		20.0		161	70-130		
2-Butanone (MEK)	19.7		ua/ka		20.0		99	70-130		
n-Butvlbenzene	22.5		ua/ka		20.0		112	70-130		
sec-Butylbenzene	21.7		ua/ka		20.0		108	70-130		
tert-Butylbenzene	21.3		ua/ka		20.0		107	70-130		
Carbon disulfide	25.4		ua/ka		20.0		127	70-130		
Carbon tetrachloride	25.8		ua/ka		20.0		129	70-130		
Chlorobenzene	20.0		ua/ka		20.0		105	70-130		
Chloroethane	23.6		ua/ka		20.0		118	70-130		
Chloroform	21.8		ua/ka		20.0		109	70-130		
Chloromethane	21.0		µg/kg		20.0		118	70-130		
2-Chlorotoluene	21.6		ug/kg		20.0		108	70-130		
	21.0		µg/kg		20.0		107	70-130		
1 2-Dibromo-3-chloropropage	21.4		ug/kg		20.0		113	70-130		
Dibromochloromethane	21.0		µg/kg		20.0		110	70-130		
1.2 Dibromoethane (EDB)	21.9		µg/kg		20.0		100	70-130		
	20.0		µg/kg		20.0		100	70-130		
1 2-Dichlorobenzene	21.0		µg/kg		20.0		105	70-130		
1.3 Dichlorobenzene	21.1		µg/kg		20.0		100	70-130		
1.4-Dichlorobenzene	21.5		µg/kg		20.0		107	70-130		
Dichlorodifluoromethane (Freen12)	21.5		µg/kg		20.0		118	70-130		
1 1 Dichloroothane	23.7		µg/kg		20.0		110	70-130		
1, 1-Dichloroethane	23.7 24 E		µg/kg		20.0		109	70-130		
1,2-Dichloroethane	21.0		µg/kg		20.0		100	70-130		
r, r-Dichloroethene	20.0		µg/kg		20.0		129	70-130		
trans 1.2 Dichloroothono	21.0		µg/kg		20.0		100	70-130		
	22.5		µg/kg		20.0		112	70-130		
1,2-Dichloropropane	23.0		µg/kg		20.0		106	70-130		
2.2 Dichloropropane	21.1		µg/kg		20.0		100	70-130		
2,2-Dichloropropane	23.9		µg/kg		20.0		120	70-130		
	22.0		µg/kg		20.0		114	70-130		
	20.9		µg/kg		20.0		105	70-130		
trans-1,3-Dichloropropene	20.9		µg/кg		20.0		104	70-130		
Etnyibenzene	21.5		µg/кg		20.0		108	70-130		
	23.4		µg/кg		20.0		117	70-130		
	16.4		µg/кg		20.0		δ2 400	70-130		
	21.2		µg/kg		20.0		106	70-130		
4-isopropyitoluene	22.2		µg/kg		20.0		111	70-130		
Methyl tert-butyl ether	19.7		µg/kg		20.0		99	/0-130		
4-Methyl-2-pentanone (MIBK)	18.2		µg/kg		20.0		91	70-130		
Methylene chloride	22.2		µg/kg		20.0		111	70-130		
Naphthalene	16.0		µg/kg		20.0		80	70-130		
n-Propylbenzene	22.7		µg/kg		20.0		114	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>SW846 8260C</u>										
Batch 1709128 - SW846 5035A Soil (low level)										
LCS (1709128-BS1)					Pre	epared & Ar	nalyzed: 02-	Jun-17		
Styrene	20.0		µg/kg		20.0		100	70-130		
1,1,1,2-Tetrachloroethane	23.1		µg/kg		20.0		115	70-130		
1,1,2,2-Tetrachloroethane	20.5		µg/kg		20.0		103	70-130		
Tetrachloroethene	22.5		µg/kg		20.0		112	70-130		
Toluene	22.3		µg/kg		20.0		112	70-130		
1,2,3-Trichlorobenzene	20.5		µg/kg		20.0		103	70-130		
1,2,4-Trichlorobenzene	21.0		µg/kg		20.0		105	70-130		
1,3,5-Trichlorobenzene	22.5		µg/kg		20.0		113	70-130		
1,1,1-Trichloroethane	23.7		µg/kg		20.0		119	70-130		
1,1,2-Trichloroethane	21.7		µg/kg		20.0		108	70-130		
Trichloroethene	21.8		µg/kg		20.0		109	70-130		
Trichlorofluoromethane (Freon 11)	27.7	QM9	µg/kg		20.0		139	70-130		
1,2,3-Trichloropropane	23.2		µg/kg		20.0		116	70-130		
1,2,4-Trimethylbenzene	21.1		µg/kg		20.0		106	70-130		
1,3,5-Trimethylbenzene	21.3		µg/kg		20.0		106	70-130		
Vinyl chloride	24.0		µg/kg		20.0		120	70-130		
m,p-Xylene	21.0		µg/kg		20.0		105	70-130		
o-Xylene	20.6		µg/kg		20.0		103	70-130		
Tetrahydrofuran	19.2		µg/kg		20.0		96	70-130		
Ethyl ether	21.6		µg/kg		20.0		108	70-130		
Tert-amyl methyl ether	19.9		µg/kg		20.0		99	70-130		
Ethyl tert-butyl ether	20.3		µg/kg		20.0		102	70-130		
Di-isopropyl ether	22.4		µg/kg		20.0		112	70-130		
Tert-Butanol / butyl alcohol	183		µg/kg		200		91	70-130		
1,4-Dioxane	145		µg/kg		200		73	70-130		
trans-1,4-Dichloro-2-butene	20.6		µg/kg		20.0		103	70-130		
	395		µg/кg		400		99	70-130		
Surrogate: 4-Bromofluorobenzene	48.5		µg/kg		50.0		97	70-130		
Surrogate: Toluene-d8	50.7		µg/kg		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.0		µg/kg		50.0		102	70-130		
Surrogate: Dibromofluoromethane	52.1		µg/kg		50.0		104	70-130		
LCS Dup (1709128-BSD1)					Pre	epared & Ar	nalyzed: 02-	<u>Jun-17</u>		
1,1,2-Trichlorotrifluoroethane (Freon 113)	25.8		µg/kg		20.0		129	70-130	5	30
Acetone	23.5		µg/kg		20.0		117	70-130	7	30
Acrylonitrile	20.5		µg/kg		20.0		103	70-130	0.4	30
Benzene	21.5		µg/kg		20.0		108	70-130	5	30
Bromobenzene	19.6		µg/kg		20.0		98	70-130	5	30
Bromochloromethane	21.1		µg/kg		20.0		106	70-130	4	30
Bromodicniorometnane	22.5		µg/kg		20.0		112	70-130	3	30
Bromotorm	20.8		µg/kg		20.0		104	70-130	4	30
Bromometnane	28.1		µg/kg		20.0		141	70-130	14	30
	19.8		µg/кg		20.0		99	70-130	0.5	30
	21.5		µg/kg		20.0		100	70-130	4	30
sec-bulyidenzene	20.2		µg/kg		20.0		101	70-130	י 7	30
	13.3		µg/kg		20.0		110	70 120	í R	30
Carbon usunuc	23.0		µg/kg		20.0		101	70-130	6	30
	24.2 10 0		µg/kg		20.0		100	70-130	6	30
Chloroethane	20.0		Haire Naire		20.0		113	70-130	4	30
Chloroform	22.7		Halka		20.0		105	70-130	વ	30
Ghioroform	£1.1		P9/19		20.0		100	10-100	5	50

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>SW846 8260C</u>										
Batch 1709128 - SW846 5035A Soil (low level)										
LCS Dup (1709128-BSD1)					Pre	epared & Ar	nalyzed: 02-	Jun-17		
Chloromethane	22.2		µg/kg		20.0		111	70-130	7	30
2-Chlorotoluene	20.2		µg/kg		20.0		101	70-130	7	30
4-Chlorotoluene	20.2		µg/kg		20.0		101	70-130	6	30
1,2-Dibromo-3-chloropropane	21.5		µg/kg		20.0		108	70-130	5	30
Dibromochloromethane	21.4		µg/kg		20.0		107	70-130	3	30
1,2-Dibromoethane (EDB)	19.6		µg/kg		20.0		98	70-130	2	30
Dibromomethane	20.7		µg/kg		20.0		103	70-130	4	30
1,2-Dichlorobenzene	20.4		µg/kg		20.0		102	70-130	3	30
1,3-Dichlorobenzene	20.4		µg/kg		20.0		102	70-130	6	30
1,4-Dichlorobenzene	20.6		µg/kg		20.0		103	70-130	4	30
Dichlorodifluoromethane (Freon12)	22.7		µg/kg		20.0		114	70-130	4	30
1,1-Dichloroethane	22.5		µg/kg		20.0		112	70-130	5	30
1,2-Dichloroethane	21.0		µg/kg		20.0		105	70-130	3	30
1,1-Dichloroethene	23.9		µg/kg		20.0		120	70-130	7	30
cis-1,2-Dichloroethene	20.6		µg/kg		20.0		103	70-130	5	30
trans-1,2-Dichloroethene	21.2		µg/kg		20.0		106	70-130	5	30
1,2-Dichloropropane	21.7		µg/kg		20.0		109	70-130	6	30
1,3-Dichloropropane	20.7		µg/kg		20.0		104	70-130	2	30
2,2-Dichloropropane	22.4		µg/kg		20.0		112	70-130	6	30
1,1-Dichloropropene	21.8		µg/kg		20.0		109	70-130	5	30
cis-1,3-Dichloropropene	20.5		µg/kg		20.0		103	70-130	2	30
trans-1,3-Dichloropropene	20.2		µg/kg		20.0		101	70-130	3	30
Ethylbenzene	20.1		µg/kg		20.0		100	70-130	7	30
Hexachlorobutadiene	22.0		µg/kg		20.0		110	70-130	6	30
2-Hexanone (MBK)	17.0		µg/kg		20.0		85	70-130	3	30
Isopropylbenzene	19.9		µg/kg		20.0		100	70-130	6	30
4-Isopropyltoluene	21.0		µg/kg		20.0		105	70-130	5	30
Methyl tert-butyl ether	19.9		µg/kg		20.0		99	70-130	0.8	30
4-Methyl-2-pentanone (MIBK)	19.1		µg/kg		20.0		95	70-130	4	30
Methylene chloride	21.3		µg/kg		20.0		107	70-130	4	30
Naphthalene	16.0		µg/kg		20.0		80	70-130	0.1	30
n-Propylbenzene	21.2		µg/kg		20.0		106	70-130	7	30
Styrene	18.9		µg/kg		20.0		95	70-130	6	30
1,1,1,2-Tetrachloroethane	21.8		µg/kg		20.0		109	70-130	6	30
1,1,2,2-Tetrachloroethane	20.1		µg/kg		20.0		100	70-130	2	30
Tetrachloroethene	21.2		µg/kg		20.0		106	70-130	6	30
Toluene	21.2		µg/kg		20.0		106	70-130	5	30
1,2,3-Trichlorobenzene	20.0		µg/kg		20.0		100	70-130	2	30
1,2,4-Trichlorobenzene	20.6		µg/kg		20.0		103	70-130	2	30
1,3,5-Trichlorobenzene	21.5		µg/kg		20.0		107	70-130	5	30
1,1,1-Trichloroethane	22.5		µg/kg		20.0		112	70-130	5	30
1,1,2-Trichloroethane	21.1		µg/kg		20.0		106	70-130	3	30
Trichloroethene	20.8		µg/kg		20.0		104	70-130	5	30
Trichlorofluoromethane (Freon 11)	25.6		µq/kq		20.0		128	70-130	8	30
1,2,3-Trichloropropane	17.5		µq/kq		20.0		88	70-130	28	30
1,2,4-Trimethylbenzene	20.0		µa/ka		20.0		100	70-130	5	30
1,3,5-Trimethylbenzene	20.0		µg/ka		20.0		100	70-130	6	30
Vinyl chloride	22.6		µa/ka		20.0		113	70-130	6	30
m,p-Xylene	19.7		µq/ka		20.0		98	70-130	6	30
o-Xvlene	19.4		µa/ka		20.0		97	70-130	6	30
,			1.9,9						-	

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 1709128 - SW846 5035A Soil (low level)										
LCS Dup (1709128-BSD1)					Pre	epared & A	nalyzed: 02-	-Jun-17		
Tetrahydrofuran	19.0		µg/kg		20.0		95	70-130	2	30
Ethyl ether	22.1		µg/kg		20.0		110	70-130	2	30
Tert-amyl methyl ether	19.7		µg/kg		20.0		98	70-130	1	30
Ethyl tert-butyl ether	20.7		µg/kg		20.0		104	70-130	2	30
Di-isopropyl ether	21.7		µg/kg		20.0		109	70-130	3	30
Tert-Butanol / butyl alcohol	184		µg/kg		200		92	70-130	0.7	30
1,4-Dioxane	142		µg/kg		200		71	70-130	2	30
trans-1,4-Dichloro-2-butene	20.7		µg/kg		20.0		104	70-130	0.8	30
Ethanol	384		µg/kg		400		96	70-130	3	30
Surrogate: 4-Bromofluorobenzene	47.8		µg/kg		50.0		96	70-130		
Surrogate: Toluene-d8	50.3		µg/kg		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.5		µg/kg		50.0		103	70-130		
Surrogate: Dibromofluoromethane	51.9		µg/kg		50.0		104	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
W846 8082A										
atch 1709052 - SW846 3546										
Blank (1709052-Bl K1)					Pre	epared & A	nalvzed [.] 01.	Jun-17		
Aroclor-1016	< 19 7		ua/ka wet	197	<u></u>		angeour or	our ri		
Aroclor-1016 [2C]	< 19.7		ua/ka wet	19.7						
Aroclor-1221	< 19.7		µg/kg wet	19.7						
Aroclor-1221 [2C]	< 19.7		µg/kg wet	19.7						
Aroclor-1232	< 19.7		µg/kg wet	19.7						
Aroclor-1232 [2C]	< 19.7		µg/kg wet	19.7						
Aroclor-1242	< 19.7		µg/kg wet	19.7						
Aroclor-1242 [2C]	< 19.7		µg/kg wet	19.7						
Aroclor-1248	< 19.7		µg/kg wet	19.7						
Aroclor-1248 [2C]	< 19.7		µg/kg wet	19.7						
Aroclor-1254	< 19.7		µg/kg wet	19.7						
Aroclor-1254 [2C]	< 19.7		µg/kg wet	19.7						
Aroclor-1260	< 19.7		µg/kg wet	19.7						
Aroclor-1260 [2C]	< 19.7		µg/kg wet	19.7						
Aroclor-1262	< 19.7		µg/kg wet	19.7						
Aroclor-1262 [2C]	< 19.7		µg/kg wet	19.7						
Aroclor-1268	< 19.7		µg/kg wet	19.7						
Aroclor-1268 [2C]	< 19.7		µg/kg wet	19.7						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	18.7		µg/kg wet		19.7		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	19.7		µg/kg wet		19.7		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	24.6		µg/kg wet		19.7		125	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	28.5		µg/kg wet		19.7		145	30-150		
LCS (1709052-BS1)					Pre	epared & A	nalyzed: 01.	<u>-Jun-17</u>		
Aroclor-1016	217		µg/kg wet	19.9	249		87	40-140		
Aroclor-1016 [2C]	217		µg/kg wet	19.9	249		87	40-140		
Aroclor-1260	235		µg/kg wet	19.9	249		94	40-140		
Aroclor-1260 [2C]	220		µg/kg wet	19.9	249		88	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	17.0		µg/kg wet		19.9		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	18.0		µg/kg wet		19.9		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	21.9		µg/kg wet		19.9		110	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	24.9		µg/kg wet		19.9		125	30-150		
LCS Dup (1709052-BSD1)					Pre	epared & A	nalyzed: 01.	<u>-Jun-17</u>		
Aroclor-1016	223		µg/kg wet	19.9	248		90	40-140	2	30
Aroclor-1016 [2C]	235		µg/kg wet	19.9	248		95	40-140	8	30
Aroclor-1260	241		µg/kg wet	19.9	248		97	40-140	3	30
Aroclor-1260 [2C]	237		µg/kg wet	19.9	248		96	40-140	7	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	16.9		µg/kg wet		19.9		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	18.9		µg/kg wet		19.9		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	24.8		µg/kg wet		19.9		125	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	24.8		µg/kg wet		19.9		125	30-150		

Semivolatile Organic Compounds by GC - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>MADEP EPH 5/2004 R</u>										
Batch 1709048 - SW846 3546										
Blank (1709048-BLK1)					Pre	epared: 01-	Jun-17 Ana	alyzed: 03-J	un-17	
C9-C18 Aliphatic Hydrocarbons	< 9.98		mg/kg wet	9.98						
C19-C36 Aliphatic Hydrocarbons	< 9.98		mg/kg wet	9.98						
C11-C22 Aromatic Hydrocarbons	< 9.98		mg/kg wet	9.98						
Unadjusted C11-C22 Aromatic Hydrocarbons	< 9.98		mg/kg wet	9.98						
Total Petroleum Hydrocarbons	< 29.9		mg/kg wet	29.9						
Unadjusted Total Petroleum Hydrocarbons	< 29.9		mg/kg wet	29.9						
Naphthalene	< 0.332		mg/kg wet	0.332						
2-Methylnaphthalene	< 0.332		mg/kg wet	0.332						
Acenaphthylene	< 0.332		mg/kg wet	0.332						
Acenaphthene	< 0.332		mg/kg wet	0.332						
Fluorene	< 0.332		mg/kg wet	0.332						
Phenanthrene	< 0.332		mg/kg wet	0.332						
Anthracene	< 0.332		mg/kg wet	0.332						
Fluoranthene	< 0.332		mg/kg wet	0.332						
Pyrene	< 0.332		mg/kg wet	0.332						
Benzo (a) anthracene	< 0.332		mg/kg wet	0.332						
Chrysene	< 0.332		mg/kg wet	0.332						
Benzo (b) fluoranthene	< 0.332		mg/kg wet	0.332						
Benzo (k) fluoranthene	< 0.332		mg/kg wet	0.332						
Benzo (a) pyrene	< 0.332		mg/kg wet	0.332						
Indeno (1,2,3-cd) pyrene	< 0.332		mg/kg wet	0.332						
Dibenzo (a,h) anthracene	< 0.332		mg/kg wet	0.332						
Benzo (g,h,i) perylene	< 0.332		mg/kg wet	0.332						
n-Nonane (C9)	< 0.332		mg/kg wet	0.332						
n-Decane	< 0.332		mg/kg wet	0.332						
n-Dodecane	< 0.332		mg/kg wet	0.332						
n-Tetradecane	< 0.332		mg/kg wet	0.332						
n-Hexadecane	< 0.332		mg/kg wet	0.332						
n-Octadecane	< 0.332		mg/kg wet	0.332						
n-Nonadecane	< 0.332		mg/kg wet	0.332						
n-Eicosane	< 0.332		mg/kg wet	0.332						
n-Docosane	< 0.332		mg/kg wet	0.332						
n-Tetracosane	< 0.332		mg/kg wet	0.332						
n-Hexacosane	< 0.332		mg/kg wet	0.332						
n-Octacosane	< 0.332		mg/kg wet	0.332						
n-Triacontane	< 0.332		mg/kg wet	0.332						
n-Hexatriacontane	< 0.332		mg/kg wet	0.332						
Naphthalene (aliphatic fraction)	0.00		mg/kg wet							
2-Methylnaphthalene (aliphatic fraction)	0.00		mg/kg wet							
Surrogate: 1-Chlorooctadecane	3.05		mg/kg wet		3.33		92	40-140		
Surrogate: Ortho-Terphenyl	1.99		mg/kg wet		3.33		60	40-140		
Surrogate: 2-Fluorobiphenyl	1.10		mg/kg wet		2.66		41	40-140		
LCS (1709048-BS1)					Pre	epared: 01-	Jun-17 Ana	alyzed: 03-J	un-17	
C9-C18 Aliphatic Hydrocarbons	39.7		mg/kg wet	9.89	39.6		100	40-140		
C19-C36 Aliphatic Hydrocarbons	22.7		mg/kg wet	9.89	52.8		43	40-140		
Unadjusted C11-C22 Aromatic	11.1		mg/kg wet	9.89	22.4		49	40-140		
Hydrocarbons										
Naphthalene	1.17		mg/kg wet	0.329	1.32		89	40-140		
2-Methylnaphthalene	1.26		mg/kg wet	0.329	1.32		95	40-140		
Acenaphthylene	1.27		mg/kg wet	0.329	1.32		96	40-140		

Extractable Petroleum Hydrocarbons - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>MADEP EPH 5/2004 R</u>										
Batch 1709048 - SW846 3546										
LCS (1709048-BS1)					Pre	epared: 01-	Jun-17 An	alyzed: 03-Ju	un-17	
Acenaphthene	1.30		mg/kg wet	0.329	1.32		99	40-140		
Fluorene	1.40		mg/kg wet	0.329	1.32		106	40-140		
Phenanthrene	1.38		mg/kg wet	0.329	1.32		105	40-140		
Anthracene	1.39		mg/kg wet	0.329	1.32		105	40-140		
Fluoranthene	1.39		mg/kg wet	0.329	1.32		106	40-140		
Pyrene	1.35		mg/kg wet	0.329	1.32		102	40-140		
Benzo (a) anthracene	1.35		mg/kg wet	0.329	1.32		102	40-140		
Chrysene	1.32		mg/kg wet	0.329	1.32		100	40-140		
Benzo (b) fluoranthene	1.27		mg/kg wet	0.329	1.32		97	40-140		
Benzo (k) fluoranthene	1.24		mg/kg wet	0.329	1.32		94	40-140		
Benzo (a) pyrene	1.27		mg/kg wet	0.329	1.32		96	40-140		
Indeno (1,2,3-cd) pyrene	1.19		mg/kg wet	0.329	1.32		90	40-140		
Dibenzo (a,h) anthracene	1.15		mg/kg wet	0.329	1.32		87	40-140		
Benzo (g,h,i) perylene	1.16		mg/kg wet	0.329	1.32		88	40-140		
n-Nonane (C9)	4.46		mg/kg wet	0.329	6.60		68	30-140		
n-Decane	4.54		mg/kg wet	0.329	6.60		69	40-140		
n-Dodecane	4.55		mg/kg wet	0.329	6.60		69	40-140		
n-Tetradecane	4.63		mg/kg wet	0.329	6.60		70	40-140		
n-Hexadecane	4.66		mg/kg wet	0.329	6.60		71	40-140		
n-Octadecane	4.62		mg/kg wet	0.329	6.60		70	40-140		
n-Nonadecane	4.60		mg/kg wet	0.329	6.60		70	40-140		
n-Eicosane	4.62		mg/kg wet	0.329	6.60		70	40-140		
n-Docosane	4.63		mg/kg wet	0.329	6.60		70	40-140		
n-Tetracosane	4.56		mg/kg wet	0.329	6.60		69	40-140		
n-Hexacosane	4.53		mg/kg wet	0.329	6.60		69	40-140		
n-Octacosane	4.61		mg/kg wet	0.329	6.60		70	40-140		
n-Triacontane	4.57		mg/kg wet	0.329	6.60		69	40-140		
n-Hexatriacontane	3.88		mg/kg wet	0.329	6.60		59	40-140		
Naphthalene (aliphatic fraction)	0.00		mg/kg wet		1.32			0-200		
2-Methylnaphthalene (aliphatic fraction)	0.00		mg/kg wet		1.32			0-200		
Surrogate: 1-Chlorooctadecane	2.59		mg/kg wet		3.30		78	40-140		
Surrogate: Ortho-Terphenyl	1.75		mg/kg wet		3.30		53	40-140		
Surrogate: 2-Fluorobiphenyl	1.05		mg/kg wet		2.64		40	40-140		
LCS (1709048-BS2)					Pre	epared: 01-	Jun-17 An	alvzed: 03-Ji	un-17	
C9-C18 Aliphatic Hydrocarbons	25.9		ma/ka wet	10.0	40.0		65	40-140		
C19-C36 Aliphatic Hydrocarbons	22.2		ma/ka wet	10.0	53.3		42	40-140		
Unadjusted C11-C22 Aromatic Hydrocarbons	13.3		mg/kg wet	10.0	22.7		59	40-140		
Naphthalene	1.17		mg/kg wet	0.333	1.33		88	40-140		
2-Methylnaphthalene	1.24		mg/kg wet	0.333	1.33		93	40-140		
Acenaphthylene	1.25		mg/kg wet	0.333	1.33		94	40-140		
Acenaphthene	1.29		mg/kg wet	0.333	1.33		97	40-140		
Fluorene	1.38		mg/kg wet	0.333	1.33		104	40-140		
Phenanthrene	1.37		mg/kg wet	0.333	1.33		103	40-140		
Anthracene	1.37		mg/kg wet	0.333	1.33		103	40-140		
Fluoranthene	1.37		mg/kg wet	0.333	1.33		103	40-140		
Pyrene	1.34		mg/kg wet	0.333	1.33		101	40-140		
Benzo (a) anthracene	1.34		mg/kg wet	0.333	1.33		100	40-140		
Chrysene	1.29		mg/kg wet	0.333	1.33		97	40-140		
Benzo (b) fluoranthene	1.42		mg/kg wet	0.333	1.33		107	40-140		

Extractable Petroleum Hydrocarbons - Quality Control

Analyte(s)	Result	Flag Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
MADEP EPH 5/2004 R									
Datab 1700049 SW946 3546									
L CS (1700048 BS2)				Dr	opered: 01	lup 17 Ap	aluzad: 02 li	in 17	
ECS (1703040-DS2) Banzo (k) fluoranthana	1 24	ma/ka wet	0 333	1 3 3	epareu. 01-	03	40 140	<u>un-17</u>	
	1.24	mg/kg wet	0.333	1.33		93	40-140		
Indone (1,2,2,ed) pyrone	1.20	mg/kg wet	0.333	1.00		94	40-140		
Dibenzo (a b) anthracene	1.18	mg/kg wet	0.333	1.33		86	40-140		
Bonzo (a, hi) pondono	1.14	mg/kg wet	0.333	1.00		00	40-140		
n Nonono (CO)	1.16	mg/kg wet	0.333	1.33		07 67	40-140		
	4.50	mg/kg wet	0.000	0.07		67	30-140		
n-Decane	4.40	mg/kg wet	0.333	0.07		69	40-140		
n-Douecalle	4.52	mg/kg wet	0.000	0.07		67	40-140		
n-Tetradecane	4.49	mg/kg wet	0.000	0.07		66	40-140		
n-nexadecane	4.37	mg/kg wet	0.000	0.07		64	40-140		
	4.27	mg/kg wet	0.000	0.07		64	40-140		
n-Norladecane	4.25	mg/kg wet	0.333	0.07		04 64	40-140		
	4.26	mg/kg wet	0.000	0.07		64	40-140		
n-Docosane	4.30	mg/kg wet	0.333	0.07		04 64	40-140		
	4.25	mg/kg wet	0.000	0.07		64	40-140		
	4.20	mg/kg wet	0.000	0.07		04	40-140		
	4.39	mg/kg wet	0.000	0.07		00	40-140		
	4.42	mg/kg wet	0.333	0.07		60 50	40-140		
	3.91	mg/kg wet	0.333	0.07		59	40-140		
Naphthalene (aliphatic fraction)	0.00	mg/kg wet		1.33			0-200		
	0.00	mg/kg wet		1.33			0-200		
Surrogate: 1-Chlorooctadecane	2.41	mg/kg wet		3.33		72	40-140		
Surrogate: Ortho-Terphenyl	1.76	mg/kg wet		3.33		53	40-140		
Surrogate: 2-Fluorobiphenyl	1.07	mg/kg wet		2.67		40	40-140		
LCS Dup (1709048-BSD1)				Pr	epared: 01-	Jun-17 An	alyzed: 03-J	un-17	
C9-C18 Aliphatic Hydrocarbons	30.8	mg/kg wet	9.87	39.5		78	40-140	25	25
C19-C36 Aliphatic Hydrocarbons	23.5	mg/kg wet	9.87	52.7		45	40-140	3	25
Unadjusted C11-C22 Aromatic	9.36	mg/kg wet	9.87	22.4		42	40-140	17	25
Hydrocarbons				4.00			40.440		05
Naphthalene	1.22	mg/kg wet	0.329	1.32		93	40-140	4	25
	1.30	mg/kg wet	0.329	1.32		98	40-140	3	25
Acenaphthylene	1.27	mg/kg wet	0.329	1.32		97	40-140	0.6	25
Acenaphthene	1.31	mg/kg wet	0.329	1.32		99	40-140	0.5	25
Fluorene	1.42	mg/kg wet	0.329	1.32		108	40-140	1	25
Phenanthrene	1.42	mg/kg wet	0.329	1.32		108	40-140	3	25
	1.42	mg/kg wet	0.329	1.32		108	40-140	2	25
Fluoranthene	1.44	mg/kg wet	0.329	1.32		109	40-140	3	25
Pyrene	1.39	mg/kg wet	0.329	1.32		106	40-140	3	25
Benzo (a) anthracene	1.38	mg/kg wet	0.329	1.32		105	40-140	3	25
Chrysene	1.34	mg/kg wet	0.329	1.32		102	40-140	1	25
Benzo (b) fluoranthene	1.42	mg/kg wet	0.329	1.32		108	40-140	11	25
Benzo (k) fluoranthene	1.26	mg/kg wet	0.329	1.32		96	40-140	2	25
Benzo (a) pyrene	1.29	mg/kg wet	0.329	1.32		98	40-140	1	25
Indeno (1,2,3-cd) pyrene	1.21	mg/kg wet	0.329	1.32		92	40-140	2	25
Dibenzo (a,h) anthracene	1.17	mg/kg wet	0.329	1.32		89	40-140	2	25
Benzo (g,h,i) perylene	1.18	mg/kg wet	0.329	1.32		89	40-140	1	25
n-Nonane (C9)	4.34	mg/kg wet	0.329	6.58		66	30-140	3	25
n-Decane	4.24	mg/kg wet	0.329	6.58		64	40-140	7	25
n-Dodecane	4.30	mg/kg wet	0.329	6.58		65	40-140	6	25
n-Tetradecane	4.37	mg/kg wet	0.329	6.58		66	40-140	6	25

Extractable Petroleum Hydrocarbons - Quality Control

	~ .				Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
<u>MADEP EPH 5/2004 R</u>										
Batch 1709048 - SW846 3546										
LCS Dup (1709048-BSD1)					Pre	epared: 01-	Jun-17 An	alyzed: 03-Ju	un-17	
n-Hexadecane	4.36		mg/kg wet	0.329	6.58		66	40-140	7	25
n-Octadecane	4.31		mg/kg wet	0.329	6.58		66	40-140	7	25
n-Nonadecane	4.31		mg/kg wet	0.329	6.58		65	40-140	7	25
n-Eicosane	4.33		mg/kg wet	0.329	6.58		66	40-140	6	25
n-Docosane	4.37		mg/kg wet	0.329	6.58		66	40-140	6	25
n-Tetracosane	4.32		mg/kg wet	0.329	6.58		66	40-140	5	25
n-Hexacosane	4.33		mg/kg wet	0.329	6.58		66	40-140	5	25
n-Octacosane	4.43		mg/kg wet	0.329	6.58		67	40-140	4	25
n-Triacontane	4.41		mg/kg wet	0.329	6.58		67	40-140	4	25
n-Hexatriacontane	3.78		mg/kg wet	0.329	6.58		57	40-140	3	25
Naphthalene (aliphatic fraction)	0.00		mg/kg wet		1.32			0-200		200
2-Methylnaphthalene (aliphatic fraction)	0.00		mg/kg wet		1.32			0-200		200
Surrogate: 1-Chlorooctadecane	2.65		mg/kg wet		3.29		81	40-140		
Surrogate: Ortho-Terphenyl	1.77		mg/kg wet		3.29		54	40-140		
Surrogate: 2-Fluorobiphenyl	1.05		mg/kg wet		2.63		40	40-140		

Analyta(s)	Pesult	Flag	Unite	*PDI	Spike	Source	%PEC	%REC	רוסק	RPD L imit
Analyte(s)	Kesuit	Tiag	Onits	KDL	Level	Kesuit	70KEC	Linits	KI D	Liiiit
<u>SW846 6010C</u>										
Batch 1709087 - SW846 3051A										
Blank (1709087-BLK1)					Pre	epared & A	nalyzed: 01	-Jun-17		
Lead	< 1.41		mg/kg wet	1.41						
Cadmium	< 0.469		mg/kg wet	0.469						
Silver	< 1.41		mg/kg wet	1.41						
Arsenic	< 1.41		mg/kg wet	1.41						
Chromium	< 0.937		mg/kg wet	0.937						
Selenium	< 1.41		mg/kg wet	1.41						
Barium	< 0.937		mg/kg wet	0.937						
Reference (1709087-SRM1)					Pre	epared & A	nalyzed: 01	-Jun-17		
Chromium	30.1		mg/kg wet	1.00	32.8		92	79.1-121. 1		
Lead	38.4		mg/kg wet	1.50	43.2		89	82-118		
Cadmium	36.3		mg/kg wet	0.500	39.3		92	82.8-117. 2		
Arsenic	28.4		mg/kg wet	1.50	28.8		99	75.1-124. 9		
Silver	25.0		mg/kg wet	1.50	27.3		91	74.7-125. 3		
Selenium	38.9		mg/kg wet	1.50	39.8		98	77.6-122. 4		
Barium	54.6		mg/kg wet	1.00	55.5		98	82.4-118. 2		
Reference (1709087-SRM2)					Pre	epared & A	nalyzed: 01	-Jun-17		
Silver	25.8		mg/kg wet	1.50	27.7		93	74.7-125. 3		
Arsenic	30.1		mg/kg wet	1.50	29.2		103	75.1-124. 9		
Cadmium	37.5		mg/kg wet	0.500	39.8		94	82.8-117. 2		
Chromium	30.9		mg/kg wet	1.00	33.2		93	79.1-121. 1		
Lead	42.0		mg/kg wet	1.50	43.8		96	82-118		
Selenium	41.0		mg/kg wet	1.50	40.4		102	77.6-122. 4		
Barium	53.0		mg/kg wet	1.00	56.3		94	82.4-118. 2		
<u>SW846 7471B</u>										
Batch 1709088 - EPA200/SW7000 Series										
Blank (1709088-BLK1)					Pre	epared & A	nalyzed: 01	-Jun-17		
Mercury	< 0.0261		mg/kg wet	0.0261						
Reference (1709088-SRM1)					Pre	epared & A	nalyzed: 01	-Jun-17		
Mercurv	5.37	D	ma/ka wet	0.600	4.32		124	64.1-135.		

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Mercury

mg/kg wet

0.600

4.32

5.37

124

64.1-135.

8

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>SM2540 G (11) Mod.</u>										
Batch 1709082 - General Preparation										
Duplicate (1709082-DUP1)			Source: SC	35241-03	Pre	epared & Ar	nalyzed: 01-	Jun-17		
% Solids	95.6		%			95.8			0.2	5
Duplicate (1709082-DUP2)			Source: SC	35241-04	Pre	epared & Ar	nalyzed: 01-	Jun-17		
% Solids	92.2		%			92.1			0.07	5

Extractable Petroleum Hydrocarbons - CCV Evaluation Report

	Average	CODE	1/ D	x · · ·	
Analyte(s)	RF	CCRF	% D	Limit	
Batch S705068					
Calibration Check (S705068-CCV1)					
C9-C18 Aliphatic Hydrocarbons	667108.1	362230.3	-6.0	25	
C19-C36 Aliphatic Hydrocarbons	1220327	330392	-23.8	25	
Unadjusted C11-C22 Aromatic Hydrocarbons	4176284	2951502	-11.8	20	
Naphthalene	8.783097	7.76567	9.5	20	
2-Methylnaphthalene	5.818318	4.916011	9.0	20	
Acenaphthylene	8.099292	6.892423	4.1	20	
Acenaphthene	5.986356	4.565708	3.3	20	
Fluorene	6.36157	4.942358	8.8	20	
Phenanthrene	9.380805	7.261151	8.0	20	
Anthracene	9.200579	7.402061	9.4	20	
Fluoranthene	9.989373	8.267804	9.5	20	
Pyrene	10.41355	8.356659	5.6	20	
Benzo (a) anthracene	8.789249	8.19211	5.0	20	
Chrysene	9.472413	7.66397	1.7	20	
Benzo (b) fluoranthene	10.05384	8.051233	-4.8	20	
Benzo (k) fluoranthene	10.41982	7.858852	-5.3	20	
Benzo (a) pyrene	9.663554	7.716922	-2.6	20	
Indeno (1,2,3-cd) pyrene	11.5515	9.182729	-8.4	20	
Dibenzo (a,h) anthracene	10.29062	7.556384	-12.5	20	
Benzo (g,h,i) perylene	10.21267	7.336941	-9.3	20	
n-Nonane (C9)	302803.3	313658.6	3.6	25	
n-Decane	305363	315380	3.3	25	
n-Dodecane	300753.8	305028.6	1.4	25	
n-Tetradecane	274762.4	263471.2	-4.1	25	
n-Hexadecane	240161.2	219947.8	-8.4	25	
n-Octadecane	225386.9	204242.6	-9.4	25	
n-Nonadecane	219026.4	198800.1	-9.2	25	
n-Eicosane	216498.4	198250.6	-8.4	25	
n-Docosane	213393.7	200625.4	-6.0	25	
n-Tetracosane	213070.6	200785.6	-5.8	25	
n-Hexacosane	213606.1	204193.2	-4.4	25	
n-Octacosane	210152.9	208514.4	-0.8	25	
n-Triacontane	211099.8	210701.6	-0.2	25	
n-Hexatriacontane	205271.2	188618.5	-8.1	25	
Naphthalene (aliphatic fraction)	307771.7				
2-Methylnaphthalene (aliphatic fraction)	308474.3				
Calibration Check (S705068-CCV2)					
C9-C18 Aliphatic Hydrocarbons	667108.1	402398.3	7.5	25	
C19-C36 Aliphatic Hydrocarbons	1220327	374217.5	4.0	25	
Unadjusted C11-C22 Aromatic Hydrocarbons	4176284	2953776	-18.3	20	
Naphthalene	8.783097	6.872715	-5.8	20	
2-Methylnaphthalene	5.818318	4.506095	-1.7	20	
Acenaphthylene	8.099292	6.722055	1.0	20	
Acenaphthene	5.986356	4.47579	0.9	20	
Fluorene	6.36157	4.900322	7.8	20	
Phenanthrene	9.380805	7.262663	8.0	20	
Anthracene	9.200579	7.371333	8.9	20	
Fluoranthene	9.989373	8.123461	7.2	20	
Pyrene	10.41355	8.265509	4.3	20	
Benzo (a) anthracene	8.789249	7.983129	2.1	20	
Chrysene	9.472413	7.440331	-1.6	20	

Extractable Petroleum Hydrocarbons - CCV Evaluation Report

	Average				
Analyte(s)	RF	CCRF	% D	Limit	
Batch S705068					
Calibration Check (S705068-CCV2)					
Benzo (b) fluoranthene	10.05384	6.89219	-18.6	20	
Benzo (k) fluoranthene	10.41982	7.601765	-8.7	20	
Benzo (a) pyrene	9.663554	7.408798	-6.7	20	
Indeno (1,2,3-cd) pyrene	11.5515	8.834528	-12.0	20	
Dibenzo (a,h) anthracene	10.29062	7.262348	-16.0	20	
Benzo (g,h,i) perylene	10.21267	7.138886	-11.8	20	
n-Nonane (C9)	302803.3	303368.2	0.2	25	
n-Decane	305363	309297.8	1.3	25	
n-Dodecane	300753.8	303568.6	0.9	25	
n-Tetradecane	274762.4	267798.4	-2.5	25	
n-Hexadecane	240161.2	239294.8	-0.4	25	
n-Octadecane	225386.9	235583.2	4.5	25	
n-Nonadecane	219026.4	233538.2	6.6	25	
n-Eicosane	216498.4	237028.6	9.5	25	
n-Docosane	213393.7	240945.2	12.9	25	
n-Tetracosane	213070.6	241735.8	13.5	25	
n-Hexacosane	213606.1	244375.2	14.4	25	
n-Octacosane	210152.9	247066.8	17.6	25	
n-Triacontane	211099.8	243656.4	15.4	25	
n-Hexatriacontane	205271.2	202857	-1.2	25	
Naphthalene (aliphatic fraction)	307771.7				
2-Methylnaphthalene (aliphatic fraction)	308474.3				

Volatile Organic Compounds - CCV Evaluation Report

	Average				
Analyte(s)	RF	CCRF	% D	Limit	
Batch \$704937					
Calibration Check (S704937-CCV1)					
Benzene	79765.12	74884.38	-6.1	25	
Ethylbenzene	54445.15	53593.26	-1.6	25	
Methyl tert-butyl ether	38991.95	35046.56	-10.1	25	
Naphthalene	46386.16	43141.86	-7.0	25	
Toluene	67315.15	64866.5	-3.6	25	
m,p-Xylene	59435.31	58794.63	-1.1	25	
o-Xylene	49879.05	49280.26	-1.2	25	
2-Methylpentane	43157.81	37594	-12.9	25	
n-Nonane	39369.82	37619.2	-4.4	30	
n-Pentane	34446.6	28896.2	-16.1	25	
1,2,4-Trimethylbenzene	46224.7	45904.88	-0.7	25	
2,2,4-Trimethylpentane	49076.12	46081.94	-6.1	25	
n-Butylcyclohexane	35833.89	34551.06	-3.6	25	
n-Decane	26675.79	27178.02	1.9	25	
Calibration Check (S704937-CCV2)					
Benzene	79765.12	76702.14	-3.8	25	
Ethylbenzene	54445.15	54850.42	0.7	25	
Methyl tert-butyl ether	38991.95	36824.02	-5.6	25	
Naphthalene	46386.16	46133.92	-0.5	25	
Toluene	67315.15	66414.98	-1.3	25	
m,p-Xylene	59435.31	60297.48	1.5	25	
o-Xylene	49879.05	50874.3	2.0	25	
2-Methylpentane	43157.81	37197.82	-13.8	25	
n-Nonane	39369.82	37207.32	-5.5	30	
n-Pentane	34446.6	28692.4	-16.7	25	
1,2,4-Trimethylbenzene	46224.7	47183.7	2.1	25	
2,2,4-Trimethylpentane	49076.12	46548.94	-5.1	25	
n-Butylcyclohexane	35833.89	34889.1	-2.6	25	
n-Decane	26675.79	25998.02	-2.5	25	

The following list indicates the date and time low-level VOC soil/sediment samples were placed in the freezer at the lab:

SC35241-01	GP-01 (1-3)	5/31/2017 6:25 PM
SC35241-02	GP-02 (11-13)	5/31/2017 6:25 PM
SC35241-03	GP-04 (13-15)	5/31/2017 6:25 PM
SC35241-04	GP-06 (3-5)	5/31/2017 6:25 PM
SC35241-05	GP-07 (3-5)	5/31/2017 6:25 PM

Notes and Definitions

- D Data reported from a dilution
- QM9 The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.
- QR9 RPD out of acceptance range. The batch is accepted based upon LCS and/or LCSD recovery.
- VC10 The VOC preserved soil sample is not within the 1:1 weight to volume ratio as recommended by SW846 method 5035A but may be within the 1:1 volume to volume ratio. This variance may affect the final reporting limit.
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

st eurofins	Special Handling: Special Handling: Standard TAT - 7 to 10 business days Page \int_{1}^{1} of \int_{1}^{1} Page \int_{1}^{1} of \int_{1}^{1} Standard TAT - 7 to 10 business days All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed											cial Handling: - 7 to 10 business days the Needed: $48 - 1655$ t to laboratory approval fication needed for rushes d after 60 days unless otherwise instructed.				
Report To: Coneco Engineers - Scientists 4 First Street Bridgewater, Ma 02324 Telephone #: 508-862-2014 Project Mgr: Masc Broche Marge			Invoice To: Coneco f Athn: Env				s Engineers & Scientists nuirenmental AP				>	Project No: 9684 Site Name: 100 Kennoch Circle Senior Hussing/ Location: Newton State: 100 Sampler(s): 5NL, PHL				
F=Field Filtered 1=Na ₂ S2 7=CH3OH 8=NaHSO ₄ 9=	S=NaOH 6=	oic Acio	ic Acid				9,1.11 9,5	List P	at Preservative Code below:				QA/QC Reporting Notes: * additional charges may appply			
$DW=Dinking water GW$ $O=Oil SO=Soil SL=1$ $XI= _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _$	Sample ID: $-01(1-3^{\circ})$ $-02(11-13^{\circ})$ $-02(13-15^{\circ})$ $-07(3-5^{\circ})$ $-01-(3-5^{\circ})$	Introduction Introduction Introduction Intreduction Introduction	V=waste water I Gas Time: CC:CC AM [0:05AM [0:05AM [0:05AM [0:05AM [0:05AM [0:05AM [0:05AM	A A A A A Type	Matrix 00 00 00 00 00 00 00 00 00 00 00 00	W W W WOAVals	+ # of Amber Glass	# of Clear Glass	# of Plastic	XXXX EPH hy DEP Not	VPH 34 DEP MAIN	North Parts 1040	XXXX PC.6., 8007			MA DEP MCP CAM Report? 4 10 1 N CT DPH RCP Report? Yes No Standard No QC DQA* ASP A* ASP B* NJ Reduced* NJ Full* Ther II* Ther IV* Other: MADD OEP PLL 1 State-specific reporting standards: 3 3 3 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1
Relinquished by: Receive Receive Receive Receive Receive Receive Receive Receive Receive Receive Receive Receive Receive Receive Receive Receive			l by: Doe		Date: 531-1 531-1			1 12	Time: 1:59	Temp °C Observed Correction Correction Correction Telling		EDD format: E-mail to: Morechy @ conclus_com; & Washing@ @ Condition upon receipt: Custody Seals: Present Intact Broken Ambient Ø teed Ø Refrigerated Ø DI VOA Frozen Soil Jar Frozen				

Sample shipping address: 11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • www.EurofinsUS.com/Spectrum

Batch Summary

<u>1709048</u>

Extractable Petroleum Hydrocarbons 1709048-BLK1 1709048-BS1 1709048-BS2 1709048-BSD1 SC35241-01 (GP-01 (1-3)) SC35241-02 (GP-02 (11-13)) SC35241-03 (GP-04 (13-15)) SC35241-04 (GP-06 (3-5)) SC35241-05 (GP-07 (3-5))

<u>1709052</u>

<u>Semivolatile Organic Compounds by GC</u> 1709052-BLK1 1709052-BS1 1709052-BSD1 SC35241-01 (GP-01 (1-3)) SC35241-02 (GP-02 (11-13)) SC35241-03 (GP-04 (13-15)) SC35241-04 (GP-06 (3-5)) SC35241-05 (GP-07 (3-5))

<u>1709058</u>

<u>Volatile Organic Compounds</u> 1709058-BLK1 1709058-BS1 1709058-BSD1 SC35241-02 (GP-02 (11-13)) SC35241-03 (GP-04 (13-15)) SC35241-04 (GP-06 (3-5)) SC35241-05 (GP-07 (3-5))

<u>1709064</u>

<u>Volatile Organic Compounds</u> 1709064-BLK1 1709064-BS1 1709064-BSD1 SC35241-02 (GP-02 (11-13)) SC35241-03 (GP-04 (13-15))

<u>1709080</u>

<u>General Chemistry Parameters</u> SC35241-01 (GP-01 (1-3)) SC35241-02 (GP-02 (11-13))

<u>1709082</u>

<u>General Chemistry Parameters</u> 1709082-DUP1 1709082-DUP2 SC35241-03 (GP-04 (13-15)) SC35241-04 (GP-06 (3-5)) SC35241-05 (GP-07 (3-5))

<u>1709087</u>

Total Metals by EPA 6000/7000 Series Methods

1709087-BLK1 1709087-SRM1 1709087-SRM2 SC35241-01 (GP-01 (1-3)) SC35241-04 (GP-06 (3-5)) SC35241-05 (GP-07 (3-5))

<u>1709088</u>

Total Metals by EPA 6000/7000 Series Methods

1709088-BLK1 1709088-SRM1 SC35241-01 (GP-01 (1-3)) SC35241-04 (GP-06 (3-5)) SC35241-05 (GP-07 (3-5))

<u>1709128</u>

Volatile Organic Compounds

1709128-BLK1 1709128-BS1 1709128-BSD1 SC35241-01 (GP-01 (1-3))
S702336 Semivolatile Organic Compounds by GC S702336-CAL1 S702336-CAL2 S702336-CAL3 S702336-CAL4 S702336-CAL5 S702336-CAL6 S702336-CAL7 S702336-CAL8 S702336-CAL9 S702336-CALA S702336-CALB S702336-CALC S702336-CALD S702336-CALE S702336-CALF S702336-CALG S702336-CALH S702336-CALI S702336-CALJ S702336-CALK S702336-CALL S702336-CALM S702336-CALN S702336-CALO S702336-CALP S702336-CALQ S702336-CALR S702336-CALS S702336-CALT S702336-CALU S702336-ICV1 S702336-ICV2 S702336-ICV3 S702336-ICV4 S702336-ICV5 S702336-ICV6 S702336-LCV1 S702336-LCV2 S702336-LCV3 S702336-LCV4 S702336-LCV5

<u>S702868</u>

S702336-LCV6

Extractable Petroleum Hydrocarbons

S702868-CAL1 S702868-CAL2 S702868-CAL3 S702868-CAL4 S702868-CAL5 S702868-CAL6 S702868-CAL6 S702868-CAL7 S702868-CAL8 S702868-CAL9 S702868-CALA S702868-CALB S702868-CALC S702868-CALD S702868-CALE S702868-CALF S702868-CALG S702868-CALH S702868-CALI S702868-ICV1 S702868-ICV2 S702868-LCV1 S702868-LCV2 S702868-LCV3 S702868-TUN1 S702868-TUN2

<u>8703723</u>

<u>Volatile Organic Compounds</u> S703723-CAL1 S703723-CAL2 S703723-CAL3 S703723-CAL4 S703723-CAL5 S703723-CAL6 S703723-CAL6 S703723-CAL7 S703723-ICV1 S703723-LCV1

<u>8704867</u>

<u>Volatile Organic Compounds</u> S704867-CAL1 S704867-CAL2 S704867-CAL3 S704867-CAL4 S704867-CAL5 S704867-CAL6 S704867-CAL7 S704867-CAL8 S704867-CAL9 S704867-ICV1 S704867-ICV1 S704867-ICV1 S704867-TUN1 S704867-TUN2

<u>S704937</u>

Volatile Organic Compounds S704937-CCV1 S704937-CCV2

<u> 8704946</u>

Volatile Organic Compounds S704946-CCV1 S704946-CCV2 S704946-TUN1

<u> 8704975</u>

Semivolatile Organic Compounds by GC S704975-CCV1

S704975-CCV2 S704975-IBL1 S704975-IBL2

<u>8704976</u>

<u>Volatile Organic Compounds</u> S704976-CCV1 S704976-TUN1

<u>8705068</u>

Extractable Petroleum Hydrocarbons S705068-CCV1 S705068-CCV2 S705068-TUN1

Spectrum Analytical

Final ReportRevised Report

Report Date: 09-Jun-17 10:27

Laboratory Report SC35361

Coneco Environmental 4 First Street Bridgewater, MA 02324 Attn: Marc Brochu

Project: 100 Kennedy Cir. - Newton, MA Project #: 9684

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

Kimberly Laplante Quality Assurance Manager

of La Plante

Eurofins Spectrum Analytical holds primary certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 33 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order:SC35361Project:100 Kennedy Cir. - Newton, MA

Project Number: 9684

Laboratory ID	Client Sample ID
SC35361-01	CMW-01

SC35361-02 (

CMW-01 CMW-02 <u>Matrix</u> Ground Water Ground Water Date Sampled 01-Jun-17 13:47 01-Jun-17 14:42 Date Received

02-Jun-17 17:00 02-Jun-17 17:00 The following outlines the condition of all VPH samples contained within this report upon laboratory receipt.

Matrices	Ground Water											
Containers	✓ Satisfactory											
Sample Preservative	Aqueous (acid preserved)	N/A \checkmark pH \leq 2 pH>2										
	Soil or Sediment	✓ N/A Samples not received in Methanol	ml Methanol/g soil									
		Samples received in Methanol: covering soil/sediment not covering soil/sediment	1:1 +/-25% Other									
		Samples received in air-tight container										
Temperature	Received on ic	Received on ice \checkmark Received at $4 \pm 2 ^{\circ}\text{C}$										

Were all QA/QC procedures followed as required by the VPH method? *Yes* Were any significant modifications made to the VPH method as specified in section 11.3? *No* Were all performance/acceptance standards for required QA/QC procedures achieved? *Yes*

The following outlines the condition of all EPH samples contained within this report upon laboratory receipt.

Matrices	Ground Water		
Containers	✓ Satisfactory		
Aqueous Preservative	N/A ✓ pH <u>≤</u> 2	pH>2	pH adjusted to <2 in lab
Temperature	Received on ice	✓ Received at 4 ± 2 °C	

Were all QA/QC procedures followed as required by the EPH method? Yes

Were any significant modifications made to the EPH method as specified in Section 11.3? No

Were all performance/acceptance standards for required QA/QC procedures achieved? Yes

I attest that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Authorized by:

Anotina O. White

Christina A. White Laboratory Director

MassDEP Analytical Protocol Certification Form

Labo	ratory Name: Eu	rofins Spectrum Analytica	ıl, Inc.	Project #: 9684								
Proje	ct Location: 100	Kennedy Cir Newton, N	MА	RTN:								
This	form provides cer	rtifications for the follow	ing data set: S ⁴	C35361-01 through SC35	361-02							
Matr	ices: Ground Wa	ater										
CAM	Protocol				· · ·							
✓ ⁸² C.	260 VOC AM II A	✓ 7470/7471 Hg CAM III B	✓ MassDEP VPH CAM IV A	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP APH CAM IX A						
82 C.	270 SVOC AM II B	7010 Metals CAM III C	✓ MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B						
✓ 60 C.)10 Metals AM III A	6020 Metals CAM III D	8082 PCB CAM V A	9012 Total Cyanide/PAC _CAM VI A	9014 Total Cyanide/PAC _CAM VI A	6860 Perchlorate CAM VIII B						
	Affirmative responses to questions A through F are required for P resumptive Certainty'status											
A	✓ Yes No											
В	Were the analytic protocol(s) follow	✓ Yes No										
CWere all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?✓ Yes												
Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?												
E	a. VPH, EPH, an b. APH and TO-	Id APH Methods only: Wa 15 Methods only: Was the	is each method conducted complete analyte list rej	d without significant mod ported for each method?	ification(s)?	✓ Yes No Yes No						
F	Were all applicate evaluated in a lateral sector of the se	ble CAM protocol QC and boratory narrative (includi	l performance standard n ing all "No" responses to	on-conformances identified questions A through E)?	ed and	✓ Yes No						
		Responses to quest	tions G, H and I below a	re required for P resumpt	ive Certainty'status							
G	Were the reportir	ng limits at or below all C	AM reporting limits spec	cified in the selected CAN	f protocol(s)?	Yes 🗸 No						
<u>Data</u> requir	<u>User Note:</u> Data tha ements described in	ut achieve P resumptive Certa n 310 CMR 40. 1056 (2)(k) a	tinty'status may not necess and WSC-07-350.	arily meet the data usability	and representativeness							
Н	Were all QC perf	formance standards specif	ied in the CAM protocol	(s) achieved?		Yes 🗸 No						
Ι	Were results repo	orted for the complete ana	lyte list specified in the s	selected CAM protocol(s)	?	Yes 🗸 No						
All ne	gative responses ar	e addressed in a case narrat	ive on the cover page of thi	is report.								
I, the inform	undersigned, attest nation, the material	under the pains and penalti I contained in this analytical	es of perjury that, based up report is, to the best of my	oon my personal inquiry of t knowledge and belief, accu	hose responsible for obtainin rate and complete.	g the						
					Christina A. White	a. White						

Laboratory Director Date: 6/9/2017

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 2.7 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

<u>MADEP EPH 5/2004 R</u>

Calibration:

1703011

Analyte quantified by quadratic equation type calibration. 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene C19-C36 Aliphatic Hydrocarbons C9-C18 Aliphatic Hydrocarbons Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pvrene Unadjusted C11-C22 Aromatic Hydrocarbons

MADEP EPH 5/2004 R

Calibration:

1703011

This affected the following samples:

1709306-BLK1 1709306-BS1 1709306-BSD1 CMW-01 CMW-02 S702868-ICV1 S702868-ICV2 S705139-CCV2 S705139-CCV4

SW846 8260C

Calibration:

1705025

Analyte quantified by quadratic equation type calibration.

1,2-Dibromo-3-chloropropane Bromodichloromethane Bromoform Carbon tetrachloride cis-1,3-Dichloropropene Dibromochloromethane Naphthalene n-Propylbenzene Styrene trans-1,3-Dichloropropene trans-1,4-Dichloro-2-butene

This affected the following samples:

1709320-BLK1 1709320-BSD1 CMW-01 CMW-02 S704674-ICV1 S705081-CCV1

Blanks:

1709320-BLK1

This compound is a common laboratory contaminant.

Acetone Chloromethane Ethanol

Laboratory Control Samples:

1709320 BS/BSD

2-Butanone (MEK) percent recoveries (78/60) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

CMW-01

CMW-02

SW846 8260C

Laboratory Control Samples:

1709320 BS/BSD

Ethanol percent recoveries (184/186) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

CMW-01 CMW-02

1709320 BSD

2-Butanone (MEK) RPD 26% (20%) is outside individual acceptance criteria.

Samples:

S705081-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

2-Butanone (MEK) (-21.9%) Ethanol (83.6%) Tetrahydrofuran (-21.3%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

1,2-Dibromo-3-chloropropane (-21.6%) 2-Hexanone (MBK) (-24.8%) trans-1,4-Dichloro-2-butene (-20.9%)

This affected the following samples:

1709320-BLK1 1709320-BS1 1709320-BSD1 CMW-01 CMW-02

SC35361-01 CMW-01

This compound is a common laboratory contaminant.

Acetone Chloromethane

SC35361-02

This compound is a common laboratory contaminant.

CMW-02

Acetone

Sample Acceptance Check Form

Client:	Coneco Environmental - Bridgewater, MA
Project:	100 Kennedy Cir Newton, MA / 9684
Work Order:	SC35361
Sample(s) received on:	6/2/2017

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

Were custody seals present?	
Were custody seals intact?	
Were samples received at a temperature of $\leq 6^{\circ}$ C?	\checkmark
Were samples refrigerated upon transfer to laboratory representative?	\checkmark
Were sample containers received intact?	\checkmark
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	
Were samples accompanied by a Chain of Custody document?	\checkmark
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	V
Did sample container labels agree with Chain of Custody document?	\checkmark
Were samples received within method-specific holding times?	\checkmark

Yes	<u>No</u>	N/A
	\checkmark	
		\checkmark
\checkmark		
\checkmark		
\checkmark		

Summary of Hits

Lab ID: SC35361-01			Client ID: CMW-01						
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method				
Barium (dissolved)	0.0871		0.0050	mg/l	SW846 6010C				
Lab ID: SC35361-02			Client ID: CMW-02						
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method				
Barium (dissolved)	0.284		0.0050	mg/l	SW846 6010C				

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

Sample Ic	Sample Identification		Cliant I	Climat Datisat II		Matrix Coll		action Data	Pagaiwad					
CMW-01				<u>Client F</u>	<u>210ject #</u>		<u>Matrix</u> Cround W	colle	01 Jun 17 12:47			<u>Received</u>		
SC35361-	-01			90	004		Ground wa		-Jun-1/13	.47	02	Jun-1 /		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Volatile O	rganic Compounds													
<u>Volatile O</u>	rganic Compounds by SW	<u>846 8260</u>												
Prepared	by method SW846 5030 V	Vater MS												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.00		µg/l	1.00	0.53	1	SW846 8260C	06-Jun-17	07-Jun-17	GMA	1709320		
67-64-1	Acetone	< 10.0	O01	µg/l	10.0	0.80	1		"	"		"		
107-13-1	Acrylonitrile	< 0.50		µg/l	0.50	0.47	1		"	"		"		
71-43-2	Benzene	< 1.00		µg/l	1.00	0.28	1		"	"		"		
108-86-1	Bromobenzene	< 1.00		µg/l	1.00	0.33	1		"	"		"		
74-97-5	Bromochloromethane	< 1.00		µg/l	1.00	0.34	1		"	"		"		
75-27-4	Bromodichloromethane	< 0.50		µg/l	0.50	0.42	1		"	"		"		
75-25-2	Bromoform	< 1.00		µg/l	1.00	0.42	1	"	"			"		
74-83-9	Bromomethane	< 2.00		µg/l	2.00	0.90	1		"	"		"		
78-93-3	2-Butanone (MEK)	< 2.00		µg/l	2.00	1.07	1		"	"		"		
104-51-8	n-Butylbenzene	< 1.00		µg/l	1.00	0.41	1		"	"	"	"		
135-98-8	sec-Butylbenzene	< 1.00		µg/l	1.00	0.33	1	"	"	"		"		
98-06-6	tert-Butylbenzene	< 1.00		µg/l	1.00	0.32	1	"	"	"		"		
75-15-0	Carbon disulfide	< 2.00		µg/l	2.00	0.41	1		"			"		
56-23-5	Carbon tetrachloride	< 1.00		µg/l	1.00	0.44	1		"			"		
108-90-7	Chlorobenzene	< 1.00		µg/l	1.00	0.25	1			"		"		
75-00-3	Chloroethane	< 2.00		µg/l	2.00	0.59	1			"		"		
67-66-3	Chloroform	< 1.00		µg/l	1.00	0.33	1			"		"		
74-87-3	Chloromethane	< 2.00	O01	µg/l	2.00	0.37	1	"	"			"		
95-49-8	2-Chlorotoluene	< 1.00		µg/l	1.00	0.32	1	"	"			"		
106-43-4	4-Chlorotoluene	< 1.00		µg/l	1.00	0.32	1		"	"		"		
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.00		µg/l	2.00	0.86	1	"	"	n	"	"		
124-48-1	Dibromochloromethane	< 0.50		µg/l	0.50	0.32	1	"	"			"		
106-93-4	1,2-Dibromoethane (EDB)	< 0.50		µg/l	0.50	0.20	1	"	"			"		
74-95-3	Dibromomethane	< 1.00		µg/l	1.00	0.31	1	"	"			"		
95-50-1	1,2-Dichlorobenzene	< 1.00		µg/l	1.00	0.28	1		"			"		
541-73-1	1,3-Dichlorobenzene	< 1.00		µg/l	1.00	0.31	1	"	"			"		
106-46-7	1,4-Dichlorobenzene	< 1.00		µg/l	1.00	0.27	1	"	"			"		
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.00		µg/l	2.00	0.58	1	"	"	n	"	"		
75-34-3	1,1-Dichloroethane	< 1.00		µg/l	1.00	0.32	1			"		"		
107-06-2	1,2-Dichloroethane	< 1.00		µg/l	1.00	0.28	1	"	"			"		
75-35-4	1,1-Dichloroethene	< 1.00		µg/l	1.00	0.69	1	"	"			"		
156-59-2	cis-1,2-Dichloroethene	< 1.00		µg/l	1.00	0.33	1	"	"			"		
156-60-5	trans-1,2-Dichloroethene	< 1.00		µg/l	1.00	0.38	1	"	"			"		
78-87-5	1,2-Dichloropropane	< 1.00		µg/l	1.00	0.29	1	"	"			"		
142-28-9	1,3-Dichloropropane	< 1.00		µg/l	1.00	0.21	1	"	"			"		
594-20-7	2,2-Dichloropropane	< 1.00		µg/l	1.00	0.42	1		"			"		
563-58-6	1,1-Dichloropropene	< 1.00		µg/l	1.00	0.58	1		"		"	"		
10061-01-5	cis-1,3-Dichloropropene	< 0.50		µg/l	0.50	0.36	1	"	"			"		
10061-02-6	trans-1,3-Dichloropropene	< 0.50		µg/l	0.50	0.35	1	"	"		"	"		
100-41-4	Ethylbenzene	< 1.00		μg/l	1.00	0.33	1	"	"		"	"		
87-68-3	Hexachlorobutadiene	< 0.50		μg/l	0.50	0.47	1	"	"		"	"		
591-78-6	2-Hexanone (MBK)	< 2.00		µg/l	2.00	0.53	1	"	"		"	"		

This laboratory report is not valid without an authorized signature on the cover page.

Sample Identification			Client Project #			<u>Matrix</u> <u>Col</u>			llection Date/Time				
SC35361-	01			96	84		Ground Wa	ater 01	-Jun-17 13	:47	02-	Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	ganic Compounds												
Volatile O	rganic Compounds by SW	<u>846 8260</u>											
98-82-8	Isopropylbenzene	< 1.00		µg/l	1.00	0.36	1	SW846 8260C	06-Jun-17	07-Jun-17	GMA	1709320	
99-87-6	4-Isopropyltoluene	< 1.00		µg/l	1.00	0.28	1		"		"		
1634-04-4	Methyl tert-butyl ether	< 1.00		µg/l	1.00	0.24	1		"		"		
108-10-1	4-Methyl-2-pentanone (MIBK)	< 2.00		µg/l	2.00	0.52	1	"	"	"	"	"	
75-09-2	Methylene chloride	< 2.00		µg/l	2.00	0.66	1		"		"		
91-20-3	Naphthalene	< 1.00		µg/l	1.00	0.35	1		"		"		
103-65-1	n-Propylbenzene	< 1.00		µg/l	1.00	0.34	1		"		"		
100-42-5	Styrene	< 1.00		µg/l	1.00	0.40	1		"				
630-20-6	1,1,1,2-Tetrachloroethane	< 1.00		µg/l	1.00	0.38	1		"		"		
79-34-5	1,1,2,2-Tetrachloroethane	< 0.50		μg/l	0.50	0.33	1		"		"		
127-18-4	Tetrachloroethene	< 1.00		µg/l	1.00	0.57	1		"		"		
108-88-3	Toluene	< 1.00		µg/l	1.00	0.30	1				"		
87-61-6	1,2,3-Trichlorobenzene	< 1.00		µg/l	1.00	0.38	1		"		"		
120-82-1	1,2,4-Trichlorobenzene	< 1.00		µg/l	1.00	0.38	1		"		"		
108-70-3	1,3,5-Trichlorobenzene	< 1.00		µg/l	1.00	0.30	1		"		"		
71-55-6	1,1,1-Trichloroethane	< 1.00		µg/l	1.00	0.51	1		"				
79-00-5	1,1,2-Trichloroethane	< 1.00		µg/l	1.00	0.33	1		"				
79-01-6	Trichloroethene	< 1.00		µg/l	1.00	0.50	1		"				
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.00		µg/l	1.00	0.49	1	"	"	"	"	"	
96-18-4	1,2,3-Trichloropropane	< 1.00		µg/l	1.00	0.29	1		"				
95-63-6	1,2,4-Trimethylbenzene	< 1.00		µg/l	1.00	0.36	1		"		"		
108-67-8	1,3,5-Trimethylbenzene	< 1.00		µg/l	1.00	0.43	1		"				
75-01-4	Vinyl chloride	< 1.00		µg/l	1.00	0.47	1				"		
179601-23-1	m,p-Xylene	< 2.00		µg/l	2.00	0.38	1		"				
95-47-6	o-Xylene	< 1.00		µg/l	1.00	0.28	1				"		
109-99-9	Tetrahydrofuran	< 2.00		µg/l	2.00	1.06	1				"		
60-29-7	Ethyl ether	< 1.00		µg/l	1.00	0.37	1		"				
994-05-8	Tert-amyl methyl ether	< 1.00		µg/l	1.00	0.49	1		"		"		
637-92-3	Ethyl tert-butyl ether	< 1.00		µg/l	1.00	0.33	1		"		"		
108-20-3	Di-isopropyl ether	< 1.00		µg/l	1.00	0.29	1		"		"		
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		µg/l	10.0	5.90	1		"				
123-91-1	1,4-Dioxane	< 20.0		µg/l	20.0	11.4	1						
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.00		µg/l	5.00	0.82	1	"	"	"		"	
64-17-5	Ethanol	< 200		µg/l	200	30.9	1	"	"		"		
Surrogate i	ecoveries:												
460-00-4	4-Bromofluorobenzene	92			70-13	0%			"	"	"		
2037-26-5	Toluene-d8	103			70-13	0%		"	"		"	"	
17060-07-0	1,2-Dichloroethane-d4	106			70-13	0%		"	"		"	"	
1868-53-7	Dibromofluoromethane	108			70-13	0%		"	"		"		
<u>MADEP V</u> Prepared	<u>PH</u> by method VPH - EPA <u>503</u>	OC Water											
	C5-C8 Aliphatic Hydrocarbons	< 75.0		µg/l	75.0	2.35	1	MADEP VPH 5/2004 Rev. 1.1	06-Jun-17	06-Jun-17	SD	1709329	

Sample Identification		Client Project #			Matrix Colle		ection Date	/Time	Received				
CMW-01				<u>96</u>	584		Ground W	ater 01	-Jun-17 13	·47	02-Jun-17		
SC35361-	01						Ground m		5un 17 15		02	Juli 17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	ganic Compounds												
MADEP V	<u>PH</u>												
	C9-C12 Aliphatic Hydrocarbons	< 25.0		µg/l	25.0	0.819	1	MADEP VPH 5/2004 Rev. 1.1	06-Jun-17	06-Jun-17	SD	1709329)
	C9-C10 Aromatic Hydrocarbons	< 25.0		µg/l	25.0	0.394	1	н	"	"	"	"	
	Unadjusted C5-C8 Aliphatic Hydrocarbons	< 75.0		µg/l	75.0	1.64	1	n	"	"	"	"	
	Unadjusted C9-C12 Aliphatic Hydrocarbons	< 25.0		µg/l	25.0	1.11	1	n	"		"	"	
71-43-2	Benzene	< 1.00		µg/l	1.00	0.453	1		"	"		"	
100-41-4	Ethylbenzene	< 1.00		µg/l	1.00	0.420	1		"	"		"	
1634-04-4	Methyl tert-butyl ether	< 1.00		µg/l	1.00	0.297	1			"		"	
91-20-3	Naphthalene	< 1.00		µg/l	1.00	0.491	1			"		"	
108-88-3	Toluene	< 1.00		µg/l	1.00	0.373	1	"	"	"		"	
179601-23-1	m,p-Xylene	< 2.00		µg/l	2.00	0.819	1			"		"	
95-47-6	o-Xylene	< 1.00		µg/l	1.00	0.416	1	"	"	"	"	"	
Surrogate r	ecoveries:												
615-59-8	2,5-Dibromotoluene (FID)	119			70-13	80 %				"		"	
615-59-8	2,5-Dibromotoluene (PID)	110			70-13	80 %						"	
Extractabl	e Petroleum Hvdrocarbons												
MADEP E	PH												
Prepared	by method SW846 3510C												
	C9-C18 Aliphatic Hydrocarbons	< 102		µg/l	102	25.1	1	MADEP EPH 5/2004 R	06-Jun-17	07-Jun-17	SM	1709306	i
	C19-C36 Aliphatic Hydrocarbons	< 102		µg/l	102	17.8	1	n	"	"	"	"	
	C11-C22 Aromatic Hydrocarbons	< 102		µg/l	102	35.7	1	n	"	"	"	"	
	Unadjusted C11-C22 Aromatic Hydrocarbons	< 102		µg/l	102	35.7	1	n	"	"	"	"	
91-20-3	Naphthalene	< 5.10		µg/l	5.10	1.47	1		"	"		"	
91-57-6	2-Methylnaphthalene	< 5.10		µg/l	5.10	1.27	1			"		"	
208-96-8	Acenaphthylene	< 5.10		µg/l	5.10	1.57	1		"	"		"	
83-32-9	Acenaphthene	< 5.10		µg/l	5.10	1.69	1		"	"		"	
86-73-7	Fluorene	< 5.10		µg/l	5.10	1.24	1		"	"		"	
85-01-8	Phenanthrene	< 5.10		µg/l	5.10	1.61	1			"		"	
120-12-7	Anthracene	< 5.10		µg/l	5.10	1.31	1		"	"		"	
206-44-0	Fluoranthene	< 5.10		µg/l	5.10	1.46	1		"	"		"	
129-00-0	Pyrene	< 5.10		µg/l	5.10	1.71	1			"		"	
56-55-3	Benzo (a) anthracene	< 5.10		µg/l	5.10	1.55	1			"		"	
218-01-9	Chrysene	< 5.10		µg/l	5.10	1.46	1			"		"	
205-99-2	Benzo (b) fluoranthene	< 5.10		µg/l	5.10	1.61	1	"	"	"		"	
207-08-9	Benzo (k) fluoranthene	< 5.10		µg/l	5.10	1.45	1	"	"	"		"	
50-32-8	Benzo (a) pyrene	< 5.10		µg/l	5.10	1.57	1			"		"	
193-39-5	Indeno (1,2,3-cd) pyrene	< 5.10		µg/l	5.10	1.37	1	"	"	"		"	
53-70-3	Dibenzo (a,h) anthracene	< 5.10		μg/l	5.10	1.46	1	"	"	"		"	
191-24-2	Benzo (g,h,i) perylene	< 5.10		μg/l	5.10	1.65	1	"	"			"	
Surrogate r	ecoveries:												
3386-33-2	1-Chlorooctadecane	79			40-14	10 %		"				"	

Sample Id	ample Identification CMW-01		Client Project #			Matrix		Collection Date/Time			Received		
SC35361	-01			9	684		Ground W	Vater 01	-Jun-17 13	:47	02-	Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Extractab	le Petroleum Hydrocai	rbons											
MADEP E	<u>EPH</u>												
84-15-1	Ortho-Terphenyl	69			40-14	10 %		MADEP EPH 5/2004 R	06-Jun-17	07-Jun-17	SM	1709306	
321-60-8	2-Fluorobiphenyl	74		40-140 %				"	"	"	"		
Soluble M Prepared	etals by EPA 200/6000 by method General F	Series Methods Prep-Metal											
	Filtration	Field Filtered		N/A			1	EPA 200.7/3005A/601 0			BK	1709252	
Soluble M Prepared	etals by EPA 6000/700 by method SW846 3	0 Series Methods <u>005A</u>											
7440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0006	1	SW846 6010C	06-Jun-17	08-Jun-17	tbc	1709215	
7440-38-2	Arsenic	< 0.0040		mg/l	0.0040	0.0014	1		"	"	"		
7440-39-3	Barium	0.0871		mg/l	0.0050	0.0007	1		"	"			
7440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0004	1		"	"			
7440-47-3	Chromium	< 0.0050		mg/l	0.0050	0.0009	1		"	"			
7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0062	1	"		"			
7782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0042	1		"	"	"		
Soluble M	etals by EPA 200 Serie	s Methods											
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00013	1	EPA 245.1/7470A	06-Jun-17	07-Jun-17	LNB	1709216	х

Sample Ic	lentification			Cliant I	Drainat #		Moteria	Call	action Data	/Time	Da	aired	
CMW-02				<u>Client F</u>	<u>10ject #</u>		<u>Matrix</u>	<u>Colle</u>	June 17 14	<u>42</u>	02	Leivea	
SC35361-	02			90	084		Ground wa	ater 01	-Jun-1/14	:42	02	Jun-1 /	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
<u>Volatile O</u>	rganic Compounds by SW	<u>846 8260</u>											
Prepared	by method SW846 5030 V	Vater MS											
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.00		µg/l	1.00	0.53	1	SW846 8260C	06-Jun-17	07-Jun-17	GMA	1709320	1
67-64-1	Acetone	< 10.0	O01	μg/l	10.0	0.80	1		"			"	
107-13-1	Acrylonitrile	< 0.50		μg/l	0.50	0.47	1		"			"	
71-43-2	Benzene	< 1.00		μg/l	1.00	0.28	1		"	"		"	
108-86-1	Bromobenzene	< 1.00		μg/l	1.00	0.33	1		"	"		"	
74-97-5	Bromochloromethane	< 1.00		μg/l	1.00	0.34	1		"	"		"	
75-27-4	Bromodichloromethane	< 0.50		μg/l	0.50	0.42	1		"	"		"	
75-25-2	Bromoform	< 1.00		µg/l	1.00	0.42	1		"	"	"	"	
74-83-9	Bromomethane	< 2.00		µg/l	2.00	0.90	1		"	"	"	"	
78-93-3	2-Butanone (MEK)	< 2.00		µg/l	2.00	1.07	1		"	"		"	
104-51-8	n-Butylbenzene	< 1.00		µg/l	1.00	0.41	1		"			"	
135-98-8	sec-Butylbenzene	< 1.00		μg/l	1.00	0.33	1			"		"	
98-06-6	tert-Butylbenzene	< 1.00		μg/l	1.00	0.32	1			"		"	
75-15-0	Carbon disulfide	< 2.00		µg/l	2.00	0.41	1		"			"	
56-23-5	Carbon tetrachloride	< 1.00		µg/l	1.00	0.44	1		"			"	
108-90-7	Chlorobenzene	< 1.00		µg/l	1.00	0.25	1		"			"	
75-00-3	Chloroethane	< 2.00		µg/l	2.00	0.59	1		"			"	
67-66-3	Chloroform	< 1.00		µg/l	1.00	0.33	1		"			"	
74-87-3	Chloromethane	< 2.00		µg/l	2.00	0.37	1					"	
95-49-8	2-Chlorotoluene	< 1.00		µg/l	1.00	0.32	1					"	
106-43-4	4-Chlorotoluene	< 1.00		µg/l	1.00	0.32	1		"			"	
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.00		µg/l	2.00	0.86	1	n	"	"	"	"	
124-48-1	Dibromochloromethane	< 0.50		µg/l	0.50	0.32	1					"	
106-93-4	1,2-Dibromoethane (EDB)	< 0.50		µg/l	0.50	0.20	1					"	
74-95-3	Dibromomethane	< 1.00		µg/l	1.00	0.31	1					"	
95-50-1	1,2-Dichlorobenzene	< 1.00		µg/l	1.00	0.28	1					"	
541-73-1	1,3-Dichlorobenzene	< 1.00		µq/l	1.00	0.31	1		"			"	
106-46-7	1,4-Dichlorobenzene	< 1.00		µq/l	1.00	0.27	1		"			"	
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.00		µg/l	2.00	0.58	1	u	"	"	"	"	
75-34-3	1,1-Dichloroethane	< 1.00		µg/l	1.00	0.32	1					"	
107-06-2	1,2-Dichloroethane	< 1.00		µg/l	1.00	0.28	1					"	
75-35-4	1,1-Dichloroethene	< 1.00		µg/l	1.00	0.69	1					"	
156-59-2	cis-1,2-Dichloroethene	< 1.00		µg/l	1.00	0.33	1					"	
156-60-5	trans-1,2-Dichloroethene	< 1.00		μg/l	1.00	0.38	1					"	
78-87-5	1,2-Dichloropropane	< 1.00		μg/l	1.00	0.29	1					"	
142-28-9	1,3-Dichloropropane	< 1.00		µq/l	1.00	0.21	1		"			"	
594-20-7	2.2-Dichloropropane	< 1.00		ua/l	1.00	0.42	1					"	
563-58-6	1,1-Dichloropropene	< 1.00		µg/l	1.00	0.58	1	"	"			"	
10061-01-5	cis-1,3-Dichloropropene	< 0.50		µg/l	0.50	0.36	1	"	"			"	
10061-02-6	trans-1,3-Dichloropropene	< 0.50		ua/l	0.50	0.35	1	"	"			"	
100-41-4	Ethylbenzene	< 1.00		ua/l	1.00	0.33	1	"	"			"	
87-68-3	Hexachlorobutadiene	< 0.50		ua/l	0.50	0.47	1	"	"			"	
591-78-6	2-Hexanone (MBK)	< 2.00		μg/l	2.00	0.53	1	"	"			"	

This laboratory report is not valid without an authorized signature on the cover page.

Sample Id	entification			Client I	Project #		<u>Matrix</u>	Colle	ection Date	/Time	Re	ceived	
SC35361-	02			96	684		Ground Wa	ater 01	-Jun-17 14	:42	02-	Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	ganic Compounds												
Volatile O	rganic Compounds by SW	<u>846 8260</u>											
98-82-8	Isopropylbenzene	< 1.00		µg/l	1.00	0.36	1	SW846 8260C	06-Jun-17	07-Jun-17	GMA	1709320	
99-87-6	4-Isopropyltoluene	< 1.00		µg/l	1.00	0.28	1		"		"		
1634-04-4	Methyl tert-butyl ether	< 1.00		µg/l	1.00	0.24	1		"		"		
108-10-1	4-Methyl-2-pentanone (MIBK)	< 2.00		µg/l	2.00	0.52	1	"	"	"	"	"	
75-09-2	Methylene chloride	< 2.00		µg/l	2.00	0.66	1		"		"		
91-20-3	Naphthalene	< 1.00		µg/l	1.00	0.35	1		"		"		
103-65-1	n-Propylbenzene	< 1.00		µg/l	1.00	0.34	1		"				
100-42-5	Styrene	< 1.00		µg/l	1.00	0.40	1		"				
630-20-6	1,1,1,2-Tetrachloroethane	< 1.00		µg/l	1.00	0.38	1		"		"		
79-34-5	1,1,2,2-Tetrachloroethane	< 0.50		µg/l	0.50	0.33	1		"		"		
127-18-4	Tetrachloroethene	< 1.00		µg/l	1.00	0.57	1		"		"		
108-88-3	Toluene	< 1.00		µg/l	1.00	0.30	1				"		
87-61-6	1,2,3-Trichlorobenzene	< 1.00		µg/l	1.00	0.38	1		"		"		
120-82-1	1,2,4-Trichlorobenzene	< 1.00		µg/l	1.00	0.38	1		"		"		
108-70-3	1,3,5-Trichlorobenzene	< 1.00		µg/l	1.00	0.30	1		"		"		
71-55-6	1,1,1-Trichloroethane	< 1.00		µg/l	1.00	0.51	1		"				
79-00-5	1,1,2-Trichloroethane	< 1.00		µg/l	1.00	0.33	1		"				
79-01-6	Trichloroethene	< 1.00		µg/l	1.00	0.50	1		"				
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.00		µg/l	1.00	0.49	1	"	"	"	"	"	
96-18-4	1,2,3-Trichloropropane	< 1.00		µg/l	1.00	0.29	1		"				
95-63-6	1,2,4-Trimethylbenzene	< 1.00		µg/l	1.00	0.36	1		"		"		
108-67-8	1,3,5-Trimethylbenzene	< 1.00		µg/l	1.00	0.43	1		"				
75-01-4	Vinyl chloride	< 1.00		µg/l	1.00	0.47	1				"		
179601-23-1	m,p-Xylene	< 2.00		µg/l	2.00	0.38	1		"				
95-47-6	o-Xylene	< 1.00		µg/l	1.00	0.28	1				"		
109-99-9	Tetrahydrofuran	< 2.00		µg/l	2.00	1.06	1				"		
60-29-7	Ethyl ether	< 1.00		µg/l	1.00	0.37	1		"				
994-05-8	Tert-amyl methyl ether	< 1.00		µg/l	1.00	0.49	1		"		"		
637-92-3	Ethyl tert-butyl ether	< 1.00		µg/l	1.00	0.33	1		"		"		
108-20-3	Di-isopropyl ether	< 1.00		µg/l	1.00	0.29	1		"		"		
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		µg/l	10.0	5.90	1		"				
123-91-1	1,4-Dioxane	< 20.0		µg/l	20.0	11.4	1						
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.00		µg/l	5.00	0.82	1	"	"	"		"	
64-17-5	Ethanol	< 200		µg/l	200	30.9	1	"	"		"		
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	92			70-13	0%			"		"		
2037-26-5	Toluene-d8	103			70-13	0%		"	"		"	"	
17060-07-0	1,2-Dichloroethane-d4	108			70-13	0 %		"	"		"	"	
1868-53-7	Dibromofluoromethane	108			70-13	0 %		"	"		"		
<u>MADEP V</u> Prepared	<u>PH</u> by method VPH - EPA <u>503</u>	OC Water											
	C5-C8 Aliphatic Hydrocarbons	< 75.0		µg/l	75.0	2.35	1	MADEP VPH 5/2004 Rev. 1.1	06-Jun-17	06-Jun-17	SD	1709329	

Sample Id	lentification			Client I	Project #		Matrix	Colle	ection Date	/Time	Re	ceived	
CMW-02				<u>96</u>	<u>10jeet n</u> 584		Ground W	ater 01	-Jun-17 14	·42	02-	Jun-17	
SC35361-	02						Ground W		Juli 17 11	2	02	uii i /	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
MADEP V	<u>PH</u>												
	C9-C12 Aliphatic Hydrocarbons	< 25.0		µg/l	25.0	0.819	1	MADEP VPH 5/2004 Rev. 1.1	06-Jun-17	06-Jun-17	SD	1709329	
	C9-C10 Aromatic Hydrocarbons	< 25.0		µg/l	25.0	0.394	1	u	"	"	"	"	
	Unadjusted C5-C8 Aliphatic Hydrocarbons	< 75.0		µg/l	75.0	1.64	1	u	"	"	"	"	
	Unadjusted C9-C12 Aliphatic Hydrocarbons	< 25.0		µg/l	25.0	1.11	1	u		"	"	"	
71-43-2	Benzene	< 1.00		µg/l	1.00	0.453	1	"	"			"	
100-41-4	Ethylbenzene	< 1.00		µg/l	1.00	0.420	1		"		"	"	
1634-04-4	Methyl tert-butyl ether	< 1.00		µg/l	1.00	0.297	1		"		"	"	
91-20-3	Naphthalene	< 1.00		µg/l	1.00	0.491	1		"			"	
108-88-3	Toluene	< 1.00		µg/l	1.00	0.373	1		"			"	
179601-23-1	m,p-Xylene	< 2.00		µg/l	2.00	0.819	1		"		"	"	
95-47-6	o-Xylene	< 1.00		μg/l	1.00	0.416	1	"	"			"	
Surrogate r	ecoveries:												
615-59-8	2,5-Dibromotoluene (FID)	117			70-13	80 %						"	
615-59-8	2.5-Dibromotoluene (PID)	109			70-13	30 %			"		"	"	
Extractabl	e Petroleum Hydrocarbons												
MADEP E	PH												
Prepared	by method SW846 3510C												
	C9-C18 Aliphatic Hydrocarbons	< 102		µg/l	102	25.1	1	MADEP EPH 5/2004 R	06-Jun-17	07-Jun-17	SM	1709306	
	C19-C36 Aliphatic Hydrocarbons	< 102		µg/l	102	17.8	1	u	"	"	"	"	
	C11-C22 Aromatic Hydrocarbons	< 102		µg/l	102	35.7	1	u	"	"	"	"	
	Unadjusted C11-C22 Aromatic Hydrocarbons	< 102		µg/l	102	35.7	1	u	"	"	"	"	
91-20-3	Naphthalene	< 5.10		µg/l	5.10	1.47	1	"	"			"	
91-57-6	2-Methylnaphthalene	< 5.10		µg/l	5.10	1.27	1		"		"	"	
208-96-8	Acenaphthylene	< 5.10		µg/l	5.10	1.57	1		"		"	"	
83-32-9	Acenaphthene	< 5.10		µg/l	5.10	1.69	1	"	"			"	
86-73-7	Fluorene	< 5.10		µg/l	5.10	1.24	1		"			"	
85-01-8	Phenanthrene	< 5.10		µg/l	5.10	1.61	1		"		"	"	
120-12-7	Anthracene	< 5.10		µg/l	5.10	1.31	1		"			"	
206-44-0	Fluoranthene	< 5.10		µg/l	5.10	1.46	1		"			"	
129-00-0	Pyrene	< 5.10		µg/l	5.10	1.71	1		"		"	"	
56-55-3	Benzo (a) anthracene	< 5.10		µg/l	5.10	1.55	1		"		"	"	
218-01-9	Chrysene	< 5.10		µg/l	5.10	1.46	1		"			"	
205-99-2	Benzo (b) fluoranthene	< 5.10		µg/l	5.10	1.61	1	"	"			"	
207-08-9	Benzo (k) fluoranthene	< 5.10		µg/l	5.10	1.45	1	"	"		"	"	
50-32-8	Benzo (a) pyrene	< 5.10		µg/l	5.10	1.57	1		"			"	
193-39-5	Indeno (1,2,3-cd) pyrene	< 5.10		μg/l	5.10	1.37	1	"			"	"	
53-70-3	Dibenzo (a,h) anthracene	< 5.10		μg/l	5.10	1.46	1	"	"			"	
191-24-2	Benzo (g,h,i) perylene	< 5.10		μg/l	5.10	1.65	1	"	"			"	
Surrogate r	ecoveries:												
3386-33-2	1-Chlorooctadecane	91			40-14	10 %		"	"			"	

Sample Id	dentification			Client	Project #		<u>Matrix</u>	<u>c Colle</u>	ection Date	/Time	Re	ceived	
SC35361	-02			9	684		Ground W	Vater 01	-Jun-17 14	:42	02-	Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Extractab	le Petroleum Hydrocai	rbons											
MADEP E	<u>PH</u>												
84-15-1	Ortho-Terphenyl	84			40-14	10 %		MADEP EPH 5/2004 R	06-Jun-17	07-Jun-17	SM	1709306	
321-60-8	2-Fluorobiphenyl	70			40-14	40 %		"	"	"	"		
Soluble M Prepared	etals by EPA 200/6000 by method General F	Series Methods Prep-Metal											
	Filtration	Field Filtered		N/A			1	EPA 200.7/3005A/601 0			BK	1709252	
Soluble M Prepared	etals by EPA 6000/700 by method SW846 3	0 Series Methods <u>005A</u>											
7440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0006	1	SW846 6010C	06-Jun-17	08-Jun-17	tbc	1709215	
7440-38-2	Arsenic	< 0.0040		mg/l	0.0040	0.0014	1	"		"	"		
7440-39-3	Barium	0.284		mg/l	0.0050	0.0007	1	"		"			
7440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0004	1	"		"			
7440-47-3	Chromium	< 0.0050		mg/l	0.0050	0.0009	1	"		"			
7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0062	1	"		"			
7782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0042	1	"	"	"	"		
Soluble M	etals by EPA 200 Serie	s Methods											
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00013	1	EPA 245.1/7470A	06-Jun-17	07-Jun-17	LNB	1709216	х

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
MADEP VPH 5/2004 Rev. 1.1										
Batch 1709329 - VPH - EPA 5030C Water										
Blank (1709329-BLK1)					Pre	epared & Ai	nalyzed: 06-	Jun-17		
C9-C12 Aliphatic Hydrocarbons	< 25.0		µg/l	25.0						
C5-C8 Aliphatic Hydrocarbons	< 75.0		µg/l	75.0						
C9-C10 Aromatic Hydrocarbons	< 25.0		µg/l	25.0						
Unadjusted C5-C8 Aliphatic Hydrocarbons	< 75.0		µg/l	75.0						
Unadjusted C9-C12 Aliphatic Hydrocarbons	< 25.0		µg/l	25.0						
Benzene	< 1.00		µg/l	1.00						
Ethylbenzene	< 1.00		µg/l	1.00						
Methyl tert-butyl ether	< 1.00		µg/l	1.00						
Naphthalene	< 1.00		µg/l	1.00						
Toluene	< 1.00		µg/l	1.00						
m,p-Xylene	< 2.00		µg/l	2.00						
o-Xylene	< 1.00		µg/l	1.00						
2-Methylpentane	< 1.00		µg/l	1.00						
n-Nonane	< 2.00		µg/l	2.00						
n-Pentane	< 2.00		µg/l	2.00						
1,2,4-Trimethylbenzene	< 1.00		µg/l	1.00						
2,2,4-Trimethylpentane	< 1.00		µg/l	1.00						
n-Butylcyclohexane	< 1.00		µg/l	1.00						
n-Decane	< 1.00		µg/l	1.00						
Surrogate: 2,5-Dibromotoluene (FID)	60.2		µg/l		50.0		120	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	55.2		μg/l		50.0		110	70-130		
LCS (1709329-BS1)					Pre	epared & Ar	nalyzed: 06-	Jun-17		
C5-C8 Aliphatic Hydrocarbons	61.6		µq/l		60.0	•	103	70-130		
C9-C12 Aliphatic Hydrocarbons	58.5		µq/l		60.0		97	70-130		
C9-C10 Aromatic Hydrocarbons	21.5		µg/l		20.0		108	70-130		
Unadjusted C5-C8 Aliphatic Hydrocarbons	205		µg/l		200		102	70-130		
Unadjusted C9-C12 Aliphatic Hydrocarbons	80.0		µg/l		80.0		100	70-130		
Benzene	20.4		µg/l		20.0		102	70-130		
Ethylbenzene	19.6		µg/l		20.0		98	70-130		
Methyl tert-butyl ether	23.2		µg/l		20.0		116	70-130		
Naphthalene	20.9		µg/l		20.0		104	70-130		
Toluene	20.4		µg/l		20.0		102	70-130		
m,p-Xylene	39.6		µg/l		40.0		99	70-130		
o-Xylene	19.7		µg/l		20.0		98	70-130		
2-Methylpentane	16.4		µg/l		20.0		82	70-130		
n-Nonane	17.3		µg/l		20.0		86	70-130		
n-Pentane	14.3		µg/l		20.0		71	70-130		
1,2,4-Trimethylbenzene	21.5		µg/l		20.0		108	70-130		
2,2,4-Trimethylpentane	17.8		µg/l		20.0		89	70-130		
n-Butylcyclohexane	18.4		µg/l		20.0		92	70-130		
n-Decane	18.9		µg/l		20.0		94	70-130		
Surrogate: 2,5-Dibromotoluene (FID)	64.9		µg/l		50.0		130	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	61.5		μg/l		50.0		123	70-130		
LCS Dup (1709329-BSD1)					Pre	epared & Ar	nalvzed: 06-	Jun-17		
C9-C12 Aliphatic Hydrocarbons	61.1		ua/l		60.0		102	70-130	4	25
C5-C8 Aliphatic Hydrocarbons	65.2		ua/l		60.0		109	70-130	6	_== 25
C9-C10 Aromatic Hydrocarbons	21.2		ua/l		20.0		106	70-130	2	25
Unadjusted C5-C8 Aliphatic Hydrocarbons	205		۳9,1 ۱۱۵/۱		20.0		103	70-130	- 04	25
chaquoto oco Aliphalio Hydrocarbolis	200		P9/1		200		100	10-100	0.7	20

Volatile Organic	Compounds -	Quality	Control
-------------------------	--------------------	---------	---------

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
MADEP VPH 5/2004 Rev. 1.1										
Batch 1709329 - VPH - EPA 5030C Water										
LCS Dup (1709329-BSD1)					Pre	epared & Ar	nalyzed: 06-	-Jun-17		
Unadjusted C9-C12 Aliphatic Hydrocarbons	82.3		µg/l		80.0		103	70-130	3	25
Benzene	19.9		µg/l		20.0		100	70-130	2	25
Ethylbenzene	19.6		µg/l		20.0		98	70-130	0.5	25
Methyl tert-butyl ether	21.8		µg/l		20.0		109	70-130	6	25
Naphthalene	20.1		µg/l		20.0		101	70-130	4	25
Toluene	20.2		µg/l		20.0		101	70-130	1	25
m,p-Xylene	39.4		µg/l		40.0		99	70-130	0.4	25
o-Xylene	19.3		µg/l		20.0		96	70-130	2	25
2-Methylpentane	17.9		µg/l		20.0		90	70-130	9	25
n-Nonane	18.7		µg/l		20.0		94	70-130	8	25
n-Pentane	15.9		µg/l		20.0		79	70-130	11	25
1,2,4-Trimethylbenzene	21.2		µg/l		20.0		106	70-130	2	25
2,2,4-Trimethylpentane	19.3		µg/l		20.0		96	70-130	8	25
n-Butylcyclohexane	20.1		µg/l		20.0		101	70-130	9	25
n-Decane	22.2		µg/l		20.0		111	70-130	16	25
Surrogate: 2,5-Dibromotoluene (FID)	64.7		µg/l		50.0		129	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	60.9		µg/l		50.0		122	70-130		

SW846 8260C

Batch 1709320 - SW846 5030 Water MS

Blank (1709320-BLK1)					
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 1.00		µg/l	1.00	
Acetone	< 10.0	O01	µg/l	10.0	
Acrylonitrile	< 0.50		µg/l	0.50	
Benzene	< 1.00		µg/l	1.00	
Bromobenzene	< 1.00		µg/l	1.00	
Bromochloromethane	< 1.00		µg/l	1.00	
Bromodichloromethane	< 0.50		µg/l	0.50	
Bromoform	< 1.00		µg/l	1.00	
Bromomethane	< 2.00		µg/l	2.00	
2-Butanone (MEK)	< 2.00		µg/l	2.00	
n-Butylbenzene	< 1.00		µg/l	1.00	
sec-Butylbenzene	< 1.00		µg/l	1.00	
tert-Butylbenzene	< 1.00		µg/l	1.00	
Carbon disulfide	< 2.00		µg/l	2.00	
Carbon tetrachloride	< 1.00		µg/l	1.00	
Chlorobenzene	< 1.00		µg/l	1.00	
Chloroethane	< 2.00		µg/l	2.00	
Chloroform	< 1.00		µg/l	1.00	
Chloromethane	< 2.00	O01	µg/l	2.00	
2-Chlorotoluene	< 1.00		µg/l	1.00	
4-Chlorotoluene	< 1.00		µg/l	1.00	
1,2-Dibromo-3-chloropropane	< 2.00		µg/l	2.00	
Dibromochloromethane	< 0.50		µg/l	0.50	
1,2-Dibromoethane (EDB)	< 0.50		µg/l	0.50	
Dibromomethane	< 1.00		µg/l	1.00	
1,2-Dichlorobenzene	< 1.00		µg/l	1.00	
1,3-Dichlorobenzene	< 1.00		µg/l	1.00	
1,4-Dichlorobenzene	< 1.00		µg/l	1.00	
Dichlorodifluoromethane (Freon12)	< 2.00		µg/l	2.00	

Prepared & Analyzed: 06-Jun-17

This laboratory report is not valid without an authorized signature on the cover page.

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW946 9260C	Tesur	1 148	Cinto	101	Lever	itesuit	, viale	Linito	10.0	Linit
<u>5 W 840 820UC</u> D-4-h 1700220 SW846 5020 W-4-r MS										
Batch 1/09320 - SW846 5030 Water MS					-			h		
Blank (1709320-BLK1)				4.00	Pre	epared & Ai	halyzed: 06-	-Jun-17		
1,1-Dichloroethane	< 1.00		µg/I	1.00						
1,2-Dichloroethane	< 1.00		µg/I	1.00						
1,1-Dichloroethene	< 1.00		µg/I	1.00						
cis-1,2-Dichloroethene	< 1.00		µg/I	1.00						
trans-1,2-Dichloroethene	< 1.00		µg/l	1.00						
1,2-Dichloropropane	< 1.00		µg/I	1.00						
1,3-Dichloropropane	< 1.00		µg/l	1.00						
2,2-Dichloropropane	< 1.00		µg/l	1.00						
1,1-Dichloropropene	< 1.00		µg/l	1.00						
cis-1,3-Dichloropropene	< 0.50		µg/l	0.50						
trans-1,3-Dichloropropene	< 0.50		µg/l	0.50						
Ethylbenzene	< 1.00		µg/l	1.00						
Hexachlorobutadiene	< 0.50		µg/l	0.50						
2-Hexanone (MBK)	< 2.00		µg/l	2.00						
Isopropylbenzene	< 1.00		µg/l	1.00						
4-Isopropyltoluene	< 1.00		µg/l	1.00						
Methyl tert-butyl ether	< 1.00		µg/l	1.00						
4-Methyl-2-pentanone (MIBK)	< 2.00		µg/l	2.00						
Methylene chloride	< 2.00		µg/l	2.00						
Naphthalene	< 1.00		µg/l	1.00						
n-Propylbenzene	< 1.00		µg/l	1.00						
Styrene	< 1.00		µg/l	1.00						
1,1,1,2-Tetrachloroethane	< 1.00		µg/l	1.00						
1,1,2,2-Tetrachloroethane	< 0.50		µg/l	0.50						
Tetrachloroethene	< 1.00		µg/l	1.00						
Toluene	< 1.00		µg/l	1.00						
1,2,3-Trichlorobenzene	< 1.00		µg/l	1.00						
1,2,4-Trichlorobenzene	< 1.00		µg/l	1.00						
1,3,5-Trichlorobenzene	< 1.00		µg/l	1.00						
1,1,1-Trichloroethane	< 1.00		µg/l	1.00						
1,1,2-Trichloroethane	< 1.00		µg/l	1.00						
Trichloroethene	< 1.00		µg/l	1.00						
Trichlorofluoromethane (Freon 11)	< 1.00		µg/l	1.00						
1,2,3-Trichloropropane	< 1.00		µg/l	1.00						
1,2,4-Trimethylbenzene	< 1.00		µg/l	1.00						
1,3,5-Trimethylbenzene	< 1.00		µg/l	1.00						
Vinyl chloride	< 1.00		µg/l	1.00						
m,p-Xylene	< 2.00		µg/l	2.00						
o-Xylene	< 1.00		µg/l	1.00						
Tetrahydrofuran	< 2.00		µg/l	2.00						
Ethyl ether	< 1.00		µg/l	1.00						
Tert-amyl methyl ether	< 1.00		µg/l	1.00						
Ethyl tert-butyl ether	< 1.00		µg/l	1.00						
Di-isopropyl ether	< 1.00		µg/l	1.00						
Tert-Butanol / butyl alcohol	< 10.0		µg/l	10.0						
1,4-Dioxane	< 20.0		µg/l	20.0						
trans-1,4-Dichloro-2-butene	< 5.00		µg/l	5.00						
Ethanol	< 200	O01	µg/l	200						
Surrogate: 4-Bromofluorobenzene	46.2		µg/l		50.0		92	70-130		
Surrogate: Toluene-d8	51.4		µg/l		50.0		103	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>SW846 8260C</u>										
Batch 1709320 - SW846 5030 Water MS										
<u>Blank (1709320-BLK1)</u>					Pre	epared & Ar	nalyzed: 06-	Jun-17		
Surrogate: 1.2-Dichloroethane-d4	53.1		ua/l		50.0		106	70-130		
Surrogate: Dibromofluoromethane	52.4		µg/l		50.0		105	70-130		
LCS (1709320-BS1)			15		Pre	enared & Ar	nalvzed: 06-	Jun-17		
1 1 2-Trichlorotrifluoroethane (Freon 113)	22.1		ua/l		20.0		111	70-130		
Acetone	18.6		ua/l		20.0		93	70-130		
Acrylonitrile	20.1		µg/l		20.0		100	70-130		
Benzene	20.3		ua/l		20.0		102	70-130		
Bromobenzene	20.4		µg/l		20.0		102	70-130		
Bromochloromethane	20.1		ua/l		20.0		101	70-130		
Bromodichloromethane	18.9		ua/l		20.0		95	70-130		
Bromoform	18.1		ua/l		20.0		90	70-130		
Bromomethane	21.1		ua/l		20.0		106	70-130		
2-Butanone (MEK)	15.6		ua/l		20.0		78	70-130		
n-Butylbenzene	16.7		ua/l		20.0		83	70-130		
sec-Butylbenzene	17.7		ua/l		20.0		89	70-130		
tert-Butylbenzene	17.3		ua/l		20.0		87	70-130		
Carbon disulfide	19.4		ua/l		20.0		97	70-130		
Carbon tetrachloride	19.4		ua/l		20.0		97	70-130		
Chlorobenzene	20.0		ua/l		20.0		100	70-130		
Chloroethane	21.6		ua/l		20.0		108	70-130		
Chloroform	17.9		ua/l		20.0		89	70-130		
Chloromethane	21.1		ua/l		20.0		106	70-130		
2-Chlorotoluene	21.4		ua/l		20.0		107	70-130		
4-Chlorotoluene	20.9		ua/l		20.0		105	70-130		
1.2-Dibromo-3-chloropropane	15.7		µg/l		20.0		78	70-130		
Dibromochloromethane	18.8		µg/l		20.0		94	70-130		
1,2-Dibromoethane (EDB)	20.5		μg/l		20.0		102	70-130		
Dibromomethane	20.0		µg/l		20.0		100	70-130		
1,2-Dichlorobenzene	19.1		μg/l		20.0		96	70-130		
1,3-Dichlorobenzene	20.7		μg/l		20.0		104	70-130		
1,4-Dichlorobenzene	18.1		µg/l		20.0		91	70-130		
Dichlorodifluoromethane (Freon12)	18.5		μg/l		20.0		92	70-130		
1,1-Dichloroethane	21.7		µg/l		20.0		108	70-130		
1,2-Dichloroethane	19.5		μg/l		20.0		98	70-130		
1,1-Dichloroethene	22.4		µg/l		20.0		112	70-130		
cis-1,2-Dichloroethene	17.1		µg/l		20.0		86	70-130		
trans-1,2-Dichloroethene	21.6		µg/l		20.0		108	70-130		
1,2-Dichloropropane	19.8		µg/l		20.0		99	70-130		
1,3-Dichloropropane	19.6		µg/l		20.0		98	70-130		
2,2-Dichloropropane	19.4		µg/l		20.0		97	70-130		
1,1-Dichloropropene	20.4		µg/l		20.0		102	70-130		
cis-1,3-Dichloropropene	18.2		µg/l		20.0		91	70-130		
trans-1,3-Dichloropropene	17.7		µg/l		20.0		88	70-130		
Ethylbenzene	20.5		µg/l		20.0		102	70-130		
Hexachlorobutadiene	17.2		µg/l		20.0		86	70-130		
2-Hexanone (MBK)	15.0		µg/l		20.0		75	70-130		
Isopropylbenzene	20.6		µg/l		20.0		103	70-130		
4-Isopropyltoluene	16.4		µg/l		20.0		82	70-130		
Methyl tert-butyl ether	19.7		µg/l		20.0		98	70-130		
4-Methyl-2-pentanone (MIBK)	16.8		µg/l		20.0		84	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>SW846 8260C</u>										
Batch 1709320 - SW846 5030 Water MS										
LCS (1709320-BS1)					Pre	epared & Ar	nalyzed: 06-	Jun-17		
Methylene chloride	21.4		µg/l		20.0		107	70-130		
Naphthalene	17.0		µg/l		20.0		85	70-130		
n-Propylbenzene	18.5		µg/l		20.0		92	70-130		
Styrene	18.3		μg/l		20.0		91	70-130		
1,1,1,2-Tetrachloroethane	17.8		µg/l		20.0		89	70-130		
1,1,2,2-Tetrachloroethane	20.3		µg/l		20.0		101	70-130		
Tetrachloroethene	19.4		µg/l		20.0		97	70-130		
Toluene	20.7		µg/l		20.0		103	70-130		
1,2,3-Trichlorobenzene	18.9		µg/l		20.0		95	70-130		
1,2,4-Trichlorobenzene	17.9		µg/l		20.0		89	70-130		
1,3,5-Trichlorobenzene	18.0		µg/l		20.0		90	70-130		
1,1,1-Trichloroethane	20.3		µg/l		20.0		102	70-130		
1,1,2-Trichloroethane	20.7		µg/l		20.0		103	70-130		
Trichloroethene	19.5		µg/l		20.0		98	70-130		
Trichlorofluoromethane (Freon 11)	21.9		µg/l		20.0		110	70-130		
1,2,3-Trichloropropane	19.4		µg/l		20.0		97	70-130		
1,2,4-Trimethylbenzene	17.0		µg/l		20.0		85	70-130		
1,3,5-Trimethylbenzene	17.2		µg/l		20.0		86	70-130		
Vinyl chloride	21.3		µg/l		20.0		107	70-130		
m,p-Xylene	21.5		µg/l		20.0		107	70-130		
o-Xylene	19.4		µg/l		20.0		97	70-130		
Tetrahydrofuran	15.7		µg/l		20.0		79	70-130		
Ethyl ether	21.8		µg/l		20.0		109	70-130		
Tert-amyl methyl ether	17.9		µg/l		20.0		90	70-130		
Ethyl tert-butyl ether	17.8		µg/l		20.0		89	70-130		
Di-isopropyl ether	16.2		µg/l		20.0		81	70-130		
Tert-Butanol / butyl alcohol	174		µg/l		200		87	70-130		
1,4-Dioxane	165		µg/l		200		82	70-130		
trans-1,4-Dichloro-2-butene	15.8		µg/l		20.0		79	70-130		
Ethanol	734	QC2	µg/l		400		184	70-130		
Surrogate: 4-Bromofluorobenzene	51.9		µg/l		50.0		104	70-130		
Surrogate: Toluene-d8	51.5		µg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.8		µg/l		50.0		100	70-130		
Surrogate: Dibromofluoromethane	51.2		μg/l		50.0		102	70-130		
LCS Dup (1709320-BSD1)					Pre	epared & Ar	nalvzed: 06-	Jun-17		
1.1.2-Trichlorotrifluoroethane (Freon 113)	20.8		ua/l		20.0		104	70-130	6	20
Acetone	16.7		ua/l		20.0		83	70-130	11	20
Acrylonitrile	20.2		µg/l		20.0		101	70-130	0.3	20
Benzene	19.4		ua/l		20.0		97	70-130	5	20
Bromobenzene	19.9		µg/l		20.0		100	70-130	3	20
Bromochloromethane	19.5		ua/l		20.0		97	70-130	3	20
Bromodichloromethane	17.7		ua/l		20.0		88	70-130	7	20
Bromoform	17.0		µq/l		20.0		85	70-130	6	20
Bromomethane	20.8		µq/l		20.0		104	70-130	2	20
2-Butanone (MEK)	12.0	QR2	μg/l		20.0		60	70-130	26	20
n-Butylbenzene	16.4		µa/l		20.0		82	70-130	1	20
sec-Butylbenzene	17.2		µg/l		20.0		86	70-130	3	20
- tert-Butylbenzene	16.7		µg/l		20.0		84	70-130	4	20
- Carbon disulfide	18.7		µg/l		20.0		93	70-130	4	20
Carbon tetrachloride	18.3		µq/l		20.0		92	70-130	6	20
			10.				-		-	~

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>SW846 8260C</u>										
Batch 1709320 - SW846 5030 Water MS										
LCS Dup (1709320-BSD1)					Pre	epared & Ar	nalyzed: 06-	Jun-17		
Chlorobenzene	19.2		µg/l		20.0		96	70-130	4	20
Chloroethane	20.5		μg/l		20.0		103	70-130	5	20
Chloroform	17.0		µg/l		20.0		85	70-130	5	20
Chloromethane	20.6		µg/l		20.0		103	70-130	3	20
2-Chlorotoluene	20.6		µg/l		20.0		103	70-130	4	20
4-Chlorotoluene	20.3		µg/l		20.0		102	70-130	3	20
1,2-Dibromo-3-chloropropane	16.9		µg/l		20.0		84	70-130	7	20
Dibromochloromethane	18.1		μg/l		20.0		90	70-130	4	20
1,2-Dibromoethane (EDB)	19.8		µg/l		20.0		99	70-130	3	20
Dibromomethane	19.1		µq/l		20.0		96	70-130	4	20
1,2-Dichlorobenzene	19.0		µg/l		20.0		95	70-130	0.9	20
1,3-Dichlorobenzene	19.9		µq/l		20.0		99	70-130	4	20
1,4-Dichlorobenzene	18.0		µg/l		20.0		90	70-130	0.6	20
Dichlorodifluoromethane (Freon12)	17.6		µq/l		20.0		88	70-130	5	20
1,1-Dichloroethane	20.8		µg/l		20.0		104	70-130	4	20
1,2-Dichloroethane	19.3		µg/l		20.0		96	70-130	1	20
1,1-Dichloroethene	20.6		µg/l		20.0		103	70-130	8	20
cis-1,2-Dichloroethene	16.3		µg/l		20.0		82	70-130	5	20
trans-1,2-Dichloroethene	20.6		μg/l		20.0		103	70-130	5	20
1,2-Dichloropropane	19.0		µg/l		20.0		95	70-130	4	20
1,3-Dichloropropane	19.2		μg/l		20.0		96	70-130	2	20
2,2-Dichloropropane	18.2		µg/l		20.0		91	70-130	6	20
1,1-Dichloropropene	19.8		µg/l		20.0		99	70-130	3	20
cis-1,3-Dichloropropene	17.6		µg/l		20.0		88	70-130	4	20
trans-1,3-Dichloropropene	17.2		µg/l		20.0		86	70-130	3	20
Ethylbenzene	20.0		µg/l		20.0		100	70-130	2	20
Hexachlorobutadiene	17.6		µg/l		20.0		88	70-130	2	20
2-Hexanone (MBK)	15.0		µg/l		20.0		75	70-130	0.07	20
Isopropylbenzene	19.9		µg/l		20.0		100	70-130	3	20
4-Isopropyltoluene	16.3		µg/l		20.0		81	70-130	0.6	20
Methyl tert-butyl ether	19.6		µg/l		20.0		98	70-130	0.8	20
4-Methyl-2-pentanone (MIBK)	17.2		µg/l		20.0		86	70-130	2	20
Methylene chloride	20.6		µg/l		20.0		103	70-130	3	20
Naphthalene	18.3		μg/l		20.0		92	70-130	7	20
n-Propylbenzene	17.8		µg/l		20.0		89	70-130	4	20
Styrene	18.0		μg/l		20.0		90	70-130	1	20
1,1,1,2-Tetrachloroethane	17.6		µg/l		20.0		88	70-130	1	20
1,1,2,2-Tetrachloroethane	19.8		μg/l		20.0		99	70-130	2	20
Tetrachloroethene	19.2		µg/l		20.0		96	70-130	1	20
Toluene	19.8		µg/l		20.0		99	70-130	5	20
1,2,3-Trichlorobenzene	19.9		µg/l		20.0		100	70-130	5	20
1,2,4-Trichlorobenzene	18.5		µg/l		20.0		92	70-130	3	20
1,3,5-Trichlorobenzene	18.1		µg/l		20.0		90	70-130	0.2	20
1,1,1-Trichloroethane	19.4		µg/l		20.0		97	70-130	5	20
1,1,2-Trichloroethane	20.0		μg/l		20.0		100	70-130	4	20
Trichloroethene	18.6		µg/l		20.0		93	70-130	5	20
Trichlorofluoromethane (Freon 11)	20.8		µg/l		20.0		104	70-130	5	20
1,2,3-Trichloropropane	19.0		µg/l		20.0		95	70-130	2	20
1,2,4-Trimethylbenzene	16.4		µg/l		20.0		82	70-130	4	20
1,3,5-Trimethylbenzene	16.6		µg/l		20.0		83	70-130	3	20
•										

Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
				Pre	epared & Ar	nalyzed: 06-	-Jun-17		
20.3		µg/l		20.0		101	70-130	5	20
20.4		µg/l		20.0		102	70-130	5	20
18.6		µg/l		20.0		93	70-130	4	20
15.7		µg/l		20.0		78	70-130	0.2	20
21.8		µg/l		20.0		109	70-130	0.2	20
17.6		µg/l		20.0		88	70-130	2	20
17.8		µg/l		20.0		89	70-130	0.2	20
15.3		µg/l		20.0		77	70-130	5	20
180		µg/l		200		90	70-130	3	20
174		µg/l		200		87	70-130	5	20
16.9		µg/l		20.0		84	70-130	6	20
746	QC2	µg/l		400		186	70-130	2	20
51.9		µg/l		50.0		104	70-130		
51.1		µg/l		50.0		102	70-130		
48.5		µg/l		50.0		97	70-130		
51.3		µg/l		50.0		103	70-130		
	Result 20.3 20.4 18.6 15.7 21.8 17.6 17.8 15.3 180 174 16.9 746 51.9 51.1 48.5 51.3	Result Flag 20.3	Result Flag Units 20.3 μg/l 20.4 μg/l 18.6 μg/l 15.7 μg/l 21.8 μg/l 17.6 μg/l 17.8 μg/l 16.9 μg/l 16.9 μg/l 51.9 μg/l 51.1 μg/l 48.5 μg/l	Result Flag Units *RDL 20.3 µg/l 20.4 µg/l 18.6 µg/l 15.7 µg/l 21.8 µg/l 17.6 µg/l 15.3 µg/l 16.9 µg/l 16.9 µg/l 51.9 µg/l 51.1 µg/l 48.5 µg/l 51.3 µg/l	Result Flag Units *RDL Spike Level 20.3 μg/l 20.0 20.4 μg/l 20.0 18.6 μg/l 20.0 15.7 μg/l 20.0 21.8 μg/l 20.0 17.6 μg/l 20.0 17.8 μg/l 20.0 18.0 μg/l 20.0 17.4 μg/l 20.0 16.9 μg/l 20.0 16.9 μg/l 20.0 51.9 μg/l 20.0 51.1 μg/l 50.0 48.5 μg/l 50.0 51.3 μg/l 50.0	Result Flag Units *RDL Spike Level Source Result 20.3 µg/l 20.0	ResultFlagUnits*RDLSpike LevelSource Result%REC20.3 $\mu g/l$ 20.010120.4 $\mu g/l$ 20.010218.6 $\mu g/l$ 20.09315.7 $\mu g/l$ 20.09315.7 $\mu g/l$ 20.010917.6 $\mu g/l$ 20.08817.8 $\mu g/l$ 20.08915.3 $\mu g/l$ 20.08915.3 $\mu g/l$ 20.08915.3 $\mu g/l$ 20.08716.9 $\mu g/l$ 20.08716.9 $\mu g/l$ 20.084746QC2 $\mu g/l$ 50.010451.1 $\mu g/l$ 50.010248.5 $\mu g/l$ 50.09751.3 $\mu g/l$ 50.0103	Result Flag Units *RDL Spike Source %REC Limits 20.3 μg/l 20.0 101 70-130 20.4 μg/l 20.0 102 70-130 20.4 μg/l 20.0 93 70-130 18.6 μg/l 20.0 93 70-130 15.7 μg/l 20.0 78 70-130 15.7 μg/l 20.0 88 70-130 15.7 μg/l 20.0 88 70-130 15.7 μg/l 20.0 88 70-130 15.3 μg/l 20.0 89 70-130 15.3 μg/l 20.0 89 70-130 16.9 μg/l 20.0 87 70-130 16.9	ResultFlagUnits*RDLSpike LevelSource Result%REC%RECLimitsRPDPrepared & Analyzed: 06 -Jun-1720.3 $\mu g/l$ 20.010170-130520.4 $\mu g/l$ 20.010270-130520.4 $\mu g/l$ 20.010270-130518.6 $\mu g/l$ 20.09370-130415.7 $\mu g/l$ 20.07870-1300.221.8 $\mu g/l$ 20.08870-130217.6 $\mu g/l$ 20.08970-130215.3 $\mu g/l$ 20.07770-1305180 $\mu g/l$ 20.08770-130516.9 $\mu g/l$ 20.08770-130516.9 $\mu g/l$ 20.08470-130251.9 $\mu g/l$ 50.010470-130251.9 $\mu g/l$ 50.010470-13051.1 $\mu g/l$ 50.010270-13051.3 $\mu g/l$ 50.010470-13051.3 $\mu g/l$ 50.010470-13051.3 $\mu g/l$ 50.010470-13051.3 $\mu g/l$ 50.010370-130

					0.1	G		A/DEC		
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	%REC Limits	RPD	Limit
<u>MADEP EPH 5/2004 R</u>										
Batch 1709306 - SW846 3510C										
Blank (1709306-BLK1)					Pre	epared: 06-	Jun-17 An	alyzed: 07-Ji	un-17	
C9-C18 Aliphatic Hydrocarbons	< 100		µq/l	100						
C19-C36 Aliphatic Hydrocarbons	< 100		µg/l	100						
C11-C22 Aromatic Hydrocarbons	< 100		µq/l	100						
Unadjusted C11-C22 Aromatic Hydrocarbons	< 100		μg/l	100						
Total Petroleum Hydrocarbons	< 300		µg/l	300						
Unadjusted Total Petroleum Hydrocarbons	< 300		µg/l	300						
Naphthalene	< 5.00		μg/l	5.00						
2-Methylnaphthalene	< 5.00		µg/l	5.00						
Acenaphthylene	< 5.00		μg/l	5.00						
Acenaphthene	< 5.00		µg/l	5.00						
Fluorene	< 5.00		µg/l	5.00						
Phenanthrene	< 5.00		µg/l	5.00						
Anthracene	< 5.00		µg/l	5.00						
Fluoranthene	< 5.00		µg/l	5.00						
Pyrene	< 5.00		µg/l	5.00						
Benzo (a) anthracene	< 5.00		µg/l	5.00						
Chrysene	< 5.00		µg/l	5.00						
Benzo (b) fluoranthene	< 5.00		µg/l	5.00						
Benzo (k) fluoranthene	< 5.00		µg/l	5.00						
Benzo (a) pyrene	< 5.00		µg/l	5.00						
Indeno (1,2,3-cd) pyrene	< 5.00		µg/l	5.00						
Dibenzo (a,h) anthracene	< 5.00		µg/l	5.00						
Benzo (g,h,i) perylene	< 5.00		µg/l	5.00						
n-Nonane (C9)	< 5.00		µg/l	5.00						
n-Decane	< 5.00		µg/l	5.00						
n-Dodecane	< 5.00		µg/l	5.00						
n-Tetradecane	< 5.00		µg/l	5.00						
n-Hexadecane	< 5.00		µg/l	5.00						
n-Octadecane	< 5.00		µg/l	5.00						
n-Nonadecane	< 5.00		µg/l	5.00						
n-Eicosane	< 5.00		µg/l	5.00						
n-Docosane	< 5.00		µg/l	5.00						
n-Tetracosane	< 5.00		µg/l	5.00						
n-Hexacosane	< 5.00		µg/l	5.00						
n-Octacosane	< 5.00		µg/l	5.00						
n-Triacontane	< 5.00		µg/l	5.00						
n-Hexatriacontane	< 5.00		µg/l	5.00						
Naphthalene (aliphatic fraction)	0.00		µg/l							
2-Methylnaphthalene (aliphatic fraction)	0.00		µg/l							
Surrogate: 1-Chlorooctadecane	43.5		ua/l		50.0		87	40-140		
Surrogate: Ortho-Terphenyl	45.2		ua/l		50.0		90	40-140		
Surrogate: 2-Fluorobiphenvl	28.3		ua/l		40.0		71	40-140		
LCS (1709306-BS1)			1.2.		Pre	enared: 06-	lun-17 An	alvzed: 07. li	ın-17	
C9-C18 Aliphatic Hydrocarbons	266		ua/l	100	600		44	40-140		
C19-C36 Aliphatic Hydrocarbons	345		P9/1	100	800		43	40-140		
Unadjusted C11-C22 Aromatic	540 218		P9/1	100	340		 64	40-140		
Hydrocarbons	210		P9/1	100	5-0		U-T	+U		
Naphthalene	23.9		µg/l	5.00	20.0		119	40-140		
2-Methylnaphthalene	24.6		µg/l	5.00	20.0		123	40-140		
Acenaphthylene	24.4		µg/l	5.00	20.0		122	40-140		

Extractable Petroleum Hydrocarbons - Quality Control

This laboratory report is not valid without an authorized signature on the cover page.

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>MADEP EPH 5/2004 R</u>										
Batch 1709306 - SW846 3510C										
LCS (1709306-BS1)					Pre	epared: 06-	Jun-17 An	alyzed: 07-J	un-17	
Acenaphthene	25.0		µg/l	5.00	20.0		125	40-140		
Fluorene	26.8		µg/l	5.00	20.0		134	40-140		
Phenanthrene	26.5		µg/l	5.00	20.0		132	40-140		
Anthracene	26.5		µg/l	5.00	20.0		132	40-140		
Fluoranthene	26.6		µg/l	5.00	20.0		133	40-140		
Pyrene	25.6		µg/l	5.00	20.0		128	40-140		
Benzo (a) anthracene	25.3		μg/l	5.00	20.0		127	40-140		
Chrysene	24.7		μg/l	5.00	20.0		123	40-140		
Benzo (b) fluoranthene	24.6		µg/l	5.00	20.0		123	40-140		
Benzo (k) fluoranthene	22.5		µg/l	5.00	20.0		113	40-140		
Benzo (a) pyrene	23.1		μg/l	5.00	20.0		115	40-140		
Indeno (1,2,3-cd) pyrene	21.7		μg/l	5.00	20.0		109	40-140		
Dibenzo (a,h) anthracene	20.9		µg/l	5.00	20.0		105	40-140		
Benzo (q,h,i) perylene	22.3		µg/l	5.00	20.0		111	40-140		
n-Nonane (C9)	50.6		µg/l	5.00	100		51	30-140		
n-Decane	50.4		µg/l	5.00	100		50	40-140		
n-Dodecane	50.8		µg/l	5.00	100		51	40-140		
n-Tetradecane	55.8		µg/l	5.00	100		56	40-140		
n-Hexadecane	63.4		µg/l	5.00	100		63	40-140		
n-Octadecane	68.1		ua/l	5.00	100		68	40-140		
n-Nonadecane	68.8		µg/l	5.00	100		69	40-140		
n-Eicosane	69.6		ua/l	5.00	100		70	40-140		
n-Docosane	69.8		µg/l	5.00	100		70	40-140		
n-Tetracosane	66.6		ua/l	5.00	100		67	40-140		
n-Hexacosane	62.4		ua/l	5.00	100		62	40-140		
n-Octacosane	61.0		µg/l	5.00	100		61	40-140		
n-Triacontane	59.1		ua/l	5.00	100		59	40-140		
n-Hexatriacontane	48.8		ua/l	5.00	100		49	40-140		
Naphthalene (aliphatic fraction)	0.00		ua/l		20.0			0-200		
2-Methylnaphthalene (aliphatic fraction)	0.00		μg/l		20.0			0-200		
Surrogate: 1-Chlorooctadecane	63 1		ug/l		50.0		126	40-140		
Surrogate: Ortho-Terphenyl	30.2		ug/l		50.0		60	40-140		
Surrogate: 2-Eluorobinhenvl	18.1		ug/l		40.0		45	40-140		
	10.1		P9/1		Dr/	apared: 06	lup 17 Ap	alvzed: 07 li	un 17	
CO C18 Aliphatia Hydrogerbona	207		ug/l	100	600	epareu. 00-	54	40 140	20	25
C9-C 18 Aliphatic Hydrocarbons	327		µg/i	100	800		04 40	40-140	20	20
Unadjusted C11-C22 Aromatic	320 187		µg/l	100	340		40 55	40-140	16	25 25
Hydrocarbons									_	
Naphthalene	23.3		µg/l	5.00	20.0		117	40-140	2	25
2-Methylnaphthalene	23.3		µg/l	5.00	20.0		116	40-140	5	25
Acenaphthylene	23.7		µg/l	5.00	20.0		118	40-140	3	25
Acenaphthene	23.8		µg/l	5.00	20.0		119	40-140	5	25
Fluorene	25.5		µg/l	5.00	20.0		128	40-140	5	25
Phenanthrene	25.3		µg/l	5.00	20.0		126	40-140	5	25
Anthracene	25.4		µg/l	5.00	20.0		127	40-140	4	25
Fluoranthene	25.5		µg/l	5.00	20.0		128	40-140	4	25
Pyrene	24.9		µg/l	5.00	20.0		125	40-140	3	25
Benzo (a) anthracene	25.7		µg/l	5.00	20.0		129	40-140	2	25
Chrysene	25.2		µg/l	5.00	20.0		126	40-140	2	25
Benzo (b) fluoranthene	23.8		µg/l	5.00	20.0		119	40-140	3	25

	Extractable P	etroleun	n Hydroc	arbons - (Quality	Control				
Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
MADEP EPH 5/2004 R										
Batch 1709306 - SW846 3510C										
LCS Dup (1709306-BSD1)					Pr	epared: 06-	Jun-17 An	alyzed: 07-J	un-17	
Benzo (k) fluoranthene	24.8		µg/l	5.00	20.0		124	40-140	10	25
Benzo (a) pyrene	25.4		µg/l	5.00	20.0		127	40-140	10	25
Indeno (1,2,3-cd) pyrene	23.8		µg/l	5.00	20.0		119	40-140	9	25
Dibenzo (a,h) anthracene	23.0		µg/l	5.00	20.0		115	40-140	9	25
Benzo (g,h,i) perylene	24.1		µg/l	5.00	20.0		121	40-140	8	25
n-Nonane (C9)	45.2		µg/l	5.00	100		45	30-140	11	25
n-Decane	46.0		µg/l	5.00	100		46	40-140	9	25
n-Dodecane	45.3		µg/l	5.00	100		45	40-140	11	25
n-Tetradecane	49.2		µg/l	5.00	100		49	40-140	13	25
n-Hexadecane	55.1		µg/l	5.00	100		55	40-140	14	25
n-Octadecane	58.7		µg/l	5.00	100		59	40-140	15	25
n-Nonadecane	59.2		µg/l	5.00	100		59	40-140	15	25
n-Eicosane	59.9		µg/l	5.00	100		60	40-140	15	25
n-Docosane	60.6		µg/l	5.00	100		61	40-140	14	25
n-Tetracosane	59.7		µg/l	5.00	100		60	40-140	11	25
n-Hexacosane	60.9		µg/l	5.00	100		61	40-140	2	25
n-Octacosane	62.1		µg/l	5.00	100		62	40-140	2	25
n-Triacontane	60.2		µg/l	5.00	100		60	40-140	2	25
n-Hexatriacontane	50.3		µg/l	5.00	100		50	40-140	3	25
Naphthalene (aliphatic fraction)	0.00		µg/l		20.0			0-200		200
2-Methylnaphthalene (aliphatic fraction)	0.00		µg/l		20.0			0-200		200
Surrogate: 1-Chlorooctadecane	53.4		µg/l		50.0		107	40-140		
Surrogate: Ortho-Terphenyl	31.1		µg/l		50.0		62	40-140		
Surrogate: 2-Fluorobiphenyl	18.5		µg/l		40.0		46	40-140		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit
SW846 6010C		1	onito	102	Lever	result	, viale	Linito	iu b	
<u>5 W 040 0010C</u>										
Batch 1709215 - SW 840 5005A					D.,		lum 47 Am			
Blank (1709215-BLK1)	. 0.0050			0.0050	Pr	epared: 06-	Jun-17 An	alyzed: 08-J	<u>un-17</u>	
Silver	< 0.0050		mg/i	0.0050						
Arsenic	< 0.0040		mg/l	0.0040						
Barium	< 0.0050		mg/l	0.0050						
Cadmium	< 0.0025		mg/l	0.0025						
Chromium	< 0.0050		mg/l	0.0050						
Lead	< 0.0075		mg/l	0.0075						
Selenium	< 0.0150		mg/l	0.0150						
LCS (1709215-BS1)					Pr	epared: 06-	Jun-17 An	alyzed: 08-J	<u>un-17</u>	
Arsenic	1.28		mg/l	0.0040	1.25		103	85-115		
Selenium	1.29		mg/l	0.0150	1.25		104	85-115		
Lead	1.29		mg/l	0.0075	1.25		103	85-115		
Chromium	1.31		mg/l	0.0050	1.25		105	85-115		
Barium	1.33		mg/l	0.0050	1.25		106	85-115		
Silver	1.27		mg/l	0.0050	1.25		102	85-115		
Cadmium	1.29		mg/l	0.0025	1.25		103	85-115		
LCS Dup (1709215-BSD1)					Pr	epared: 06-	Jun-17 An	alyzed: 08-J	un-17	
Silver	1.25		ma/l	0.0050	1.25		100	85-115	2	20
Arsenic	1.26		mg/l	0.0040	1.25		101	85-115	2	20
Barium	1.32		ma/l	0.0050	1.25		105	85-115	0.5	20
Cadmium	1 26		ma/l	0.0025	1 25		101	85-115	2	20
Chromium	1.29		ma/l	0.0050	1 25		103	85-115	2	20
Lead	1.25		ma/l	0.0075	1.25		101	85-115	2	20
Selenium	1.20		mg/l	0.0070	1.25		102	85 11F	2	20
Gelenium	1.27		iiig/i	0.0150	1.20		102	00-110	2	20

Soluble Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result %	6REC	%REC Limits	RPD	RPD Limit
EPA 245.1/7470A										
Batch 1709216 - EPA200/SW7000 Series										
Blank (1709216-BLK1)					Pre	pared: 06-Jun-	-17	Analyzed: 07-Ju	<u>in-17</u>	
Mercury	< 0.00020		mg/l	0.00020						
LCS (1709216-BS1)					Pre	pared: 06-Jun-	-17	Analyzed: 07-Ju	<u>in-17</u>	
Mercury	0.00442		mg/l	0.00020	0.00500		88	85-115		

Extractable Petroleum Hydrocarbons - CCV Evaluation Report

	Average				
Analyte(s)	RF	CCRF	% D	Limit	
Batch S705139					
Calibration Check (S705139-CCV2)					
C9-C18 Aliphatic Hydrocarbons	667108.1	326523.5	-18.0	25	
C19-C36 Aliphatic Hydrocarbons	1220327	331296.5	-23.2	25	
Unadjusted C11-C22 Aromatic Hydrocarbons	4176284	5150929	-19.4	20	
Naphthalene	8.783097	7.381681	2.8	20	
2-Methylnaphthalene	5.818318	4.351862	-5.6	20	
Acenaphthylene	8.099292	6.488629	-3.1	20	
Acenaphthene	5.986356	4.267914	-4.5	20	
Fluorene	6.36157	4.806358	5.4	20	
Phenanthrene	9.380805	7.040005	4.1	20	
Anthracene	9.200579	7.017912	2.6	20	
Fluoranthene	9.989373	7.816596	2.4	20	
Pyrene	10.41355	8.0432	0.9	20	
Benzo (a) anthracene	8.789249	8.419862	8.3	20	
Chrysene	9.472413	7.785405	3.6	20	
Benzo (b) fluoranthene	10.05384	8.465062	0.09	20	
Benzo (k) fluoranthene	10.41982	7.988526	-3.6	20	
Benzo (a) pyrene	9.663554	8.047528	1.8	20	
Indeno (1,2,3-cd) pyrene	11.5515	9.562672	-4.5	20	
Dibenzo (a,h) anthracene	10.29062	7.797037	-9.6	20	
Benzo (g,h,i) perylene	10.21267	7.755546	-3.9	20	
n-Nonane (C9)	302803.3	231112.8	-23.7	25	
n-Decane	305363	236086.8	-22.7	25	
n-Dodecane	300753.8	233666.6	-22.3	25	
n-Tetradecane	274762.4	235991.6	-14.1	25	
n-Hexadecane	240161.2	234734	-2.3	25	
n-Octadecane	225386.9	237265.4	5.3	25	
n-Nonadecane	219026.4	233738.4	6.7	25	
n-Eicosane	216498.4	234076.2	8.1	25	
n-Docosane	213393.7	235314.6	10.3	25	
n-Tetracosane	213070.6	234255.2	9.9	25	
n-Hexacosane	213606.1	235320.6	10.2	25	
n-Octacosane	210152.9	236653.6	12.6	25	
n-Triacontane	211099.8	232561.4	10.2	25	
n-Hexatriacontane	205271.2	198315	-3.4	25	
Naphthalene (aliphatic fraction)	307771.7				
2-Methylnaphthalene (aliphatic fraction)	308474.3				
Calibration Check (S705139-CCV4)					
C9-C18 Aliphatic Hydrocarbons	667108.1	327467.1	-17.7	25	
C19-C36 Aliphatic Hydrocarbons	1220327	334870.3	-20.9	25	
Unadjusted C11-C22 Aromatic Hydrocarbons	4176284	4356546	-12.5	20	
Naphthalene	8.783097	7.105978	-1.9	20	
2-Methylnaphthalene	5.818318	4.643308	1.9	20	
Acenaphthylene	8.099292	7.024508	6.5	20	
Acenaphthene	5.986356	4.662461	5.9	20	
Fluorene	6.36157	5.164742	14.6	20	
Phenanthrene	9.380805	7.530718	12.9	20	
Anthracene	9.200579	7.577587	12.6	20	
Fluoranthene	9.989373	8.343127	10.7	20	
Pyrene	10.41355	8.446502	7.0	20	
Benzo (a) anthracene	8.789249	8.543611	10.1	20	
Chrysene	9.472413	7.936746	5.9	20	

Extractable Petroleum Hydrocarbons - CCV Evaluation Report

	Average				
Analyte(s)	RF	CCRF	% D	Limit	
Batch 8705139					
Calibration Check (S705139-CCV4)					
Benzo (b) fluoranthene	10.05384	8.515964	0.7	20	
Benzo (k) fluoranthene	10.41982	8.262123	0.09	20	
Benzo (a) pyrene	9.663554	8.191356	3.7	20	
Indeno (1,2,3-cd) pyrene	11.5515	9.694811	-3.2	20	
Dibenzo (a,h) anthracene	10.29062	7.995596	-7.2	20	
Benzo (g,h,i) perylene	10.21267	7.771814	-3.7	20	
n-Nonane (C9)	302803.3	227992	-24.7	25	
n-Decane	305363	229620.2	-24.8	25	
n-Dodecane	300753.8	227161.4	-24.5	25	
n-Tetradecane	274762.4	220700.2	-19.7	25	
n-Hexadecane	240161.2	213673	-11.0	25	
n-Octadecane	225386.9	215656.4	-4.3	25	
n-Nonadecane	219026.4	212275.6	-3.1	25	
n-Eicosane	216498.4	212870.8	-1.7	25	
n-Docosane	213393.7	214840.4	0.7	25	
n-Tetracosane	213070.6	214240.2	0.5	25	
n-Hexacosane	213606.1	215092.2	0.7	25	
n-Octacosane	210152.9	216848.8	3.2	25	
n-Triacontane	211099.8	213918.6	1.3	25	
n-Hexatriacontane	205271.2	183624.2	-10.5	25	
Naphthalene (aliphatic fraction)	307771.7				
2-Methylnaphthalene (aliphatic fraction)	308474.3				

Volatile Organic Compounds - CCV Evaluation Report

	Average				
Analyte(s)	RF	CCRF	% D	Limit	
Batch S705069					
Calibration Check (S705069-CCV1)					
Benzene	166290.9	194576.8	17.0	25	
Ethylbenzene	102815.9	117458.1	14.2	25	
Methyl tert-butyl ether	83809.23	97028.75	15.8	25	
Naphthalene	72269.48	79447.3	9.9	25	
Toluene	133271.7	158075.1	18.6	25	
m,p-Xylene	110719.7	125612.7	13.5	25	
o-Xylene	98376.68	108956.3	10.8	25	
2-Methylpentane	23756.69	27561.7	16.0	25	
n-Nonane	13550.12	15658.35	15.6	30	
n-Pentane	21597.48	22066.7	2.2	25	
1,2,4-Trimethylbenzene	89163.28	107240.4	20.3	25	
2,2,4-Trimethylpentane	22645.14	26990.85	19.2	25	
n-Butylcyclohexane	14160.01	16383.45	15.7	25	
n-Decane	11735.34	14119.6	20.3	25	
Calibration Check (S705069-CCV2)					
Benzene	166290.9	171082.8	2.9	25	
Ethylbenzene	102815.9	101315	-1.5	25	
Methyl tert-butyl ether	83809.23	91243.8	8.9	25	
Naphthalene	72269.48	74773	3.5	25	
Toluene	133271.7	136444.9	2.4	25	
m,p-Xylene	110719.7	108833.2	-1.7	25	
o-Xylene	98376.68	95626.1	-2.8	25	
2-Methylpentane	23756.69	21732.45	-8.5	25	
n-Nonane	13550.12	10926.2	-19.4	30	
n-Pentane	21597.48	17438.75	-19.3	25	
1,2,4-Trimethylbenzene	89163.28	94068.7	5.5	25	
2,2,4-Trimethylpentane	22645.14	21191.55	-6.4	25	
n-Butylcyclohexane	14160.01	11872.4	-16.2	25	
n-Decane	11735.34	9453.65	-19.4	25	

Notes and Definitions

- O01 This compound is a common laboratory contaminant.
- QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.
- QR2 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.
Spectrum Analytical CHAIN OF CUSTODY RECORD Spectrum Analytical Spectrum Analyti	1 OK	361	XC 35	5																				1																															
Tage of Min_24 in indication needed for makes Sample disposed the 10 days index otherwise Report To:		Special Handling:							D	RI	CC	RE	DY	OI	ST	CL) F	N (CHAI	alytical	Spectrum An	urofins	ાં ભા																																
Report Tr: CAN FORMERT 1 A/P Unside Conservative Calle below: Unside To: CAN FORMERT 1 State Name: 100 Heansty Unside To: CAN FORMERT 1 State Name: 100 Heansty Construction: New York Pricet Thered 1-Nas20 Period Thered 1-Na Period Thered	instructed.	es otherwise in	ifter 30 days unless of	stificati sed af	24-hr no es dispo	Min. Sampl							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	1	of	-	Page					_																																
Image: Source Image: Source<		CircleState:Mh			9684				Project No:		Invoice To: CANIFO AMENTAL A/P								Invoice To	ntists	yneers and scill	Coneco En	Report To:																																
Bridge water Bridge water, Mt 02324 Location: Mewton Stat Project Mgr: Junc Brouku MMB PONo:: 96.84/ Quote #: List Preservative Code below: MPB MPB Stat F=Field Filtered 1-Na;520, 2-HCl 3-H;50, 4=HNO, 5=NaOH 6=Ascorbic Acid II- IList Preservative Code below: MAB Analysis QA/QC Reporting * additional charges m DW-Drinking Water GW-Groundwater SW-Surface Water WW-Waste Water Containers Analysis QA/QC Reporting * additional charges m * additional charges m OW-Drinking Water GW-Groundwater SW-Surface Water WW-Waste Water Containers Analysis WW Brade Below: Water Code Below: Water Cod	-			G	100 Kennedy			Site Name: 100						Y First St							Brodgewater, MA 02324																																		
Project Mgr:	ie: <u>MA-</u>				'n	Location: Sampler(s):				Bridgewater, MA 02324									Telephone #																																				
PF-Field Filtered 1=Na_S20_3 2=HCl 3=H_2S0_4 4=HN0, 5=Na0H 6=Ascorbic Acid 7=CH30H 8=NaHS0_9 9=Deionized Water 10=H_3P0_4 11= 112= 11 112= 11 <				1 1	-		-	-	_		-		-)uote #	. Ç		87	96	P.O No.	10	sroch pri	Merci	Project Mgr																															
DW=Drinking Water GW=Groundwater SW=Surface Water WW=Waste Water Containers Analysis 0=0il \$0-5oil \$L=Sludge A=Indoor/Ambient Air \$G=Soil Gas \$	QC Reporting Notes:		QA/QC Rej			elow:	Code	ative (eserv	ist Pre	L			$\frac{5=\text{NaOH}}{12} 6=\text{Ascorbic Acid}$						ILC,	4=HNO ₃ 5 11=	$2 = HC1$ $3 = H_2SO_4$ onized Water $10 = H_3PO_4$	tered 1=Na ₂ S2O ₃ 8=NaHSO ₄ 9=De	F=Field Fil 7=CH3OH																															
DW=Drinking Water GW=Groundwater SW=Surface Water WW=Waste Water Containers Analysis MA DEF MCP CAN Report 0-001 S0-Soil SL=Studge A=Indoor/Ambient Air SG=Soil Gas Sg Sg <t< td=""><td rowspan="3">Al charges may appply CAM Report? Yes N port? Yes N No QC QA* ASP B* ed* NJ Full* Ther IV* MACLE RCLW-1</td><td>larges may</td><td>additional ch</td><td></td><td></td><td></td><td></td><td>2</td><td>11/1</td><td>11,2</td><td>11,2</td><td>11,4</td><td>_</td><td></td><td></td><td>12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Al charges may appply CAM Report? Yes N port? Yes N No QC QA* ASP B* ed* NJ Full* Ther IV* MACLE RCLW-1	larges may	additional ch					2	11/1	11,2	11,2	11,4	_			12																																							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		MA DEP MCP CAM CT DPIPKCP Report? Standard DQA*	lorinated					Analys def def	, DEP	3260	Memis	-	ers	Ssel	Glass	fials	_	9T	W=Waste Wate	t Air SG=Soi X3=	oundwater SW=Surf ge A=Indoor/Ambier X2=	ing Water GW=C SO=Soil SL=Slue	DW=Drink O=Oil X1=																																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		DEP RCG eporting standard	NJ Reduced*	NJ Reduced*	Check if ch				VPH P	EPH by	EPH b	105.5	Vocs	CCRA 8		f of Plastic	of Plastic	f of Plastic	# of Plastic	# of Plastic	# of Plastic	# of Plastic	# of Plastic	# of Plastic	# of Plastic	# of Plastic	# of Plastic	# of Plastic	f of Plastic	# of Clear G	# of Clear C	t of Amber	# of Amber	f of Amber	f of Amber	t of Amber	f of Amber	# of Amber	# of Amber	# of Amber	# of Amber	t of VOA V	t of VOA V	t of VOA V	e of VOA V	t of VOA V	of VOA V	of VOA V	of VOA V	Matrix	Type	Time:	C=Compsite Date:	iample ID:	G= Grab
U 13 (MW-02 6/1/17 2:42 G GW 6 2 2 X X X X I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	annan ann	porting suit	oute operate re						X	X	X	X		2	The	2	6	GW	G	1:47	611117	01	-01 CMW.	35361																															
									7	X	×	X		2		2	6	GW	6	2:42	6/1/17	02	03 (MW-	11																															
																1	-							~																															
										1														1																															
	_					_	4	_	-														1																																
					_	-	-	-	-	-	_						-	_	_		_		1																																
				븝	-		+	-	-	-			•		-				-																																				
					4	-	-	-	-	-	_	-	_		-	-			-																																				
		-	¥	H		-	-	+	-		-		_				-		-					_																															
Relinquished by: Date: Time: Temp °C Prop Group RDF					-	PDF		. C	EDI		n °C	Tem		Time:			Date:		-	by:	Received		Relinquished by:																																
MGZ Quile Dec 6217 12:20 3.7 " E-mail to: MBrochv, JAEVAZE /13,		MBrochu, JAevazelis,			at. _	E-mail to:		Observat 7 B		0	12:20		217 12:20			6		Dec	note 4	G	63	M																																	
and Dec Mailding Clare Old Eitessmer, MBalding Clone	"CO. COM	Lonec	Baldwin W	Ma	er, s	Vass M	6				Pactor	Corecction	/	700	1	7	2/1	101		1.	Me		Ste Dec	an																															
Constraint Constraint Condition upon receipt: Custody Seals: Present Intact	Broken	.ntact	DI VOA Frozen	d E	y Seals:	Custod	receij	ipon re	ition	Condi	1/2	IR ID #			-	<i>k</i>	1	1				•																																	

Batch Summary

<u>1709215</u>

<u>Soluble Metals by EPA 6000/7000 Series Methods</u> 1709215-BLK1 1709215-BS1 1709215-BSD1 SC35361-01 (CMW-01) SC35361-02 (CMW-02)

<u>1709216</u>

<u>Soluble Metals by EPA 200 Series Methods</u> 1709216-BLK1 1709216-BS1 SC35361-01 (CMW-01) SC35361-02 (CMW-02)

<u>1709252</u>

<u>Soluble Metals by EPA 200/6000 Series Methods</u> SC35361-01 (CMW-01) SC35361-02 (CMW-02)

<u>1709306</u>

Extractable Petroleum Hydrocarbons 1709306-BLK1 1709306-BS1 1709306-BSD1 SC35361-01 (CMW-01) SC35361-02 (CMW-02)

<u>1709320</u>

<u>Volatile Organic Compounds</u> 1709320-BLK1 1709320-BS1 1709320-BSD1 SC35361-01 (CMW-01) SC35361-02 (CMW-02)

<u>1709329</u>

<u>Volatile Organic Compounds</u> 1709329-BLK1 1709329-BS1 1709329-BSD1 SC35361-01 (CMW-01) SC35361-02 (CMW-02)

<u>S702868</u>

Extractable Petroleum Hydrocarbons S702868-CAL1 S702868-CAL2 S702868-CAL3 S702868-CAL4 S702868-CAL5 S702868-CAL5 S702868-CAL7 S702868-CAL8 S702868-CAL9 S702868-CALA S702868-CALB S702868-CALC S702868-CALD S702868-CALE S702868-CALF S702868-CALG S702868-CALH S702868-CALI S702868-ICV1 S702868-ICV2 S702868-LCV1 S702868-LCV2 S702868-LCV3 S702868-TUN1 S702868-TUN2

<u>S704286</u>

Volatile Organic Compounds S704286-CAL1 S704286-CAL2 S704286-CAL3 S704286-CAL4 S704286-CAL5 S704286-CAL5 S704286-CAL7 S704286-CAL7 S704286-ICV1 S704286-LCV1 S704286-LCV2

<u>8704674</u>

Volatile Organic Compounds S704674-CAL1 S704674-CAL2 S704674-CAL3 S704674-CAL4 S704674-CAL5 S704674-CAL5 S704674-CAL7 S704674-CAL7 S704674-CAL9 S704674-CAL9 S704674-ICV1 S704674-ICV1 S704674-LCV2 S704674-LCV3 S704674-LCV3

<u>8705069</u>

<u>Volatile Organic Compounds</u> S705069-CCV1 S705069-CCV2

<u>8705081</u>

<u>Volatile Organic Compounds</u> S705081-CCV1 S705081-TUN1

<u>8705139</u>

Extractable Petroleum Hydrocarbons S705139-CCV2 S705139-CCV4 S705139-TUN1