### Stormwater Management Report Union Twist Dispensary

1158 Beacon Street Newton, Massachusetts

# PREPARED FOR: Union Twist, INC.

1 International Place Suite 3700 Boston, Massachusetts

August 25, 2020

PREPARED BY



108 Myrtle Street Suite 502 Quincy, MA 02171



### Table of Contents

### Stormwater Management Report Union Twist Dispensary

| 1                                        | Executive Summary                                                                                                                                                                                                                   | 3             |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 2                                        | Project Description2.1Existing Conditions2.2Proposed Conditions                                                                                                                                                                     |               |
| 3                                        | Hydrologic Analysis3.1Existing Watershed Summary3.2Proposed Watershed Summary3.3Hydrologic Analysis Results                                                                                                                         | 5<br>6        |
| 4                                        | Soil Erosion and Sedimentation Control                                                                                                                                                                                              | 9             |
| 5                                        | Construction Sequence                                                                                                                                                                                                               | 9             |
| 6                                        | Massachusetts Stormwater Handbook Standards                                                                                                                                                                                         | 9             |
| 7                                        | Summary                                                                                                                                                                                                                             | 10            |
| Figure<br>1<br>2<br>3<br>4<br>5          | S<br>Site Location Map<br>Resource Area GIS Map<br>Flood Insurance Rate Map<br>Pre-Development Watershed Map<br>Post-Development Watershed Map                                                                                      | End of Report |
| Apper<br>A<br>B<br>C<br>D<br>E<br>F<br>G | NRCS Soil Report<br>Pre-Development Watershed Analysis<br>Post-Development Watershed Analysis<br>Stormwater Management Checklist<br>BMP Sizing Calculations<br>TSS Removal Calculations<br>Long-Term Operation and Maintenance Plan | End of Report |





### 1 Executive Summary

Union Twist Inc., proposes to construct a new marijuana dispensary in the Town of Newton, Massachusetts. The property is currently developed and occupied by a restaurant and a dry cleaners and related site development (parking, sidewalks, etc.). The site is bounded by Beacon Street to the north and commercial properties to the east and west, and residential properties to the south. The project location is depicted in *Figure 1*, Site Location Map.

The project proposes modifications to the existing site including conversion of the existing structure to a marijuana dispensary along with modifications to the existing site development including parking lots, driveways, sidewalks, stormwater infrastructure, utilities, and landscaping. The overall drainage pattern of the site will not change with this new project.

The proposed stormwater management system design is consistent with the guidelines of Massachusetts Stormwater Handbook, the Wetlands Protection Act Regulations 310 CMR 10.00. Stormwater best management practices (BMPs) will be implemented to provide the required water quality and recharge volume. Decreases in peak runoff rates will be achieved by a reduction in impervious area. The existing and proposed site conditions and proposed stormwater management system are described in detail in *Section 2* of this report.

The design drawings include controls to protect receiving stormwater systems and properties adjacent to the development from erosion and sedimentation impacts caused by construction site runoff. The plan incorporates both non-structural and structural controls, such as inspections, waste management, as well as good housekeeping and maintenance. The existing and proposed drainage systems will be protected with infiltration basin inlet protection devices, silt fencing, construction entrance and compost filter socks. Additional information related to erosion and sediment controls is included in *Section 4* of this report.





### 2 Project Description

### 2.1 Existing Conditions

The project is located south of Beacon Street on one parcel of land, with a total of approximately 20,000 square feet. Commercial properties are located to the east and west and residential properties are located to the south of the property. The parcel is developed and contains a dry cleaners, restaurant, and a parking area located north and south of the building. A site location map is in included in Figure 1.

There are no wetlands on the site. The site is not within a NHESP Priority Habitat of Rare Species, Estimated Habitat of Rare Wildlife, or Area of Critical Environmental Concern (ACEC). Available resource mapping data from MassGIS Oliver is shown in *Figure 2*, Resource Area GIS Map.

Data from the Federal Emergency Management Agency (FEMA) shows that the site lies in Zone X, in an area outside the 500-year floodplain. The FEMA Flood Insurance Rate Map (FIRM), Panel Number 25017C0554E (Effective Date: June 04, 2010), is included as *Figure 3*.

The site is characterized by Natural Resources Conservation Service (NRCS) as Haven silt loam (251B), 3 to 8 percent slopes, and Merrimac-Urban land complex (626B), 0 to 8 percent slopes. Both soils carry a HSG rating "A.", which is classified as soils having a high infiltration rate when thoroughly wet and a high rate of water transmission. This site also has soil classified as Udorthents, wet substratum (655). The NRCS soils report is included in *Appendix A*.

#### 2.2 Proposed Conditions

The project proposes modifications to the existing site including conversion of the western portion of the existing building into a marijuana dispensary, along with modifications to the existing site development including parking lots, sidewalks, stormwater infrastructure, utilities, and landscaping. No land disturbances are proposed within 100 feet of any wetland resource areas.

Stormwater Management is achieved through two separate systems on the northern and southern portion of the site. One system is comprised of one sediment forebay and one infiltration basin while the other system is comprised of one deep sump catch basin. Through these BMPs, groundwater recharge and stormwater treatment are achieved. Reduction in stormwater peak discharge will be achieved by a reduction in impervious area.

The following stormwater BMPs are proposed for the project:

Infiltration Basin 1PB - is located south of the building and will provide treatment and recharge for stormwater on the site. Runoff from the rear parking lot and other paved areas on the southern and western portion of the site will flow into Sediment Forebay 1PA which provides pre-treatment for Infiltration Basin 1PB.



The proposed BMPs have been sized to accommodate the 100-year Type III 24hr design storm without overtopping or exceeding system capacity and have been modeled using the Rawls' infiltration rate for loamy sand where applicable. Leak-offs and stone aprons will be used to dissipate flows to inlets to open surface BMPs.

### 3 Hydrologic Analysis

The hydrologic analyses for existing and proposed conditions were completed using a computer software package, HydroCAD version 10.00-21, to determine peak runoff flow rates and total runoff volumes for the watershed models. The model is based on the NRCS Technical Release 20 and Technical Release 55 (TR-55), and is subject to cumulative rainfall/volume dependent routing calculations. Hydrographs are prepared for each element of the watershed and routed through the dynamic-storage-indication method to produce various time-based results.

Two design points were developed for this project. These design points are summarized below:

- Link 1L A manhole located in Beacon Street directly adjacent to the front of the site.
- Link 2L Northeastern corner of the site.

The pre-development hydrologic analysis is included as Appendix B. The post-development hydrologic analysis is included as Appendix C.

#### 3.1 Existing Watershed Summary

Stormwater runoff from the site is conveyed via sheet flow and shallow concentrated flow towards each of the design points as further discussed below. The property line has been used as the limit of analysis.

- Subwatershed 1S encompasses the vast majority of the property consisting of the parking lot and the building. Stormwater runoff from this subwatershed flows to the south towards a catch basin located on the existing parking lot. Runoff is then pumped to the public drainage system in Beacon Street, draining to design point 1L.
- Subwatershed 2S consists of a small portion of the site at the northern boundary that includes a portion the drive entrance and exit, the front grass area and sidewalk. Stormwater runoff from this subwatershed flows to the north onto Beacon Street ultimately draining to design point 2L.

The Pre-Development Watershed Map is included as Figure 4.





#### 3.2 Proposed Watershed Summary

As a result of the proposed development, improvements to the stormwater management system have been made to eliminate the need for pumping. The boundary of the post-development analysis is the same as the pre-development conditions. The post-development subcatchments are described below.

- Subwatershed 1S consists of the portion of the property that includes the rear parking lot and western drive, the majority of the building, the majority of the sidewalk and grassed areas on the eastern side of the building, as well as the proposed sediment forebay and infiltration basin. Stormwater runoff from this subwatershed generally flows to the south and east towards Sediment Forebay 1PA. Stormwater from the areas adjacent the southeastern boundary is collected by a yard drain and redirected to the forebay. From the forebay, water flows into Infiltration basin 1PB, then to a yard drain within the basin and redirected to the public drainage system in Beacon Street at design point 1L.
- Subwatershed 1SA consists of the portion of the property that includes the front parking lot, the small portion of the north side of the building, as well as the majority of the northeastern portion of the site including sidewalk and grassed area. Stormwater runoff from this subwatershed flows generally east and south into a deep sump catch basin located at the southeastern corner of the front parking lot. Stormwater from the areas adjacent the northeastern boundary is collected by a yard drain and redirected to the catch basin. From the catch basin, water is directed to the public drainage system in Beacon Street at design point 1L.
- Subwatershed 2S consists of a small portion of the site at the northern boundary that includes portions of the drive entrance and exit, sidewalk, and front grassed areas. Stormwater runoff from this subwatershed flows to the north onto Beacon Street ultimately draining to design point 2L.

The Post-Development Watershed Map is included as Figure 5.



### 3.3 Hydrologic Analysis Results

The proposed BMPs allow for a greater volume of stormwater recharge as well as attenuate peak flows from the site, effectively reducing the site's runoff compared to the existing developed condition. The pre- and post-redevelopment peak flows for the two design points are included in the tables below.

| 2 Year Design Storm |                        |                           |       |      |  |
|---------------------|------------------------|---------------------------|-------|------|--|
| Design Point        | Net<br>Change<br>(CFS) | Net<br>Change<br>(Rate %) |       |      |  |
| (1L)                | 0.01                   | 0.01                      | 0.00  | 0%   |  |
| (2L)                | 1.12                   | 0.40                      | -0.72 | -64% |  |
| Total               | 1.13                   | 0.41                      | -0.72 | -64% |  |

| 10 Year Design Storm |                           |                           |                        |                           |  |
|----------------------|---------------------------|---------------------------|------------------------|---------------------------|--|
| Design Point         | Existing<br>Flow<br>(CFS) | Proposed<br>Flow<br>(CFS) | Net<br>Change<br>(CFS) | Net<br>Change<br>(Rate %) |  |
| (1L)                 | 0.02                      | 0.02                      | 0.00                   | 0%                        |  |
| (2L)                 | 1.88                      | 1.81                      | -0.07                  | -4%                       |  |
| Total                | 1.90                      | 1.83                      | -0.07                  | -4%                       |  |

| 25 Year Design Storm                                              |      |      |       |      |  |
|-------------------------------------------------------------------|------|------|-------|------|--|
| ExistingProposedNetDesign PointFlowFlowChange(CFS)(CFS)(CFS)(CFS) |      |      |       |      |  |
| (1L)                                                              | 0.04 | 0.03 | -0.01 | -25% |  |
| (2L)                                                              | 2.48 | 2.39 | -0.09 | -4%  |  |
| Total                                                             | 2.52 | 2.42 | -0.10 | -4%  |  |

| 100 Year Design Storm |                        |                           |       |      |  |
|-----------------------|------------------------|---------------------------|-------|------|--|
| Design Point          | Net<br>Change<br>(CFS) | Net<br>Change<br>(Rate %) |       |      |  |
| (1L)                  | 0.07                   | 0.06                      | -0.01 | -14% |  |
| (2L)                  | 3.75                   | 3.55                      | -0.20 | -5%  |  |
| Total                 | 3.82                   | 3.61                      | -0.21 | -5%  |  |





| 2 Year Design Storm |                          |                          |                       |                          |  |
|---------------------|--------------------------|--------------------------|-----------------------|--------------------------|--|
| Design Point        | Existing<br>Flow<br>(AF) | Proposed<br>Flow<br>(AF) | Net<br>Change<br>(AF) | Net<br>Change<br>(Vol %) |  |
| (1L)                | 0.001                    | 0.000                    | -0.001                | -100%                    |  |
| (2L)                | 0.075                    | 0.025                    | -0.050                | -67%                     |  |
| Total               | 0.076                    | 0.025                    | -0.051                | -67%                     |  |

| 10 Year Design Storm |                       |                          |        |      |  |
|----------------------|-----------------------|--------------------------|--------|------|--|
| Design Point         | Net<br>Change<br>(AF) | Net<br>Change<br>(Vol %) |        |      |  |
| (1L)                 | 0.002                 | 0.001                    | -0.001 | -50% |  |
| (2L)                 | 0.130                 | 0.070                    | -0.060 | -46% |  |
| Total                | 0.132                 | 0.071                    | -0.061 | -46% |  |

| 25 Year Design Storm                                                |       |       |        |      |  |
|---------------------------------------------------------------------|-------|-------|--------|------|--|
| ExistingProposedNetNetDesign PointFlowFlowChangeCha(AF)(AF)(AF)(Vol |       |       |        |      |  |
| (1L)                                                                | 0.003 | 0.002 | -0.001 | -33% |  |
| (2L)                                                                | 0.174 | 0.107 | -0.067 | -39% |  |
| Total                                                               | 0.177 | 0.109 | -0.068 | -38% |  |

| 100 Year Design Storm                                                   |       |       |        |      |  |
|-------------------------------------------------------------------------|-------|-------|--------|------|--|
| ExistingProposedNetNDesign PointFlowFlowChangeChange(AF)(AF)(AF)(AF)(Vo |       |       |        |      |  |
| (1L)                                                                    | 0.005 | 0.004 | -0.001 | -20% |  |
| (2L)                                                                    | 0.269 | 0.193 | -0.076 | -28% |  |
| Total                                                                   | 0.274 | 0.197 | -0.077 | -28% |  |

The Results indicate that the proposed improvements will not result in increases in stormwater runoff from the site for the 2-, 10-, 25-, and 100-year, Type III, 24-hour storm events as compared to the pre-redevelopment peak runoff.





### 4 Soil Erosion and Sedimentation Control

Soil erosion and sedimentation control details and narratives for construction periods are provided on the site plans. Soil erosion and sedimentation control details and procedures are consistent with the "Massachusetts Erosion and Sediment Control Guideline for Urban and Suburban Areas."

Construction period erosion and sedimentation controls will include compost filter socks, stormwater inlet protection, and a silt fencing. Additional erosion and sediment controls will be utilized as required. Perimeter sediment controls will be placed down-gradient of disturbed areas. Water will be applied to exposed soils to provide dust control as needed.

Waste materials generated from construction activities will include excavated soil, trees, brush, stumps, pavement, building debris, and utilities. All excavation debris and other waste will be transported to an approved disposal facility. If required, materials may be temporarily stockpiled within designated staging areas. Details and procedures are provided in the construction site plans.

Construction materials, including site and building materials, will be present on-site during various stages of construction. All materials will be temporarily stored within designated staging or lay-down areas and will be transported to the site as needed.

### 5 Construction Sequence

A detailed construction sequence is included on the site plans. This construction sequence is subject to change based on construction methods, weather, or due to other unforeseen circumstances.

### 6 Massachusetts Stormwater Handbook Standards

The following is a description of how the proposed project conforms with the stormwater management standards (Standards) outlined in the Massachusetts Stormwater Handbook. The Stormwater Management Checklist is included in *Appendix D*.

Standard 1: No Untreated Discharge or Erosion to Wetlands There are no wetlands near the site.

#### Standard 2: Peak Rate Attenuation

Post-redevelopment discharge rates from the 2-, 10-, 25-, and 100-year storm events will not increase as a result of the development compared to the pre-redevelopment condition. This will be achieved by the reduction of the impervious surface area.

#### Standard 3: Stormwater Recharge

The infiltration basin will allow infiltration and groundwater recharge. This BMP has been designed to provide storage in excess of the recharge volume required by this standard. Stormwater recharge calculations are included in *Appendix E*.





#### Standard 4: Water Quality

The BMPs will provide water quality treatment through filtration and infiltration. The basin provides storage in excess of the water quality volume required by this standard for the site. Water quality calculations are included in the BMP Sizing Calculations in *Appendix F*. Total Suspended Solid (TSS) removal calculations are included in *Appendix G*.

Standard 5: Land Uses with Higher Potential Pollutant Loads The project does not contain any area of higher pollutant loads as defined by the Massachusetts Stormwater Handbook.

#### Standard 6: Critical Areas

The site is not located within Zone II or Interim Wellhead Protection Areas, or other Critical Areas, which include Shellfish Growing Areas, Bathing Beaches, Outstanding Resource Waters, Special Resource Waters, and Cold-Water Fisheries.

Standard 7: Redevelopment The proposed project is considered a redevelopment project per the Massachusetts Stormwater Handbook.

Standard 8: Construction Pollution Prevention and Erosion and Sediment Controls General erosion and sedimentation controls will be implemented and maintained in accordance with local, state, and federal requirements until construction is complete and disturbed areas have been stabilized.

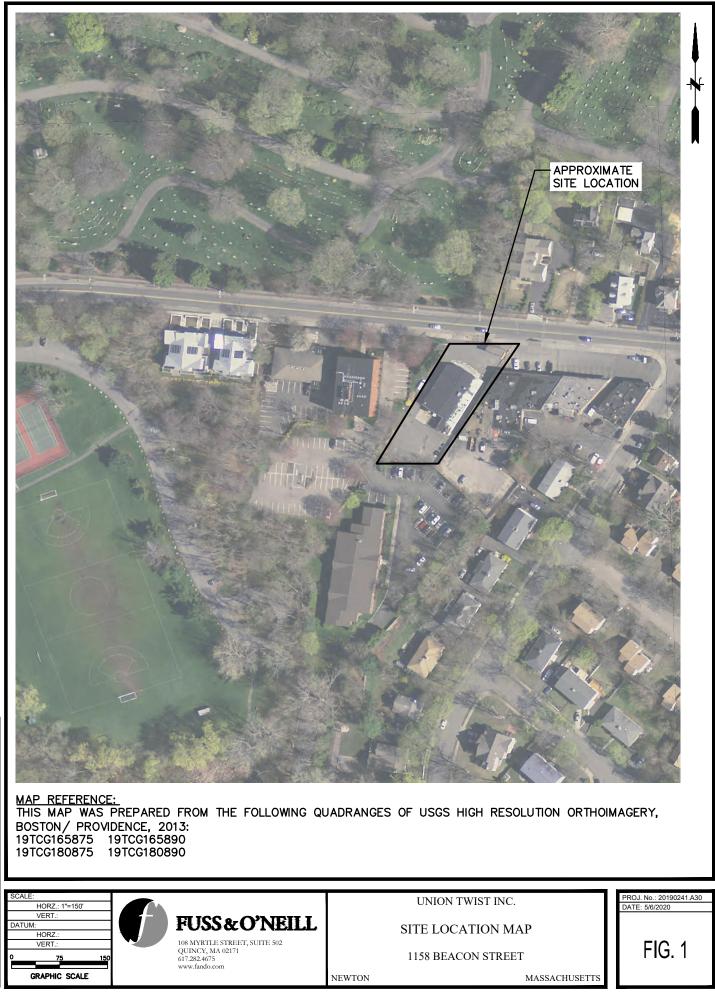
Standard 9: Long-Term Operation and Maintenance Plan A Long Term Operation and Maintenance Plan has been prepared and is included in *Appendix H.* 

Standard 10: Illicit Discharges to Drainage System

This project does not contain illicit discharges to Stormwater Management Systems as defined in the Massachusetts Stormwater Handbook.

### 7 Summary

This Stormwater Management Report describes proposed work and stormwater management associated with the development of the Union Twist Dispensary at 1158 Beacon Street, Newton, Massachusetts. The stormwater management system includes one sediment forebay, one infiltration basin, and one deep sump catch basin. Peak runoff from the site will decrease when compared to pre-redevelopment conditions during the 2-, 10-, 25-, and 100-year storm events, due to the reduction of the impervious surface area on the site.

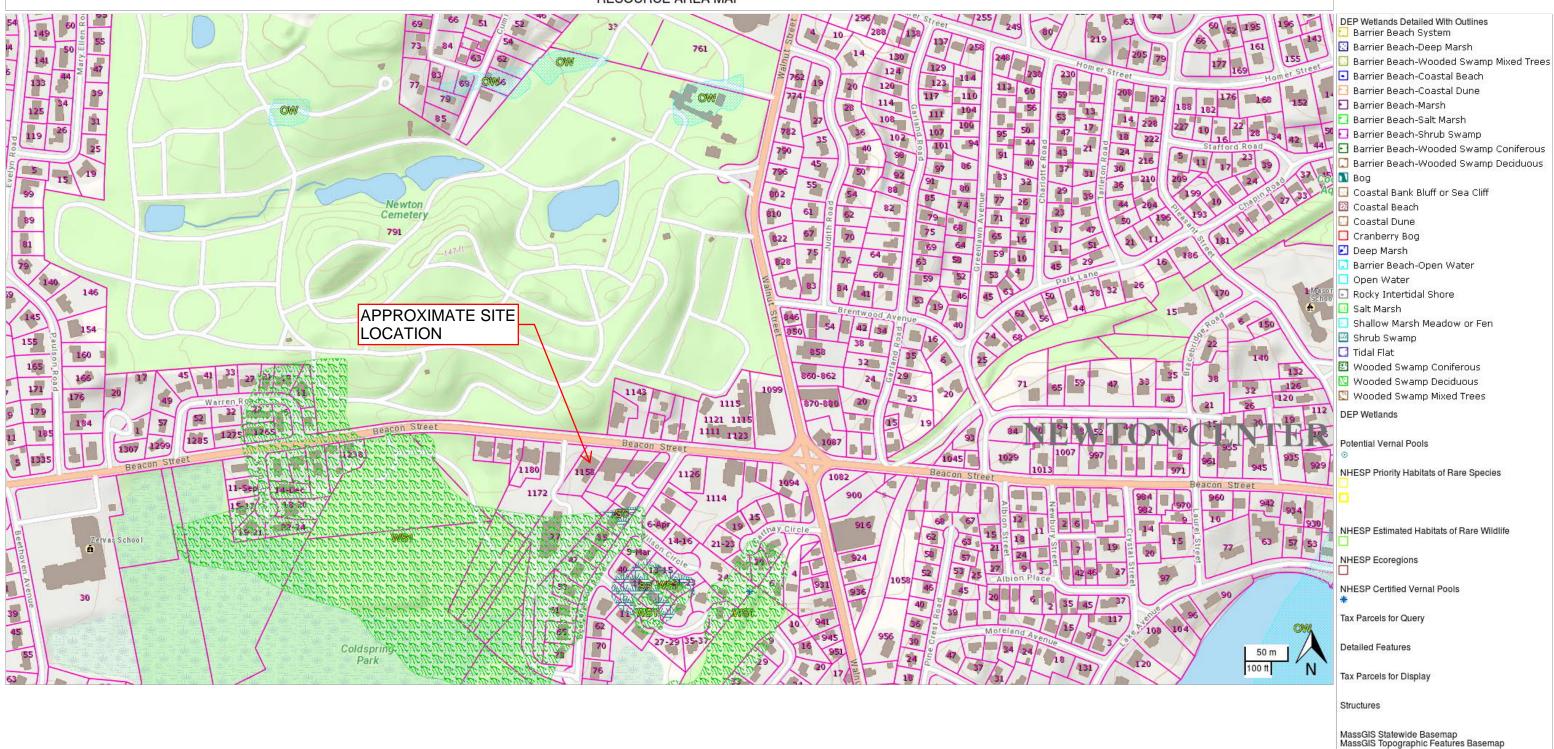

The proposed design addresses the applicable standards set forth in the MassDEP Stormwater Management Guidelines as described in *Section 6* of this report. Erosion control measures have been incorporated into the design. Based on the conditions summarized above, the proposed site improvements will have no adverse effect on abutters or the receiving drainage systems.





## Figure 1

Site Location Map




File Path: J:/DWG/P2019/0241\A30/Civil/Temp/20190241A30\_AERIALS.dwg Layout FIG 1. Plotted: Mon, May 11, 2020 -4:23 PM User: sfranjeskos MS VIEW: LAYON DE PATE: DVG TO PDF.PC3 CTB File: FO.STB MS VIEW: DVG TO PDF.PC3 CTB File: FO.STB



## Figure 2

Resource Area GIS Map



**RESOURCE AREA MAP** 



Flood Insurance Rate Map

#### NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map propository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Floot Elevations** (BFEs) and/or **floot/ways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Sillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' National North American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations tables in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations tables should be used for construction and/or flood plantamagement purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control structures**. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this interdetion. urisdiction.

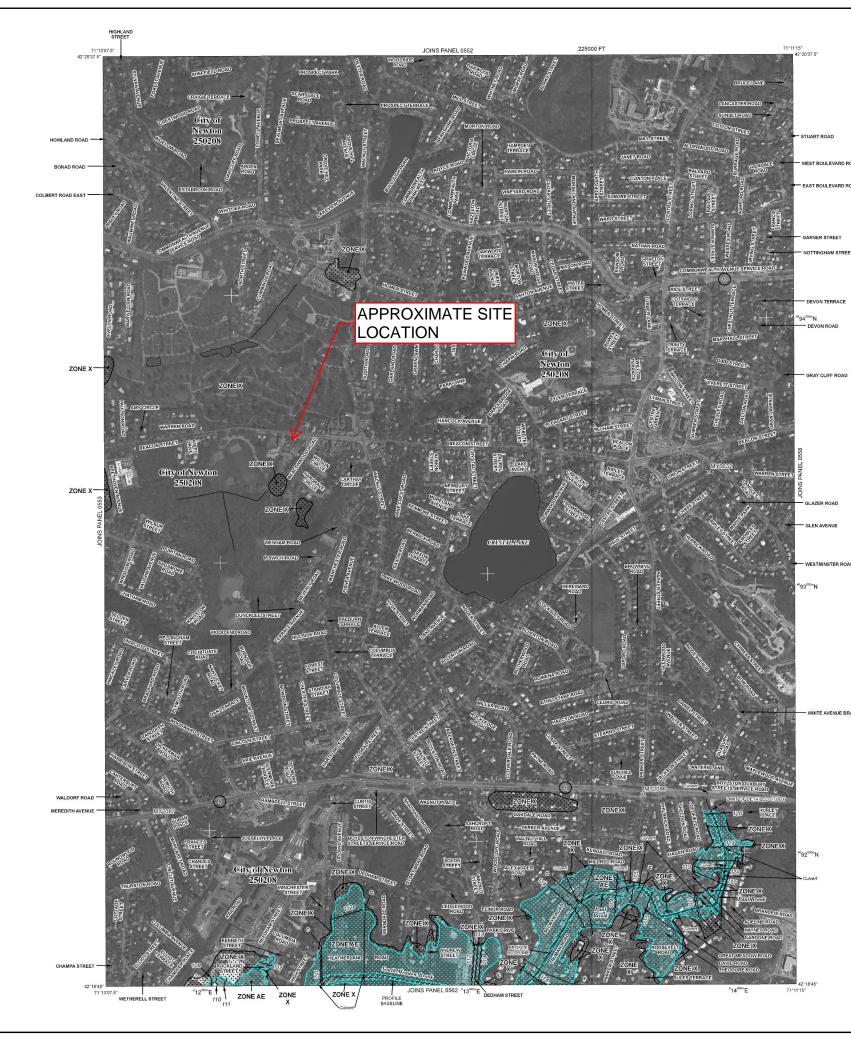
The projection used in the preparation of this map was Massachusetts State Plane Mainland zone (PIPSZONE 2001), meters. The horizontal datum was NAD 83, GRS0 spheroid. Differences in darum, spheroid, projection or State Plane zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same **vertical datum**. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at <u>http://www.ngs.noaa.gov</u> or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 NOAA, N/NG512 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information for **bench** marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit its website at http://www.ngs.noaa.gov.

Base map information shown on this FIRM was provided in digital format by the Office of Geographic and Environmental Information (MassGIS). Commonwealth of Massachusetts, Executive Office of Energy and Environmental Affairs. This information was derived from digital orthophotos produced at a scale of 1:5.000 from aerial photography dated April 2005.


This may reflects more detailed and up-to-date **stream channel configurations** than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydradiuc data) may reflect stream channel distances that differ from what is shown on this map.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed **Map Index** for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact the FEMA Map Service Center at 1-800-358-9616 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study report, and/or digital versions of this map. The FEMA Map Service Center may also be reached by Fax at 1-800-356-9620 and its verbate at <u>http://msclema.gov</u>

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at <u>http://www.fema.gov.</u>



|      | LEGEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | SPECIAL FLOOD HAZARD AREAS SUBJECT TO INUNDATION<br>BY THE 1% ANNUAL CHANCE FLOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | The 1% annual flood (100-year flood), also known as the base flood, is the flood that has a 1%<br>chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the<br>area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include<br>Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood Elevation is the water-surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | elevation of the 1% annual chance flood. ZONE A No Base Flood Elevations determined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | ZONE AE Base Flood Elevations determined.<br>ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | Elevations determined.<br>ZONE AO Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average<br>depths determined. For areas of alluvial fan flooding, velocities also<br>determined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | ZONE AR<br>Special Flood Hazard Area formerly protected from the 1% annual chance<br>flood by a flood control system that was subsequently descripted. Zone AR<br>indicates that the former flood control system is being restored to provide<br>protection from the 1% annual chance or greater flood.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| OAD  | ZONE A99 Area to be protected from 1% annual chance food by a Federal flood<br>protection system under construction; no Base Flood Elevations<br>determined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| OAD  | ZONE V Coastal flood zone with velocity hazard (wave action); no Base Flood<br>Elevations determined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood<br>Elevations determined.<br>FLOODWAY AREAS IN ZONE AE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free<br>of encroachment so that the 1% annual chance flood can be carried without substantial increases<br>in flood heights.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| IT   | COTHER FLOOD AREAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | average depths of less than 1 foot or with drainage areas less than<br>1 square mile; and areas protected by levees from 1% annual chance flood.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | ZONE X Areas determined to be outside the 0.2% annual chance floodplain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | ZONE D Areas in which flood hazards are undetermined, but possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | OTHERWISE PROTECTED AREAS (OPAs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas1% annual chance floodplain boundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 0.2% annual chance floodplain boundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | Floodway boundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | Zone D boundary CBRS and OPA boundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | Boundary dividing Special Flood Hazard Area Zones and<br>- boundary Verking Special Flood Hazard Areas of different Base<br>Flood Elevations, flood depths or flood velocities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | State         Base Flood Elevation line and value; elevation in feet*           (EL 987)         Base Flood Elevation value where uniform within zone; elevation in feet*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | * Referenced to the North American Vertical Datum of 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | Cross section line     (a)(a) Transect line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | (2)(2) Transet line     87"07'45", 32"22'30"     Geographic coordinates referenced to the North American     Datum of 1983 (NAD 83), Western Hemisphere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | <sup>24</sup> 76 <sup>100</sup> N 1000-meter Universal Transverse Mercator grid values, zone<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 600000 FT 5000-foot grid values: Massachusetts State Plane coordinate<br>system, Mainland zone (FIPSZONE 2001), Lambert Conformal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | Conic projection<br>Bench mark (see explanation in Notes to Users section of this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | • M1.5 River Mile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | MAP REPOSITORY<br>Refer to listing of Map Repositories on Map Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | EFFECTIVE DATE OF COUNTYMDE<br>FLOOD INSURANCE RATE MAP<br>June 4, 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | For community map revision history prior to countywide mapping, refer to the Community                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | Map History table located in the Flood Insurance Study report for this jurisdiction.<br>To determine if flood insurance is available in this community, contact your Insurance<br>agent or call the National Flood Insurance Program 81.480-638.6620.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | MAP SCALE 1" = 500'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | MAP SCALE 1" = 500'<br>250 0 500 1000<br>FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 250 0 500 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| лсн  | 250 0 500 1000<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NCH  | 250 0 500 1000<br>PEPET<br>150 0 150 300<br>PANEL 0554E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NCH  | 250 0 500 1000<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| псн  | 250 0 500 1000<br>PEPET<br>150 0 150 300<br>PANEL 0554E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ксн  | 200 0 500 1000<br>FEET METERS<br>150 0 150 300<br>PANEL 0554E<br>FIRM<br>FLOOD INSURANCE RATE MAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| исн  | 200 0 500 1000<br>150 0 150 300<br>PANEL 0554E<br>FIRM<br>FLOOD INSURANCE RATE MAP<br>MIDDLESEX COUNTY,<br>MASSACHUSETTS<br>(ALL JURISDICTIONS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NСН  | 200 0 500 1000<br>FEET METERS<br>150 0 150 300<br>PANEL 0554E<br>FIRM<br>FLOOD INSURANCE RATE MAP<br>MIDDLESEX COUNTY,<br>MASSACHUSETTS<br>(ALL JURISDICTIONS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NCH  | PANEL 0554E<br>PANEL 0554E<br>FIRM<br>FLOOD INSURANCE RATE MAP<br>MIDDLESEX COUNTY,<br>MASSACHUSETTS<br>(ALL JURISDICTIONS)<br>PANEL 554 OF 656<br>(SEE MAP INDEX FOR FIRM PANEL LAYOUT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| лсн  | PANEL 0554E<br>PANEL 0554E<br>PANEL 0554E<br>FLOOD INSURANCE RATE MAP<br>MIDDLESEX COUNTY,<br>MASSACHUSETTS<br>(ALL JURISDICTIONS)<br>PANEL 554 OF 656<br>(SEE MAP INDEX FOR FIRM PANEL LAYOUT)<br>CONTAINS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| исн  | PANEL 0554E<br>PANEL 0554E<br>FIRM<br>FLOOD INSURANCE RATE MAP<br>MIDDLESEX COUNTY,<br>MASSACHUSETTS<br>(ALL JURISDICTIONS)<br>PANEL 554 OF 656<br>(SEE MAP INDEX FOR FIRM PANEL LAYOUT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NCH  | PANEL 0554E<br>PANEL 0554E<br>FIRM<br>FLOOD INSURANCE RATE MAP<br>MIDDLESEX COUNTY,<br>MASSACHUSETTS<br>(ALL JURISDICTIONS)<br>PANEL 554 OF 656<br>(SEE MAP INDEX FOR FIRM PANEL LAYOUT)<br>CONTAINSE<br>COMMATY INJUER PANEL SUFFIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| anch | PANEL 0554E<br>PANEL 0554E<br>PANEL 0554E<br>FLOOD INSURANCE RATE MAP<br>MIDDLESEX COUNTY,<br>MASSACHUSETTS<br>(ALJ JURISDICTIONS)<br>PANEL 554 OF 656<br>(SEE MAP INDEX FOR FIRM PANEL LAYOUT)<br>CONTAINS<br>COMMANTY NUMBER PANEL SUFFIX<br>NUMBER PANEL SUFFIX<br>NUMBER PANEL SUFFIX<br>NUMBER PANEL SUFFIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NCH  | PANEL 0554E<br>PANEL 0554E<br>FIRM<br>FLOOD INSURANCE RATE MAP<br>MIDDLESEX COUNTY,<br>MASSACHUSETTS<br>(ALL JURISDICTIONS)<br>PANEL 554 OF 656<br>(SEE MAP INDEX FOR FIRM PANEL LAYOUT)<br>CONTAINSE<br>COMMATY INJUER PANEL SUFFIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NCH  | 200       90       1000         150       0       150       METERS         150       0       150       300         PANEL 0554E         PANEL 0554E         FIRM         FLOOD INSURANCE RATE MAP         MIDDLESEX COUNTY,         MASSACHUSETTS         (ALJ JURISDICTIONS)         PANEL 554 OF 656         (SEE MAP INDEX FOR FIRM PANEL LAYOUT)         COMMINITY         NUMBER PANEL SUFEX         NUMER DANEL SUFEX                                                                                                                                                                                 |
| NCH  | 200       90       1000         150       0       150       METERS         150       0       150       300         PANEL 0554E         FIRM         FLOOD INSURANCE RATE MAP         MIDDLESEX COUNTY,         MASSACHUSETTS         (ALL JURISDICTIONS)         PANEL 554 OF 656         (SEE MAP INDEX FOR FIRM PANEL LAYOUT)         CONTAINS         MIMOR COLVOR         MARKE PANEL SUFFIX         NUMBER PANEL SUFFIX         MARKED PANEL SUFFIX <t< td=""></t<>                                                                             |
| ANCH | 200       90       100         150       0       150       300         METERS         150       0       150       300         PANEL 0554E         FIRM         FICOD INSURANCE RATE MAP         MIDDLESEX COUNTY,         MASACHUSETTS         ALL STA OF 656         COMMANY         PANEL 554 OF 656         COMMANY         NUTOR CITY OF         OCOMMANY         MAREE SALE EXPENS         OCOMMANY         NUMEER FOR FIRM PANEL LAYOUT)         COMMANY         NUMEER FOR FIRM PANEL LAYOUT)         OCOMMANY         OCOM                                                                                                                                        |
| NCH  | 200       90       100         150       0       150       300         PANEL 0554E         PANEL 0554E         FIRM         FIRM         FIRM FLOOD INSURANCE RATE MAP         MIDDLESEX COUNTY,<br>MASSACHUSETTS<br>(ALL JURISDICTIONS)         PANEL 554 OF 656         COMMENT         EMATEL SALE SALE SALE         OWNER FOR FIRM PANEL LAYOUT)         COMMENT         NUMBER FOR FIRM PANEL LAYOUT)         COMMENT         NUMBER FOR FIRM PANEL LAYOUT)         OWNER FOR FIRM PANEL LA |



## Figure 4

Pre-Development Watershed Map





Figure 5
Post-Development Watershed Map



File Path: J:DWGiP2019/0241/430/CivilFigures/20190241430\_DRN01.dwg Layout: POST-DEVELOPMENT Plotted: Tue, May 12, 2020 - 9.31 AM User: jvalde MS VIEW: [LAVER STATE: ] [LAVER STATE: ] Plotter: DWG TO PDF.PC3 CTB File: FO.STB

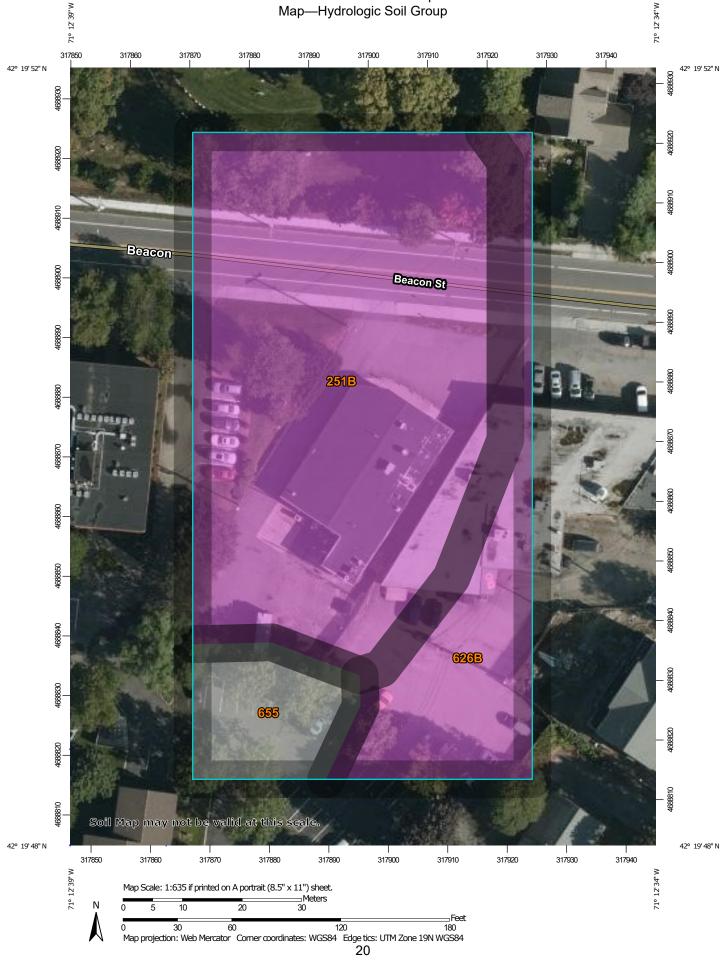


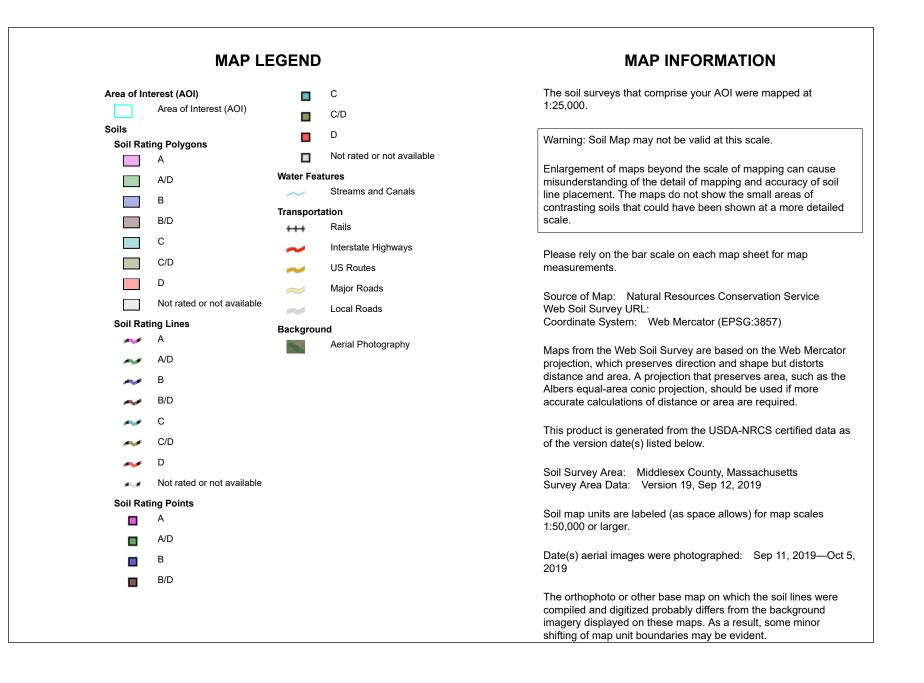




United States Department of Agriculture

Natural Resources Conservation


Service


A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

## Custom Soil Resource Report for Middlesex County, Massachusetts

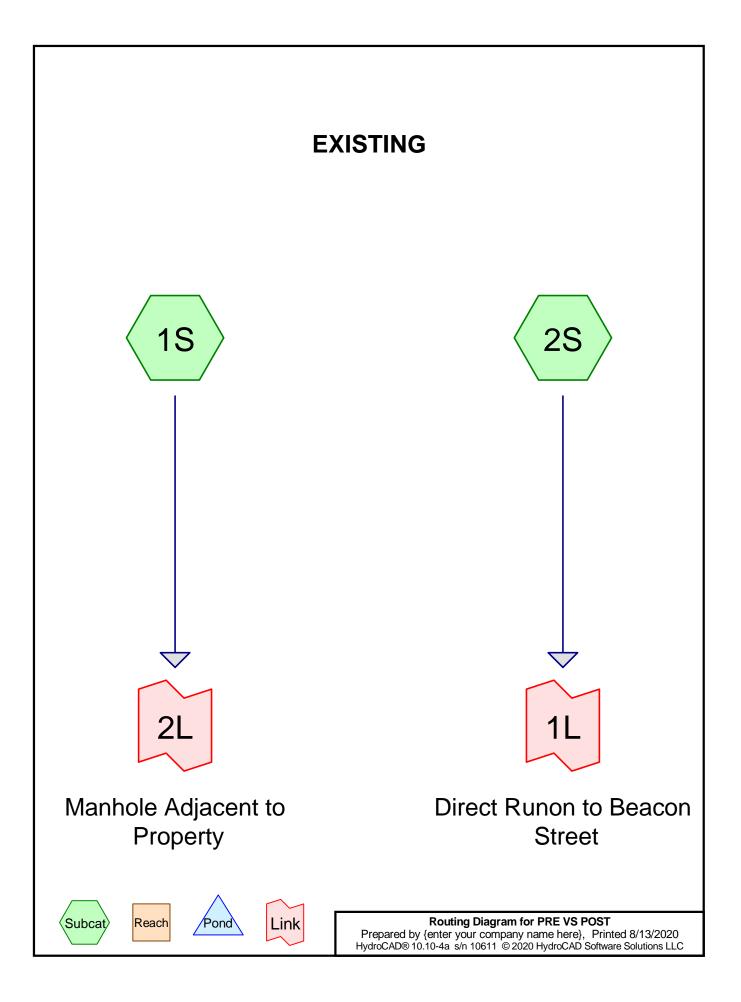


#### Custom Soil Resource Report Map—Hydrologic Soil Group





#### Table—Hydrologic Soil Group


| Map unit symbol             | Map unit name                                            | Rating | Acres in AOI | Percent of AOI |
|-----------------------------|----------------------------------------------------------|--------|--------------|----------------|
| 251B                        | Haven silt loam, 3 to 8 percent slopes                   | A      | 1.1          | 69.5%          |
| 626B                        | Merrimac-Urban land<br>complex, 0 to 8<br>percent slopes | A      | 0.3          | 21.3%          |
| 655                         | Udorthents, wet substratum                               |        | 0.1          | 9.2%           |
| Totals for Area of Interest |                                                          |        | 1.5          | 100.0%         |

#### **Rating Options—Hydrologic Soil Group**

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher



Appendix B Pre-Development Watershed Analysis



| <br>Event# | Event<br>Name | Storm Type     | Curve | Mode    | Duration<br>(hours) | B/B | Depth<br>(inches) | AMC |
|------------|---------------|----------------|-------|---------|---------------------|-----|-------------------|-----|
| 1          | 2-Year        | Type III 24-hr |       | Default | 24.00               | 1   | 3.16              | 2   |
| 2          | 10-Year       | Type III 24-hr |       | Default | 24.00               | 1   | 4.77              | 2   |
| 3          | 25-Year       | Type III 24-hr |       | Default | 24.00               | 1   | 6.03              | 2   |
| 4          | 100-Year      | Type III 24-hr |       | Default | 24.00               | 1   | 8.78              | 2   |

# **Rainfall Events Listing**

# Area Listing (selected nodes)

| Area    | CN | Description                            |
|---------|----|----------------------------------------|
| (acres) |    | (subcatchment-numbers)                 |
| 0.068   | 39 | >75% Grass cover, Good, HSG A (1S, 2S) |
| 0.278   | 98 | Paved parking, HSG A (1S, 2S)          |
| 0.119   | 98 | Unconnected roofs, HSG A (1S)          |
| 0.465   | 89 | TOTAL AREA                             |

# Soil Listing (selected nodes)

| Area    | Soil  | Subcatchment |
|---------|-------|--------------|
| (acres) | Group | Numbers      |
| 0.465   | HSG A | 1S, 2S       |
| 0.000   | HSG B |              |
| 0.000   | HSG C |              |
| 0.000   | HSG D |              |
| 0.000   | Other |              |
| 0.465   |       | TOTAL AREA   |

# Ground Covers (selected nodes)

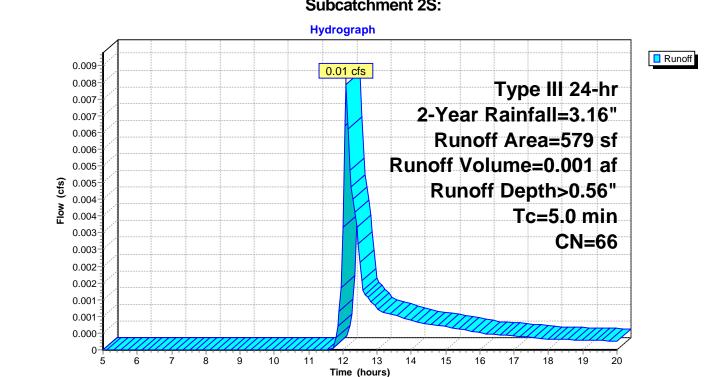
| HSG-A<br>(acres) | HSG-B<br>(acres) | HSG-C<br>(acres) | HSG-D<br>(acres) | Other<br>(acres) | Total<br>(acres) | Ground<br>Cover        | Subcatchment<br>Numbers |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------------|-------------------------|
| <br>0.068        | 0.000            | 0.000            | 0.000            | 0.000            | 0.068            | >75% Grass cover, Good | 1S, 2S                  |
| 0.278            | 0.000            | 0.000            | 0.000            | 0.000            | 0.278            | Paved parking          | 1S, 2S                  |
| 0.119            | 0.000            | 0.000            | 0.000            | 0.000            | 0.119            | Unconnected roofs      | 1S                      |
| 0.465            | 0.000            | 0.000            | 0.000            | 0.000            | 0.465            | TOTAL AREA             |                         |

| PRE VS POST<br>Prepared by {enter your company name her<br>HydroCAD® 10.10-4a s/n 10611 © 2020 HydroCA |                                                                                                                     |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Runoff by SCS TR-2                                                                                     | 20.00 hrs, dt=0.05 hrs, 301 points<br>20 method, UH=SCS, Weighted-CN<br>ns method - Pond routing by Stor-Ind method |
| Subcatchment 1S:                                                                                       | Runoff Area=19,681 sf 86.45% Impervious Runoff Depth>2.00"<br>Tc=5.0 min CN=90 Runoff=1.12 cfs 0.075 af             |
| Subcatchment 2S:                                                                                       | Runoff Area=579 sf 46.29% Impervious Runoff Depth>0.56"<br>Tc=5.0 min CN=66 Runoff=0.01 cfs 0.001 af                |
| Link 1L: Direct Runon to Beacon Street                                                                 | Inflow=0.01 cfs 0.001 af<br>Primary=0.01 cfs 0.001 af                                                               |
| Link 2L: Manhole Adjacent to Property                                                                  | Inflow=1.12 cfs 0.075 af<br>Primary=1.12 cfs 0.075 af                                                               |
| Total Runoff Area = 0.465 a                                                                            | ac Runoff Volume = 0.076 af Average Runoff Depth = 1.96"<br>14.69% Pervious = 0.068 ac 85.31% Impervious = 0.397 ac |

## Summary for Subcatchment 1S:

| Runoff | = | 1.12 cfs @ | 12.07 hrs, Volun | ne= 0.075 af, Depth> | 2.00" |
|--------|---|------------|------------------|----------------------|-------|
|--------|---|------------|------------------|----------------------|-------|

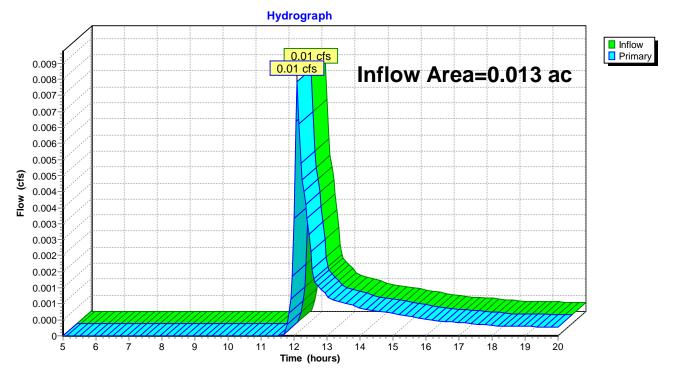
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.16"


| Area (sf)                       | CN              | Description               |                                   |                    |          |            |          |           |        |
|---------------------------------|-----------------|---------------------------|-----------------------------------|--------------------|----------|------------|----------|-----------|--------|
| 2,666                           | 39              | >75% Gras                 |                                   |                    | GΑ       |            |          |           |        |
| 5,195<br>11,820                 | 98<br>98        | Unconnector<br>Paved park |                                   |                    |          |            |          |           |        |
| 19,681                          | <u>90</u><br>90 | Weighted A                |                                   |                    |          |            |          |           |        |
| 2,666                           |                 | 13.55% Pe                 |                                   |                    |          |            |          |           |        |
| 17,015<br>5,195                 |                 | 86.45% lm<br>30.53% Un    |                                   | ea                 |          |            |          |           |        |
| 5,195                           |                 | 30.55% 01                 | CONNECTED                         |                    |          |            |          |           |        |
| Tc Length<br>(min) (feet)       | Slop<br>(ft/f   |                           | Capacity<br>(cfs)                 | Descri             | ption    |            |          |           |        |
| 5.0                             |                 | , , , ,                   | , , , , , , , , , , , , , , , , , | Direct             | Entry, M |            | FOR SHOP | RT TRAVEL | TIMES  |
|                                 |                 |                           | • •                               |                    |          |            |          |           |        |
|                                 |                 |                           | Sub                               | catchn             | nent 15  | <b>)</b> : |          |           |        |
|                                 |                 |                           | Hydr                              | ograph             |          |            | 1        | 1         | l      |
|                                 |                 |                           | 1.1                               | 2 cfs              |          |            | <b>₽</b> | ll 24-hr  | Runoff |
| 1-                              |                 |                           |                                   |                    | 2-       | Year F     | Rainfal  | l=3.16"   |        |
|                                 |                 |                           |                                   |                    | Ru       | noff A     | rea=19   | ,681 sf   |        |
| -                               |                 |                           |                                   |                    | Runo     | off Vol    | ume=0    | .075 af   |        |
| cts)                            |                 |                           |                                   |                    |          | Runof      | f Denth  | י>2.00    |        |
| Flow (cfs)                      |                 |                           |                                   |                    |          |            | -        |           |        |
| Ē                               |                 |                           |                                   |                    |          |            | 10=      | 5.0 min   |        |
|                                 |                 |                           |                                   | X                  |          |            |          | CN=90     |        |
|                                 |                 |                           |                                   | 11                 |          |            |          |           |        |
|                                 |                 |                           |                                   |                    |          |            |          |           |        |
| 1                               |                 |                           |                                   | '                  | T        |            |          |           |        |
|                                 | 7////           | mm                        |                                   |                    | Щ        | 1111       |          |           |        |
| 0- <del>14-4-44-44</del><br>5 6 | 7               | 8 9 1                     |                                   | 2 13<br>me (hours) | 14       | 15 16      | 17 18    | 19 20     |        |

#### Summary for Subcatchment 2S:

| Runoff | = | 0.01 cfs @ | 12.10 hrs, | Volume= | 0.001 af, Depth> 0.56" |
|--------|---|------------|------------|---------|------------------------|
|--------|---|------------|------------|---------|------------------------|

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.16"

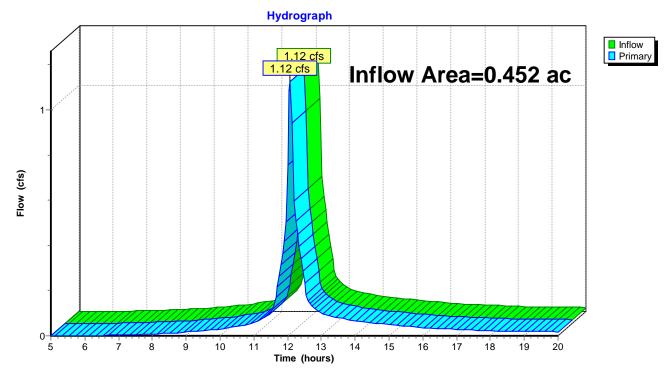

| Are   | ea (sf)         | CN                     | Description |                               |                                              |  |  |  |  |
|-------|-----------------|------------------------|-------------|-------------------------------|----------------------------------------------|--|--|--|--|
|       | 311             | 39                     | >75% Gras   | >75% Grass cover, Good, HSG A |                                              |  |  |  |  |
|       | 0               | 98                     | Unconnecte  | ed roofs, HS                  | SG A                                         |  |  |  |  |
|       | 268             | 98                     | Paved park  | Paved parking, HSG A          |                                              |  |  |  |  |
|       | 579             | 66                     | Weighted A  | verage                        |                                              |  |  |  |  |
|       | 311             |                        | 53.71% Per  | vious Area                    |                                              |  |  |  |  |
|       | 268             | 46.29% Impervious Area |             |                               |                                              |  |  |  |  |
|       | Length          | Slop                   |             | Capacity                      | Description                                  |  |  |  |  |
| (min) | (feet)          | (ft/ft                 | ) (ft/sec)  | (cfs)                         |                                              |  |  |  |  |
| 5.0   |                 |                        |             |                               | Direct Entry, MINIMIM FOR SHORT TRAVEL TIMES |  |  |  |  |
|       | Subcatchment 2S |                        |             |                               |                                              |  |  |  |  |



## Summary for Link 1L: Direct Runon to Beacon Street

| Inflow Area = | 0.013 ac, 46.29% Impervious, Inflow D | Depth > 0.56" for 2-Year event    |
|---------------|---------------------------------------|-----------------------------------|
| Inflow =      | 0.01 cfs @ 12.10 hrs, Volume=         | 0.001 af                          |
| Primary =     | 0.01 cfs @ 12.10 hrs, Volume=         | 0.001 af, Atten= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs




# Link 1L: Direct Runon to Beacon Street

## Summary for Link 2L: Manhole Adjacent to Property

| Inflow Area = | 0.452 ac, 86.45% Impervious, Inflow D | Depth > 2.00" for 2-Year event    |
|---------------|---------------------------------------|-----------------------------------|
| Inflow =      | 1.12 cfs @ 12.07 hrs, Volume=         | 0.075 af                          |
| Primary =     | 1.12 cfs @ 12.07 hrs, Volume=         | 0.075 af, Atten= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs



# Link 2L: Manhole Adjacent to Property

| PRE VS POST                                 | Type Ⅲ 24-hr 10-Year Rainfall=4.77"                                                                                 |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Prepared by {enter your company name her    | Printed 8/13/2020                                                                                                   |
| HydroCAD® 10.10-4a s/n 10611 © 2020 HydroCA | D Software Solutions LLC Page 11                                                                                    |
| Runoff by SCS TR-2                          | 20.00 hrs, dt=0.05 hrs, 301 points<br>20 method, UH=SCS, Weighted-CN<br>ns method - Pond routing by Stor-Ind method |
| Subcatchment 1S:                            | Runoff Area=19,681 sf 86.45% Impervious Runoff Depth>3.45"<br>Tc=5.0 min CN=90 Runoff=1.88 cfs 0.130 af             |
| Subcatchment 2S:                            | Runoff Area=579 sf 46.29% Impervious Runoff Depth>1.44"                                                             |
|                                             | Tc=5.0 min CN=66 Runoff=0.02 cfs 0.002 af                                                                           |
| Link 1L: Direct Runon to Beacon Street      | Inflow=0.02 cfs_0.002 af                                                                                            |
|                                             | Primary=0.02 cfs 0.002 af                                                                                           |
| Link 2L: Manhole Adjacent to Property       | Inflow=1.88 cfs 0.130 af<br>Primary=1.88 cfs 0.130 af                                                               |
| Total Runoff Area = 0.465 a                 | ac Runoff Volume = 0.132 af Average Runoff Depth = 3.40"<br>14.69% Pervious = 0.068 ac 85.31% Impervious = 0.397 ac |

#### Summary for Subcatchment 1S:

Runoff = 1.88 cfs @ 12.07 hrs, Volume= 0.130 af, Depth> 3.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.77"

| Area (sf)                       | CN I    | Description |                       |            |            |         |          |        |        |
|---------------------------------|---------|-------------|-----------------------|------------|------------|---------|----------|--------|--------|
| 2,666                           |         |             | s cover, Go           | ood, HS    | GΑ         |         |          |        |        |
| 5,195                           |         |             | ed roofs, HS          |            |            |         |          |        |        |
| 11,820                          |         |             | ing, HSG A            | ۱          |            |         |          |        |        |
| 19,681                          |         | Neighted A  | werage<br>rvious Area |            |            |         |          |        |        |
| 2,666<br>17,015                 |         |             | pervious Area         |            |            |         |          |        |        |
| 5,195                           |         | 30.53% Un   |                       | ca         |            |         |          |        |        |
| 0,100                           |         |             |                       |            |            |         |          |        |        |
| Tc Length                       |         |             | Capacity              | Descri     | ption      |         |          |        |        |
| (min) (feet)                    | (ft/ft) | (ft/sec)    | (cfs)                 |            |            |         |          |        |        |
| 5.0                             |         |             |                       | Direct     | Entry, MIN | IMIM FC | DR SHORT | TRAVEL | TIMES  |
|                                 |         |             | Sub                   | catchn     | nent 1S:   |         |          |        |        |
|                                 |         |             |                       | ograph     |            |         |          |        |        |
|                                 |         |             | - Tiyu                | ograph     |            |         |          |        | ]      |
| 2-                              |         |             | 4.0                   | 8 cfs      |            |         |          |        | Runoff |
| 2                               |         |             | 1.8                   |            |            | -       | Гуре III | 21_hr  |        |
| -                               |         |             |                       | M          |            | 1       |          |        |        |
|                                 |         |             |                       |            | 10-Ye      | ear R   | ainfall= | =4.77" |        |
|                                 |         |             |                       |            | Runc       | off Ar  | ea=19,   | 681 sf |        |
| -                               |         |             |                       |            | Runoff     |         |          |        |        |
| (s)                             |         |             |                       |            |            |         |          |        |        |
| - (cts)<br>                     |         |             |                       |            | RL         | Inott   | Depth>   | >3.45  |        |
| о 1-<br>Е                       |         |             |                       |            |            |         | Tc=5.    | 0 min  |        |
|                                 |         |             |                       |            |            |         | C        | CN=90  |        |
|                                 |         |             |                       |            |            |         | •        | /11-50 |        |
|                                 |         |             |                       | 14         |            |         |          |        |        |
|                                 |         |             |                       | 14         |            |         |          |        |        |
|                                 |         |             |                       | ′ 🚫        | m          |         |          |        |        |
|                                 |         | mm          |                       |            |            | ΠÌ      |          |        |        |
| 0- <del>11-11-11-1</del><br>5 6 | 7 8     | 9 1         |                       | 2 13       | 14 15      | 16      | 17 18    | 19 20  |        |
|                                 |         |             | Tir                   | ne (hours) |            |         |          |        |        |

0.006 0.004 0.002 0

5

6

7

8

9

10

11

#### Summary for Subcatchment 2S:

Runoff 0.02 cfs @ 12.09 hrs, Volume= 0.002 af, Depth> 1.44" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.77"

|                        | Area   | a (sf)     | CN [    | Description |                      |            |        |            |             |             |                |     |        |
|------------------------|--------|------------|---------|-------------|----------------------|------------|--------|------------|-------------|-------------|----------------|-----|--------|
|                        |        | 311        |         |             | s cover, Go          |            | GΑ     |            |             |             |                |     |        |
|                        |        | 0          |         |             | ed roofs, HS         |            |        |            |             |             |                |     |        |
|                        |        | 268        |         |             | ing, HSG A           | ۱ <u> </u> |        |            |             |             |                |     |        |
|                        |        | 579<br>311 |         | Veighted A  | verage<br>vious Area |            |        |            |             |             |                |     |        |
|                        |        | 268        | -       |             | pervious Area        |            |        |            |             |             |                |     |        |
|                        |        | 200        | _       | 0.2070 111  |                      | cu         |        |            |             |             |                |     |        |
|                        | Tc L   | .ength     | Slope   | Velocity    | Capacity             | Descri     | ption  |            |             |             |                |     |        |
| <u> </u>               | nin)   | (feet)     | (ft/ft) | (ft/sec)    | (cfs)                |            |        |            |             |             |                |     |        |
|                        | 5.0    |            |         |             |                      | Direct     | Entry, | MINIMIM F  | OR S        | HORT        | TRA            | VEL | TIMES  |
|                        |        |            |         |             | Out                  | <b>1</b> - | 0      | <b>^</b> - |             |             |                |     |        |
|                        |        |            |         |             | Sub                  | catchn     | nent 2 | 3:         |             |             |                |     |        |
|                        |        |            |         |             | Hydr                 | ograph     |        |            |             |             |                |     | _      |
|                        | 0.026- | /          |         |             |                      |            |        |            |             |             |                |     | Runoff |
|                        | 0.024  | /          |         |             | 0.                   | 02 cfs     |        |            |             |             |                |     |        |
|                        | 0.022  | /          |         |             |                      |            |        |            | Тур         | e III       | 24-            | hr  | -      |
|                        |        |            |         |             |                      |            | 10     | -Year F    | <b>Rain</b> | fall:       | =4.7           | 7"  | -      |
|                        | 0.02   | ĺ          |         |             |                      |            |        |            | -           | -           |                |     | -      |
|                        | 0.018  |            |         |             |                      | K          |        | Runof      |             |             |                | -   |        |
|                        | 0.016  | /          |         |             |                      |            | Run    | off Vol    | ume         | <b>=</b> 0. | 002            | af  |        |
| cfs)                   | 0.014  | 1          |         |             |                      |            |        | Runoff     | Dei         | nthe        | <b>&gt;1_4</b> | 4"  | -      |
| <sup>-</sup> low (cfs) | 0.012  | /          |         |             |                      |            |        |            |             |             |                |     | -      |
| Ĕ                      | -      | /          |         |             |                      |            |        |            | 1 (         | c=5.        |                |     | -      |
|                        | 0.01   | J          |         |             |                      | - 1        |        |            |             | (           | CN=            | 66  |        |
|                        | 0.008  |            |         |             |                      |            |        |            |             |             |                |     | -      |
|                        | -      | 1          |         |             |                      |            |        |            |             |             |                | 1   | 1      |

14

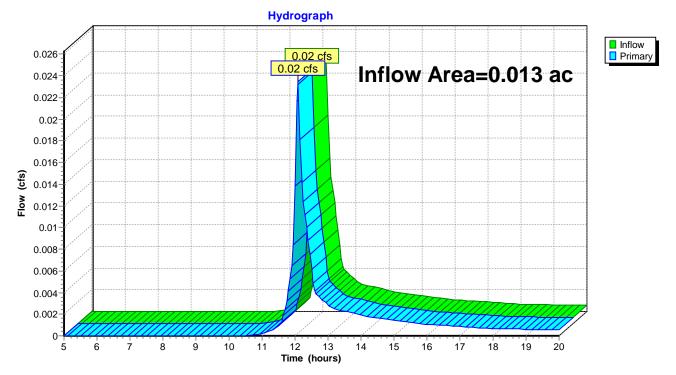
13

12 Time (hours) 15

16

17

18

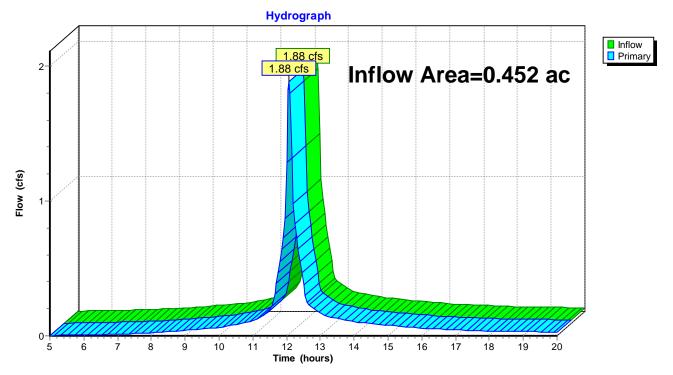

19

20

### Summary for Link 1L: Direct Runon to Beacon Street

| Inflow Area | = | 0.013 ac, 4 | 16.29% Imp | ervious, | Inflow De | epth >  | 1.44"    | for 10  | -Year event  |
|-------------|---|-------------|------------|----------|-----------|---------|----------|---------|--------------|
| Inflow =    | = | 0.02 cfs @  | 12.09 hrs, | Volume   | =         | 0.002 a | af       |         |              |
| Primary =   | = | 0.02 cfs @  | 12.09 hrs, | Volume   | =         | 0.002 a | af, Atte | en= 0%, | Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs




## Link 1L: Direct Runon to Beacon Street

# Summary for Link 2L: Manhole Adjacent to Property

| Inflow Area = | 0.452 ac, 86.45% Impervious, Inflow D | Depth > 3.45" for 10-Year event   |
|---------------|---------------------------------------|-----------------------------------|
| Inflow =      | 1.88 cfs @ 12.07 hrs, Volume=         | 0.130 af                          |
| Primary =     | 1.88 cfs @ 12.07 hrs, Volume=         | 0.130 af, Atten= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs



# Link 2L: Manhole Adjacent to Property

| PRE VS POST<br>Prepared by {enter your company name here] | Type III 24-hr 25-Year Rainfall=6.03"<br>Printed 8/13/2020                                            |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| HydroCAD® 10.10-4a s/n 10611 © 2020 HydroCAD              | tware Solutions LLC Page 16                                                                           |
| Runoff by SCS TR-20                                       | hrs, dt=0.05 hrs, 301 points<br>thod, UH=SCS, Weighted-CN<br>athod - Pond routing by Stor-Ind method  |
| Subcatchment 1S:                                          | noff Area=19,681 sf 86.45% Impervious Runoff Depth>4.61"<br>Tc=5.0 min_CN=90_Runoff=2.48 cfs_0.174 af |

|                                        | 1C=5.0 min Cin=90 Runon=2.48 crs 0.174 ar                                                            |
|----------------------------------------|------------------------------------------------------------------------------------------------------|
| Subcatchment 2S:                       | Runoff Area=579 sf 46.29% Impervious Runoff Depth>2.27"<br>Tc=5.0 min CN=66 Runoff=0.04 cfs 0.003 af |
| Link 1L: Direct Runon to Beacon Street | Inflow=0.04 cfs 0.003 af<br>Primary=0.04 cfs 0.003 af                                                |

Link 2L: Manhole Adjacent to Property

Inflow=2.48 cfs 0.174 af Primary=2.48 cfs 0.174 af

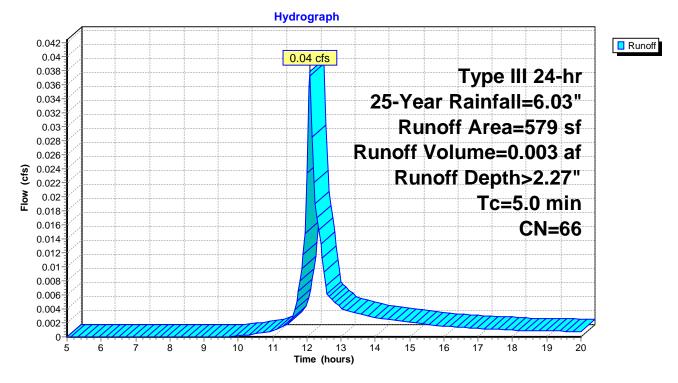
Total Runoff Area = 0.465 acRunoff Volume = 0.176 afAverage Runoff Depth = 4.54"14.69% Pervious = 0.068 ac85.31% Impervious = 0.397 ac

#### Summary for Subcatchment 1S:

Runoff = 2.48 cfs @ 12.07 hrs, Volume= 0.174 af, Depth> 4.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.03"

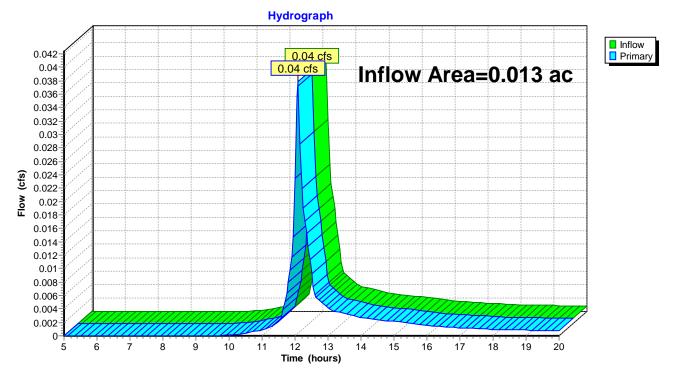
| Area (sf)                                          | CN Description                                                                   |
|----------------------------------------------------|----------------------------------------------------------------------------------|
| 2,666                                              | 39 >75% Grass cover, Good, HSG A                                                 |
| 5,195<br>11,820                                    | <ul> <li>98 Unconnected roofs, HSG A</li> <li>98 Paved parking, HSG A</li> </ul> |
| 19,681                                             | 90 Weighted Average                                                              |
| 2,666                                              | 13.55% Pervious Area                                                             |
| 17,015                                             | 86.45% Impervious Area                                                           |
| 5,195                                              | 30.53% Unconnected                                                               |
| Tc Length<br>(min) (feet)                          | Slope Velocity Capacity Description<br>(ft/ft) (ft/sec) (cfs)                    |
| 5.0                                                | Direct Entry, MINIMIM FOR SHORT TRAVEL TIMES                                     |
|                                                    |                                                                                  |
|                                                    | Subcatchment 1S:                                                                 |
|                                                    | Hydrograph                                                                       |
|                                                    | 2.48 cfs<br>Type III 24-hr<br>25-Year Rainfall=6.03"                             |
| 2-                                                 | Runoff Area=19,681 sf                                                            |
| -                                                  | Runoff Volume=0.174 af                                                           |
| j (j                                               | Runoff Depth>4.61"                                                               |
| Flow (cfs)                                         |                                                                                  |
| Ĕ                                                  | Tc=5.0 min                                                                       |
| 1-                                                 | CN=90                                                                            |
| 0 <del>                                     </del> | 7 8 9 10 11 12 13 14 15 16 17 18 19 20<br>Time (hours)                           |


#### Summary for Subcatchment 2S:

Runoff = 0.04 cfs @ 12.08 hrs, Volume= 0.003 af, Depth> 2.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.03"

| A            | rea (sf) | CN    | Description            |              |                                              |
|--------------|----------|-------|------------------------|--------------|----------------------------------------------|
|              | 311      | 39    | >75% Gras              | s cover, Go  | ood, HSG A                                   |
|              | 0        | 98    | Unconnecte             | ed roofs, HS | SG A                                         |
|              | 268      | 98    | Paved park             | ing, HSG A   |                                              |
|              | 579      | 66    | Weighted A             | verage       |                                              |
|              | 311      |       | 53.71% Per             | vious Area   |                                              |
|              | 268      |       | 46.29% Impervious Area |              |                                              |
| -            |          |       |                        | <b>o</b>     |                                              |
| TC           | Length   | Slop  |                        | Capacity     | Description                                  |
| <u>(min)</u> | (feet)   | (ft/f | ) (ft/sec)             | (cfs)        |                                              |
| 5.0          |          |       |                        |              | Direct Entry, MINIMIM FOR SHORT TRAVEL TIMES |
|              |          |       |                        |              |                                              |

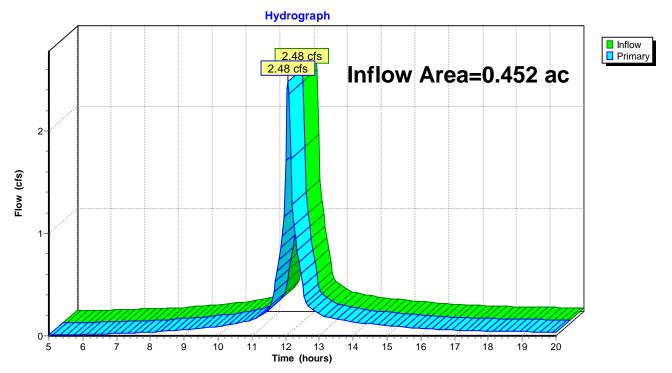

#### Subcatchment 2S:



#### Summary for Link 1L: Direct Runon to Beacon Street

| Inflow Area = | 0.013 ac, 46.29% Impervious, Inflow D | Depth > 2.27" for 25-Year event   |
|---------------|---------------------------------------|-----------------------------------|
| Inflow =      | 0.04 cfs @ 12.08 hrs, Volume=         | 0.003 af                          |
| Primary =     | 0.04 cfs @ 12.08 hrs, Volume=         | 0.003 af, Atten= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs




## Link 1L: Direct Runon to Beacon Street

# Summary for Link 2L: Manhole Adjacent to Property

| Inflow Area = | 0.452 ac, 86.45% Impervious, Inflow D | Depth > 4.61" for 25-Year event   |
|---------------|---------------------------------------|-----------------------------------|
| Inflow =      | 2.48 cfs @ 12.07 hrs, Volume=         | 0.174 af                          |
| Primary =     | 2.48 cfs @ 12.07 hrs, Volume=         | 0.174 af, Atten= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs



# Link 2L: Manhole Adjacent to Property

| PRE VS POST                                 | Type III 24-hr 100-Year Rainfall–8.78"                     |
|---------------------------------------------|------------------------------------------------------------|
| Prepared by {enter your company name her    | e} Printed 8/13/2020                                       |
| HydroCAD® 10.10-4a s/n 10611 © 2020 HydroCA |                                                            |
| i                                           | Ŭ                                                          |
| Time span=5.00-2                            | 0.00 hrs, dt=0.05 hrs, 301 points                          |
|                                             | 0 method, UH=SCS, Weighted-CN                              |
|                                             | is method - Pond routing by Stor-Ind method                |
|                                             |                                                            |
| Subcatchment 1S:                            | Runoff Area=19,681 sf 86.45% Impervious Runoff Depth>7.15" |
| Cubcuconnent TO.                            | $T_{c=5.0 \text{ min}} CN=90$ Runoff=3.75 cfs 0.269 af     |
|                                             |                                                            |
| Subcatchment 2S:                            | Runoff Area=579 sf 46.29% Impervious Runoff Depth>4.33"    |
| Cubcatonnent 20.                            | Tc= $5.0$ min CN= $66$ Runoff= $0.07$ cfs $0.005$ af       |
|                                             |                                                            |
| Link 1L: Direct Runon to Beacon Street      | Inflow=0.07 cfs_0.005 af                                   |
| Link TE. Direct Ranon to Deacon Offeet      | Primary=0.07 cfs 0.005 af                                  |
|                                             | 1 hinary=0.07 crs 0.003 ar                                 |
| Link 2L: Manhole Adjacent to Property       | Inflow=3.75 cfs 0.269 af                                   |
| LITE 2L. Maintole Aujacent to Property      |                                                            |
|                                             | Primary=3.75 cfs 0.269 af                                  |

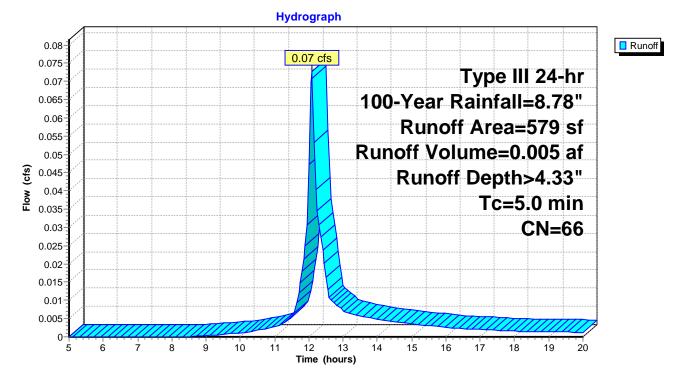
Total Runoff Area = 0.465 acRunoff Volume = 0.274 af<br/>14.69% Pervious = 0.068 acAverage Runoff Depth = 7.07"<br/>85.31% Impervious = 0.397 ac

#### Summary for Subcatchment 1S:

Runoff = 3.75 cfs @ 12.07 hrs, Volume= 0.269 af, Depth> 7.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.78"

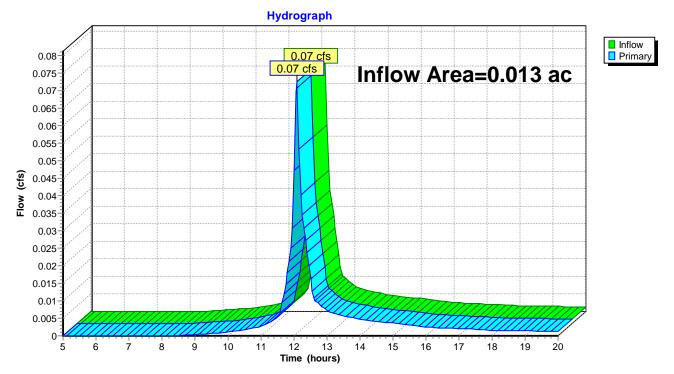
| Area (sf) CN Description                                                       |                                       |
|--------------------------------------------------------------------------------|---------------------------------------|
| 2,666 39 >75% Grass cover, Good, HS                                            | G A                                   |
| 5,195 98 Unconnected roofs, HSG A<br>11,820 98 Paved parking, HSG A            |                                       |
| 19,681 90 Weighted Average                                                     |                                       |
| 2,666 13.55% Pervious Area                                                     |                                       |
| 17,015 86.45% Impervious Area<br>5,195 30.53% Unconnected                      |                                       |
|                                                                                | intion                                |
| Tc Length Slope Velocity Capacity Descr<br>(min) (feet) (ft/ft) (ft/sec) (cfs) | ption                                 |
|                                                                                | Entry, MINIMIM FOR SHORT TRAVEL TIMES |
| Subcatchn                                                                      | nent 1S:                              |
| Hydrograph                                                                     |                                       |
|                                                                                | Runoff                                |
| 4                                                                              |                                       |
|                                                                                | Type III 24-hr                        |
|                                                                                | 100-Year Rainfall=8.78"               |
| 3-                                                                             | Runoff Area=19,681 sf                 |
|                                                                                | Runoff Volume=0.269 af                |
| - cts                                                                          | Runoff Depth>7.15"                    |
|                                                                                | Tc=5.0 min                            |
|                                                                                |                                       |
|                                                                                | CN=90                                 |
|                                                                                |                                       |
|                                                                                |                                       |
|                                                                                |                                       |
| 0                                                                              |                                       |
| 5 6 7 8 9 10 11 12 13                                                          | 14 15 16 17 18 19 20                  |


#### Summary for Subcatchment 2S:

Runoff = 0.07 cfs @ 12.08 hrs, Volume= 0.005 af, Depth> 4.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.78"

| Ar    | ea (sf) | CN       | Description |              |                                              |
|-------|---------|----------|-------------|--------------|----------------------------------------------|
|       | 311     | 39       | >75% Gras   | s cover, Go  | ood, HSG A                                   |
|       | 0       | 98       | Unconnecte  | ed roofs, HS | SG A                                         |
|       | 268     | 98       | Paved park  | ing, HSG A   |                                              |
|       | 579     | 66       | Weighted A  | verage       |                                              |
|       | 311     |          | 53.71% Per  | vious Area   |                                              |
|       | 268     |          | 46.29% Imp  | pervious Are | ea                                           |
| -     |         | <u>.</u> |             | <b>o</b>     |                                              |
| Tc    | Length  | Slop     |             | Capacity     | Description                                  |
| (min) | (feet)  | (ft/ft   | t) (ft/sec) | (cfs)        |                                              |
| 5.0   |         |          |             |              | Direct Entry, MINIMIM FOR SHORT TRAVEL TIMES |
|       |         |          |             |              |                                              |

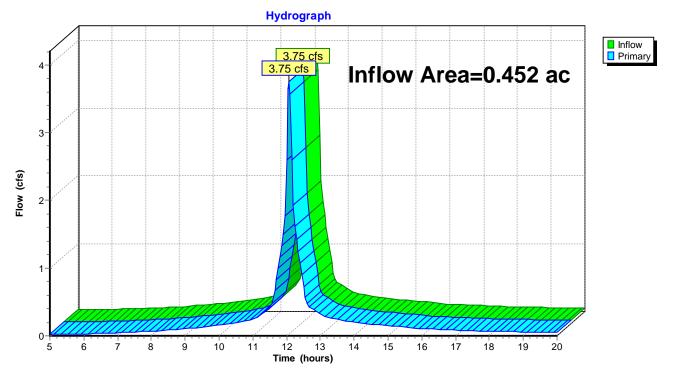

#### Subcatchment 2S:



## Summary for Link 1L: Direct Runon to Beacon Street

| Inflow Area = | = 0.013 | 3 ac, 46.29% Imp | pervious, Inflow I | Depth > 4.33"  | for 100-Year event   |
|---------------|---------|------------------|--------------------|----------------|----------------------|
| Inflow =      | 0.07 (  | cfs @ 12.08 hrs, | Volume=            | 0.005 af       |                      |
| Primary =     | 0.07 (  | cfs @ 12.08 hrs, | Volume=            | 0.005 af, Atte | en= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs




## Link 1L: Direct Runon to Beacon Street

## Summary for Link 2L: Manhole Adjacent to Property

| Inflow Area = | 0.452 ac, 86.45% Impervious, Inflow | Depth > 7.15" for 100-Year event  |
|---------------|-------------------------------------|-----------------------------------|
| Inflow =      | 3.75 cfs @ 12.07 hrs, Volume=       | 0.269 af                          |
| Primary =     | 3.75 cfs @ 12.07 hrs, Volume=       | 0.269 af, Atten= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs



# Link 2L: Manhole Adjacent to Property

#### TABLE OF CONTENTS

#### **Project Reports**

- 1 Routing Diagram
- 2 Rainfall Events Listing
- 3 Area Listing (selected nodes)
- 4 Soil Listing (selected nodes)
- 5 Ground Covers (selected nodes)

#### 2-Year Event

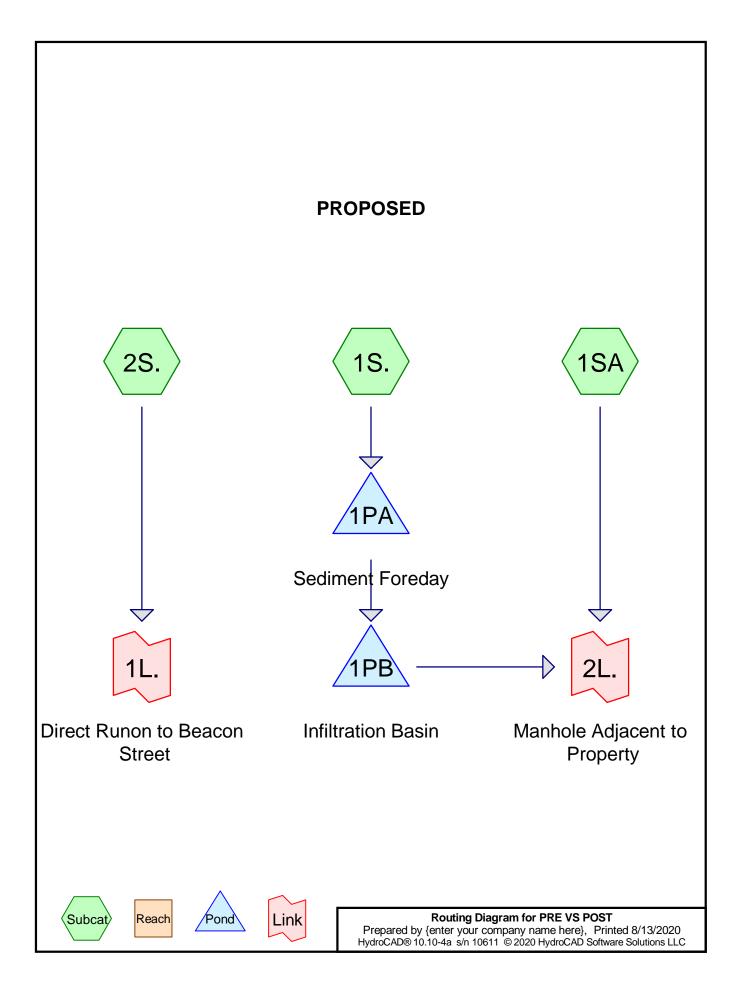
- 6 Node Listing
- 7 Subcat 1S:
- 8 Subcat 2S:
- 9 Link 1L: Direct Runon to Beacon Street
- 10 Link 2L: Manhole Adjacent to Property

#### 10-Year Event

- 11 Node Listing
- 12 Subcat 1S:
- 13 Subcat 2S:
- 14 Link 1L: Direct Runon to Beacon Street
- 15 Link 2L: Manhole Adjacent to Property

#### 25-Year Event

- 16 Node Listing
- 17 Subcat 1S:
- 18 Subcat 2S:
- 19 Link 1L: Direct Runon to Beacon Street
- 20 Link 2L: Manhole Adjacent to Property


#### 100-Year Event

- 21 Node Listing
- 22 Subcat 1S:
- 23 Subcat 2S:
- 24 Link 1L: Direct Runon to Beacon Street
- 25 Link 2L: Manhole Adjacent to Property



# Appendix C

Post-Development Watershed Analysis



| <br>Event# | Event<br>Name | Storm Type     | Curve | Mode    | Duration<br>(hours) | B/B | Depth<br>(inches) | AMC |
|------------|---------------|----------------|-------|---------|---------------------|-----|-------------------|-----|
| 1          | 2-Year        | Type III 24-hr |       | Default | 24.00               | 1   | 3.16              | 2   |
| 2          | 10-Year       | Type III 24-hr |       | Default | 24.00               | 1   | 4.77              | 2   |
| 3          | 25-Year       | Type III 24-hr |       | Default | 24.00               | 1   | 6.03              | 2   |
| 4          | 100-Year      | Type III 24-hr |       | Default | 24.00               | 1   | 8.78              | 2   |

# **Rainfall Events Listing**

# Area Listing (selected nodes)

| Area    | CN | Description                                   |
|---------|----|-----------------------------------------------|
| (acres) |    | (subcatchment-numbers)                        |
| 0.065   | 39 | >75% Grass cover, Good, HSG A (1S., 1SA, 2S.) |
| 0.267   | 98 | Paved parking, HSG A (1S., 1SA, 2S.)          |
| 0.110   | 98 | Unconnected roofs, HSG A (1S., 1SA)           |
| 0.023   | 98 | Water Surface, HSG A (1S.)                    |
| 0.465   | 90 | TOTAL AREA                                    |

# Soil Listing (selected nodes)

| Area    | Soil  | Subcatchment  |
|---------|-------|---------------|
| (acres) | Group | Numbers       |
| 0.465   | HSG A | 1S., 1SA, 2S. |
| 0.000   | HSG B |               |
| 0.000   | HSG C |               |
| 0.000   | HSG D |               |
| 0.000   | Other |               |
| 0.465   |       | TOTAL AREA    |

|             |         | •       |         |         |         | -3)                    |               |
|-------------|---------|---------|---------|---------|---------|------------------------|---------------|
| HSG-A       | HSG-B   | HSG-C   | HSG-D   | Other   | Total   | Ground                 | Subcatchment  |
| <br>(acres) | (acres) | (acres) | (acres) | (acres) | (acres) | Cover                  | Numbers       |
| <br>0.065   | 0.000   | 0.000   | 0.000   | 0.000   | 0.065   | >75% Grass cover, Good | 1S., 1SA, 2S. |
| 0.267       | 0.000   | 0.000   | 0.000   | 0.000   | 0.267   | Paved parking          | 1S., 1SA, 2S. |
| 0.110       | 0.000   | 0.000   | 0.000   | 0.000   | 0.110   | Unconnected roofs      | 1S., 1SA      |
| 0.023       | 0.000   | 0.000   | 0.000   | 0.000   | 0.023   | Water Surface          | 1S.           |
| 0.465       | 0.000   | 0.000   | 0.000   | 0.000   | 0.465   | TOTAL AREA             |               |

#### Ground Covers (selected nodes)

| PRE VS POST                                                         | 7 |
|---------------------------------------------------------------------|---|
| Prepared by {enter your company name here}                          |   |
| HydroCAD® 10.10-4a s/n 10611 © 2020 HydroCAD Software Solutions LLC | 2 |


# Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

| Subcatchment 1S.:                                 | Runoff Area=15,374 sf 87.36% Impervious Runoff Depth>2.09"<br>Tc=5.0 min CN=91 Runoff=0.91 cfs 0.062 af                       |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Subcatchment 1SA:                                 | Runoff Area=4,349 sf 86.87% Impervious Runoff Depth>2.00"<br>Tc=5.0 min CN=90 Runoff=0.25 cfs 0.017 af                        |
| Subcatchment 2S.:                                 | Runoff Area=537 sf 40.60% Impervious Runoff Depth>0.44"<br>Tc=5.0 min CN=63 Runoff=0.01 cfs 0.000 af                          |
| Pond 1PA: Sediment Foreday                        | Peak Elev=106.17' Storage=180 cf Inflow=0.91 cfs 0.062 af<br>Outflow=0.91 cfs 0.058 af                                        |
| Pond 1PB: Infiltration Basin<br>Discarded=0.06 cf | Peak Elev=106.32' Storage=1,143 cf Inflow=0.91 cfs 0.058 af<br>s 0.037 af Primary=0.29 cfs 0.008 af Outflow=0.35 cfs 0.045 af |
| Link 1L.: Direct Runon to Beacon Street           | Inflow=0.01 cfs 0.000 af<br>Primary=0.01 cfs 0.000 af                                                                         |
| Link 2L.: Manhole Adjacent to Property            | Inflow=0.40 cfs 0.025 af<br>Primary=0.40 cfs 0.025 af                                                                         |
|                                                   | c Runoff Volume = 0.079 af Average Runoff Depth = 2.03"<br>13.99% Pervious = 0.065 ac 86.01% Impervious = 0.400 ac            |

#### Summary for Subcatchment 1S.:

Runoff = 0.91 cfs @ 12.07 hrs, Volume= 0.062 af, Depth> 2.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.16"



#### Summary for Subcatchment 1SA:

Runoff = 0.25 cfs @ 12.07 hrs, Volume= 0.017 af, Depth> 2.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.16"

| Are                       | ea (sf)          | CN D             | escription           | n                     |                              |          |           |          |       |       |       |        |
|---------------------------|------------------|------------------|----------------------|-----------------------|------------------------------|----------|-----------|----------|-------|-------|-------|--------|
|                           | 571              |                  |                      | s cover, Go           |                              | ΞA       |           |          |       |       |       |        |
|                           | 457              |                  |                      | ed roofs, H           |                              |          |           |          |       |       |       |        |
| -                         | 3,321            |                  |                      | king, HSG A           | 4                            |          |           |          |       |       |       |        |
|                           | 4,349<br>571     |                  | /eighted /           | verage<br>rvious Area |                              |          |           |          |       |       |       |        |
|                           | 3,778            |                  |                      | pervious Area         |                              |          |           |          |       |       |       |        |
|                           | 457              |                  |                      | connected             | ou                           |          |           |          |       |       |       |        |
| Tc<br>(min)               | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs)     | Descri                       | ption    |           |          |       |       |       |        |
| 5.0                       | \/               | <u> </u>         |                      | <u>\ / -</u>          | Direct                       | Entry, M | INIMIN    | I FOR S  | HORT  | TRAV  | EL TI | MES    |
|                           |                  |                  |                      |                       | catchm<br><sup>rograph</sup> | ent 1SA  | <b>\:</b> |          |       |       |       |        |
| ſ                         | 1                |                  |                      |                       |                              |          |           |          |       |       |       | Runoff |
| 0.26                      |                  |                  |                      | 0.2                   | 25 cfs                       |          |           |          |       |       |       |        |
| 0.24                      | 1                |                  |                      |                       |                              |          |           | Тур      | e III | 24-h  | r     |        |
| 0.22                      |                  |                  |                      |                       |                              | 2-`      | Year      | Rain     | fall= | -3.16 | 11    |        |
| 0.2                       | /                |                  |                      |                       |                              | Rı       | inoff     | f Area   | -4    | 349 s | f     |        |
| 0.18                      |                  |                  |                      |                       |                              | Runo     |           |          |       |       |       |        |
| 🕝 0.16                    | 1                |                  |                      |                       |                              |          |           |          | -     | -     |       |        |
| -0.16<br>0.14<br>0.14     |                  |                  |                      |                       |                              | F        | Runo      | off De   | pth>  | >2.00 |       |        |
| <b>6</b><br><b>H</b> 0.12 | /                |                  |                      |                       |                              |          |           | T        | c=5.  | 0 mi  | n     |        |
| 0.1                       | /                |                  |                      |                       |                              |          |           |          | C     | CN=9  | 0     |        |
| 0.08                      | 1                |                  |                      |                       | <u> </u>                     |          |           |          |       |       | -     |        |
| 0.06                      |                  |                  |                      |                       |                              |          |           |          |       |       |       |        |
| 0.04                      | /                |                  |                      |                       |                              |          |           |          |       |       |       |        |
| 0.02                      | /                |                  |                      |                       |                              | IIm      | 77777     |          |       |       |       |        |
| 0                         | Imm              |                  |                      |                       |                              |          |           | <u> </u> |       |       |       |        |
| 5                         | 6                | 7 8              | 9                    |                       | 12 13<br>ime (hours)         |          | 15 1      | 6 17     | 18    | 19    | 20    |        |

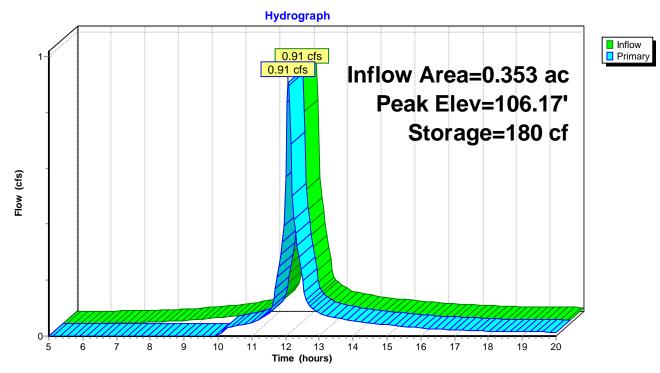
#### Summary for Subcatchment 2S.:

Runoff = 0.01 cfs @ 12.11 hrs, Volume= 0.000 af, Depth> 0.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.16"

|                     | Area                  | a (sf)     | С  | Ν           | Des | cripti  | on   |               |            |                             |           |        |       |      |       |                                                   |    |       |
|---------------------|-----------------------|------------|----|-------------|-----|---------|------|---------------|------------|-----------------------------|-----------|--------|-------|------|-------|---------------------------------------------------|----|-------|
|                     |                       | 319        |    |             |     |         |      | over, C       |            | HSG                         | βA        |        |       |      |       |                                                   |    |       |
|                     |                       | 218        |    |             |     |         |      | , HSG         | A          |                             |           |        |       |      |       |                                                   |    |       |
|                     |                       | 537<br>319 |    |             |     |         | Aver | age<br>us Are | 2          |                             |           |        |       |      |       |                                                   |    |       |
|                     |                       | 218        |    |             |     |         |      | vious A       |            |                             |           |        |       |      |       |                                                   |    |       |
|                     |                       | _          |    |             |     |         | •    |               |            |                             |           |        |       |      |       |                                                   |    |       |
| To                  |                       | .engt      |    | Slope       |     | eloci   |      | apacit        |            | escrip                      | otion     |        |       |      |       |                                                   |    |       |
| <u>(min)</u><br>5.0 | <i>,</i>              | (feet      | .) | (ft/ft      | ) ( | (ft/see | C)   | (cfs          | /          | root                        | Entry     | MINI   |       |      |       |                                                   |    | TIMES |
| 5.0                 | J                     |            |    |             |     |         |      |               | D          | ilect i                     |           | , WIIN |       |      | SHUK  | IIKA                                              |    |       |
|                     |                       |            |    |             |     |         |      | Su            | bcat       | chm                         | ent 2     | 2S.:   |       |      |       |                                                   |    |       |
|                     |                       |            |    |             |     |         |      | Hy            | drogr      | aph                         |           |        |       |      |       |                                                   |    |       |
|                     | ſ                     |            |    |             |     |         |      |               |            |                             |           |        |       |      |       |                                                   |    | Runc  |
| 0.0                 | 005                   |            |    |             |     |         |      | Ċ             | 0.01 0     | ofs                         |           |        |       |      |       |                                                   |    |       |
| 0.0                 | 005                   | 1          |    |             |     |         |      |               |            |                             |           |        |       | Тур  | be ll | 24-                                               | hr |       |
| 0.0                 | 004                   | /          |    |             |     |         |      |               |            |                             |           | 2-Ye   | ear F | Rair | nfall | =3.1                                              | 6" |       |
|                     | 3                     | /          |    |             |     |         |      |               |            |                             |           | Rı     | inof  | fΔı  | 'ea=  | 537                                               | sf |       |
|                     | 004 <del>-</del><br>- |            |    |             |     |         |      |               |            | 2                           | DIII      |        |       |      |       | 000                                               |    |       |
| 0.0<br>م            | 003                   |            |    |             |     |         |      |               |            |                             | nui       |        |       |      |       |                                                   |    |       |
| Flow (cfs)          | 003                   |            |    |             |     |         |      |               | 1          |                             |           | ки     | not   |      |       | >0.4                                              |    |       |
| 출 <sub>0.0</sub>    | 002                   | 4          |    |             |     |         |      |               |            |                             |           |        |       | Т    | C=5   | .0 m                                              | in |       |
| 0.0                 | 002                   | 1          |    |             |     |         |      |               |            | <b> </b>                    |           |        |       |      |       | CN=                                               | 63 |       |
|                     | 1                     | /          |    |             |     |         |      |               |            |                             |           |        |       |      |       |                                                   |    |       |
| 0.0                 | 001 <u>-</u><br>-     |            |    |             |     |         |      |               |            |                             |           |        |       |      |       |                                                   |    |       |
| 0.0                 | 001                   |            |    |             |     |         |      |               |            |                             | $\square$ |        |       |      |       |                                                   |    |       |
| 0.0                 | 000                   |            |    |             |     |         |      |               |            |                             | ~         |        |       |      |       |                                                   |    |       |
|                     | 0                     | <u>III</u> |    | <u>////</u> | /// |         |      |               |            | ;<br>                       | ;<br>     | ÷      | ÷     | ·    |       | <del>, , , , , , , , , , , , , , , , , , , </del> |    |       |
|                     | 5                     | 6          | 5  | 7           | 8   | 9       | 10   | 11            | 12<br>Timo | 1 <sup>'</sup> 3<br>(hours) | 14        | 15     | 16    | 17   | 18    | 19                                                | 20 |       |

### Summary for Pond 1PA: Sediment Foreday


| Inflow Area = | 0.353 ac, 87.36% Impervious, Inflow I | Depth > 2.09" for 2-Year event    |
|---------------|---------------------------------------|-----------------------------------|
| Inflow =      | 0.91 cfs @ 12.07 hrs, Volume=         | 0.062 af                          |
| Outflow =     | 0.91 cfs @ 12.09 hrs, Volume=         | 0.058 af, Atten= 0%, Lag= 0.7 min |
| Primary =     | 0.91 cfs @ 12.09 hrs, Volume=         | 0.058 af                          |

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 106.17' @ 12.09 hrs Surf.Area= 212 sf Storage= 180 cf

Plug-Flow detention time= 34.1 min calculated for 0.058 af (94% of inflow) Center-of-Mass det. time= 14.5 min (784.9 - 770.4)

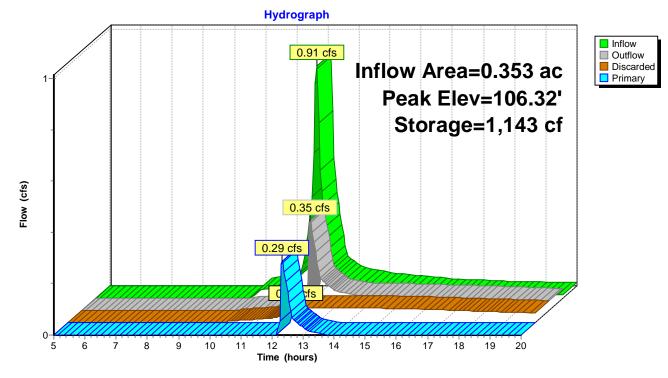
| Volume                                               | Inv                   | vert Avai                                      | I.Storage                                             | Storage Descripti                                  | on                                                 |                                                |  |
|------------------------------------------------------|-----------------------|------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------------------|--|
| #1                                                   | 104.                  | 50'                                            | 283 cf                                                | Custom Stage Da                                    | ata (Irregular) Liste                              | ed below (Recalc)                              |  |
| Elevatio<br>(fee<br>104.5<br>105.0<br>106.0<br>106.6 | it)<br>i0<br>00<br>00 | Surf.Area<br>(sq-ft)<br>28<br>66<br>189<br>274 | Perim.<br>(feet)<br>30.0<br>46.0<br>68.0<br>75.0      | Inc.Store<br>(cubic-feet)<br>0<br>23<br>122<br>138 | Cum.Store<br>(cubic-feet)<br>0<br>23<br>145<br>283 | Wet.Area<br>(sq-ft)<br>28<br>127<br>334<br>425 |  |
| Device<br>#1                                         | Routing<br>Primary    |                                                | vert Outl<br>5.00' <b>5.0'</b><br>Hea<br>2.50<br>Coet | 3.00 3.50                                          | h Broad-Crested I<br>0.60 0.80 1.00                |                                                |  |

Primary OutFlow Max=0.88 cfs @ 12.09 hrs HW=106.17' (Free Discharge) ←1=Broad-Crested Rectangular Weir (Weir Controls 0.88 cfs @ 1.04 fps)



# Pond 1PA: Sediment Foreday

## Summary for Pond 1PB: Infiltration Basin

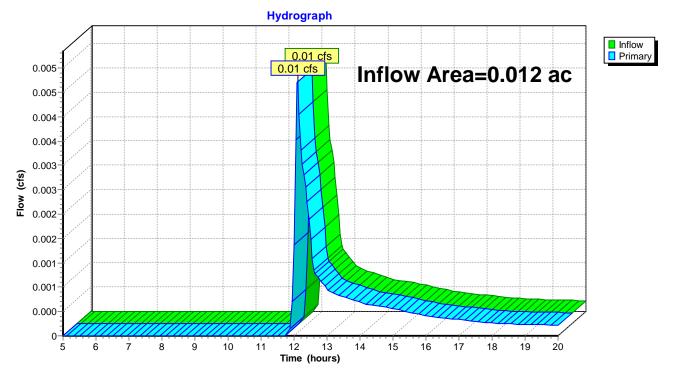

| Inflow Area = | 0.353 ac, 87.36% Impervious, Inflow D | epth > 1.98" for 2-Year event       |
|---------------|---------------------------------------|-------------------------------------|
| Inflow =      | 0.91 cfs @ 12.09 hrs, Volume=         | 0.058 af                            |
| Outflow =     | 0.35 cfs @ 12.33 hrs, Volume=         | 0.045 af, Atten= 62%, Lag= 14.8 min |
| Discarded =   | 0.06 cfs @ 12.33 hrs, Volume=         | 0.037 af                            |
| Primary =     | 0.29 cfs @ 12.33 hrs, Volume=         | 0.008 af                            |

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 106.32' @ 12.33 hrs Surf.Area= 651 sf Storage= 1,143 cf

Plug-Flow detention time= 165.7 min calculated for 0.045 af (77% of inflow) Center-of-Mass det. time= 110.4 min (895.3 - 784.9)

| Volume           | Invert                                                                 | Avail.St             | orage                      | Storage Description                                                                                                                     |                                                          |                                           |
|------------------|------------------------------------------------------------------------|----------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|
| #1               | 103.00'                                                                | 1,3                  | 335 cf                     | Custom Stage Data                                                                                                                       | (Irregular) Listed                                       | below (Recalc)                            |
| Elevatio<br>(fee |                                                                        | rf.Area I<br>(sq-ft) | Perim.<br>(feet)           | Inc.Store<br>(cubic-feet)                                                                                                               | Cum.Store<br>(cubic-feet)                                | Wet.Area<br>(sq-ft)                       |
| 103.0            | 00                                                                     | 103                  | 54.0                       | 0                                                                                                                                       | 0                                                        | 103                                       |
| 104.0            | 00                                                                     | 227                  | 71.0                       | 161                                                                                                                                     | 161                                                      | 283                                       |
| 105.0            | 00                                                                     | 387                  | 89.0                       | 303                                                                                                                                     | 464                                                      | 526                                       |
| 106.0            | 00                                                                     | 583                  | 105.0                      | 482                                                                                                                                     | 946                                                      | 791                                       |
| 106.6            | 60                                                                     | 714                  | 113.0                      | 388                                                                                                                                     | 1,335                                                    | 945                                       |
| Device           | Routing                                                                |                      |                            | t Devices                                                                                                                               | 0.0000.11                                                |                                           |
| #1               | Device 2                                                               | 106.25               |                            |                                                                                                                                         | C = 0.600 Lim                                            | ited to weir flow at low heads            |
| #2<br>#3         | Primary<br>Discarded                                                   | 105.05<br>103.00     | L= 16<br>Inlet /<br>n= 0.0 | Round Culvert<br>9.0' CPP, projecting<br>Outlet Invert= 105.0<br>013 Corrugated PE,<br>in/hr Exfiltration over<br>uctivity to Groundwat | 5' / 104.20' S= 0<br>smooth interior,<br>er Surface area | .0050 '/' Cc= 0.900<br>Flow Area= 0.79 sf |
|                  | Discarded OutFlow Max=0.06 cfs @ 12.33 hrs HW=106.32' (Free Discharge) |                      |                            |                                                                                                                                         |                                                          |                                           |

Primary OutFlow Max=0.28 cfs @ 12.33 hrs HW=106.32' (Free Discharge) -2=Culvert (Passes 0.28 cfs of 2.62 cfs potential flow) -1=Orifice/Grate (Weir Controls 0.28 cfs @ 0.86 fps)

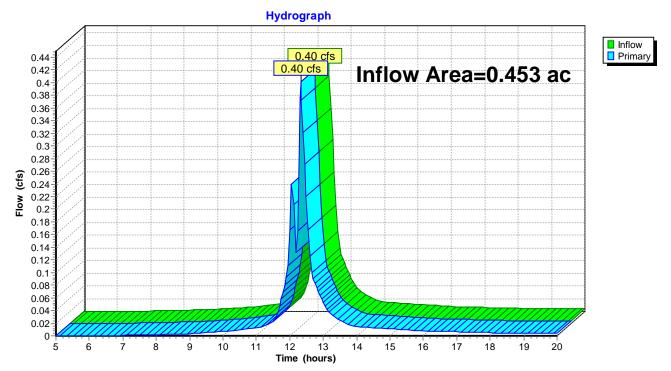



Pond 1PB: Infiltration Basin

# Summary for Link 1L.: Direct Runon to Beacon Street

| Inflow Area = | 0.012 ac, 40.60% Impervious, Inflow D | Depth > 0.44" for 2-Year event    |
|---------------|---------------------------------------|-----------------------------------|
| Inflow =      | 0.01 cfs @ 12.11 hrs, Volume=         | 0.000 af                          |
| Primary =     | 0.01 cfs @ 12.11 hrs, Volume=         | 0.000 af, Atten= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs




# Link 1L.: Direct Runon to Beacon Street

# Summary for Link 2L.: Manhole Adjacent to Property

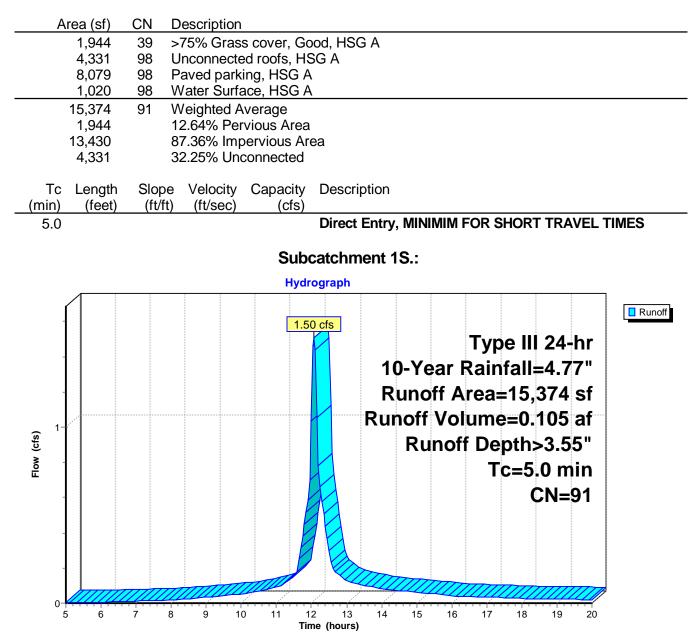
| Inflow Area = | 0.453 ac, 87.25% Impervious, Inflow D | Depth > 0.66" for 2-Year event    |
|---------------|---------------------------------------|-----------------------------------|
| Inflow =      | 0.40 cfs @ 12.32 hrs, Volume=         | 0.025 af                          |
| Primary =     | 0.40 cfs @ 12.32 hrs, Volume=         | 0.025 af, Atten= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs



# Link 2L.: Manhole Adjacent to Property

| PRE VS POST                                                       | 7   |
|-------------------------------------------------------------------|-----|
| Prepared by {enter your company name here}                        |     |
| HydroCAD® 10.10-4a s/n 10611 © 2020 HydroCAD Software Solutions L | LLC |


# Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

| Subcatchment 1S.:                                 | Runoff Area=15,374 sf 87.36% Impervious Runoff Depth>3.55"<br>Tc=5.0 min CN=91 Runoff=1.50 cfs 0.105 af                        |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Subcatchment 1SA:                                 | Runoff Area=4,349 sf 86.87% Impervious Runoff Depth>3.45"<br>Tc=5.0 min CN=90 Runoff=0.42 cfs 0.029 af                         |
| Subcatchment 2S.:                                 | Runoff Area=537 sf 40.60% Impervious Runoff Depth>1.24"<br>Tc=5.0 min CN=63 Runoff=0.02 cfs 0.001 af                           |
| Pond 1PA: Sediment Foreday                        | Peak Elev=106.24' Storage=194 cf Inflow=1.50 cfs 0.105 af<br>Outflow=1.50 cfs 0.101 af                                         |
| Pond 1PB: Infiltration Basin<br>Discarded=0.06 cf | Peak Elev=106.45' Storage=1,232 cf Inflow=1.50 cfs 0.101 af<br>is 0.043 af Primary=1.41 cfs 0.041 af Outflow=1.48 cfs 0.084 af |
| Link 1L.: Direct Runon to Beacon Street           | Inflow=0.02 cfs 0.001 af<br>Primary=0.02 cfs 0.001 af                                                                          |
| Link 2L.: Manhole Adjacent to Property            | Inflow=1.81 cfs 0.070 af<br>Primary=1.81 cfs 0.070 af                                                                          |
|                                                   | c Runoff Volume = 0.135 af Average Runoff Depth = 3.47"<br>13.99% Pervious = 0.065 ac 86.01% Impervious = 0.400 ac             |

#### Summary for Subcatchment 1S.:

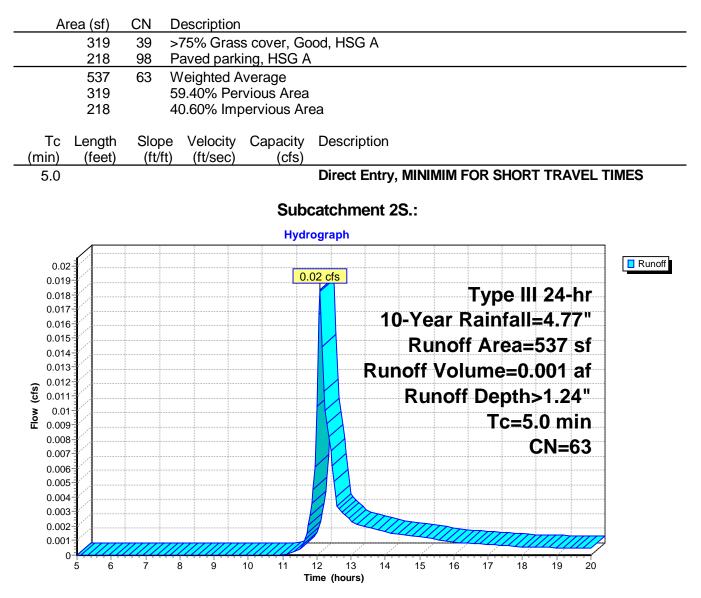
Runoff = 1.50 cfs @ 12.07 hrs, Volume= 0.105 af, Depth> 3.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.77"



#### Summary for Subcatchment 1SA:

Runoff = 0.42 cfs @ 12.07 hrs, Volume= 0.029 af, Depth> 3.45"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.77"

| Are                          | ea (sf)               | CN               | Descriptior | า                 |                    |            |        |          |       |       |        |
|------------------------------|-----------------------|------------------|-------------|-------------------|--------------------|------------|--------|----------|-------|-------|--------|
|                              | 571                   |                  |             | ss cover, Go      |                    | GΑ         |        |          |       |       |        |
|                              | 457                   |                  |             | ed roofs, HS      |                    |            |        |          |       |       |        |
|                              | <u>3,321</u><br>4,349 |                  | Weighted /  | king, HSG A       | ۱                  |            |        |          |       |       |        |
|                              | 4,349<br>571          |                  |             | ervious Area      |                    |            |        |          |       |       |        |
|                              | 3,778                 |                  |             | pervious Ar       |                    |            |        |          |       |       |        |
|                              | 457                   |                  |             | connected         |                    |            |        |          |       |       |        |
| Tc<br>min)                   | Length<br>(feet)      | Slope<br>(ft/ft) |             | Capacity<br>(cfs) | Descri             | ption      |        |          |       |       |        |
| 5.0                          | (1001)                | ()               | (14000)     | (0.0)             | Direct             | Entry, MIN | IMIM F | OR SHOR  | T TRA | VEL 1 | IMES   |
|                              | / <del>+</del>        |                  |             |                   | ograph             | ent 1SA:   |        |          | L     |       |        |
| 0.46<br>0.44                 |                       |                  |             |                   | 10 - 1-            |            |        |          |       |       | Runoff |
| 0.42                         | /                     |                  |             | 0.4               | 12 cfs             |            |        | Type II  | 24-   | hr    |        |
| 0.4<br>0.38                  |                       |                  |             |                   |                    |            |        |          |       |       |        |
| 0.36                         | /                     |                  |             |                   |                    |            |        | Rainfall |       |       |        |
| 0.34<br>0.32                 | /                     |                  |             |                   |                    | Run        | off /  | Area=4,  | 349   | sf    |        |
| 0.3<br>0.28                  | /                     |                  |             |                   |                    | Runoff     | Vol    | ume=0.   | 029   | af    |        |
|                              | /                     |                  |             |                   |                    | Ru         | noff   | Depth    | 21    | 5     |        |
| 0.26<br>0.24<br>0.22<br>0.22 |                       |                  |             |                   |                    | 1.9        |        | E E      |       |       |        |
| - 0.2 <u>-</u>               | /                     |                  |             |                   |                    |            |        | Tc=5     | -     |       |        |
| 0.18<br>0.16                 |                       |                  |             |                   |                    |            |        |          | CN=   | 90    |        |
| 0.14                         | /+                    |                  |             |                   | 74-                |            |        |          |       |       |        |
| 0.12<br>0.1                  | /                     |                  |             |                   |                    |            |        |          |       |       |        |
| 0.08<br>0.06                 |                       |                  |             |                   |                    |            |        |          |       |       |        |
| 0.04                         | /                     |                  |             |                   |                    | IIIm       | 77777  |          |       |       |        |
| 0.02<br>0                    | 11111                 |                  |             |                   |                    | ·····      |        |          |       |       |        |
| 5                            | 6                     | 7                | 8 9         |                   | 12 13<br>me (hours | 14 15      | 16     | 17 18    | 19    | 20    |        |

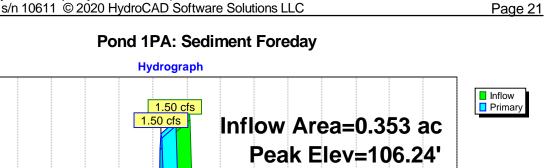
#### Summary for Subcatchment 2S.:

Runoff = 0.02 cfs @ 12.09 hrs, Volume= 0.001 af, Depth> 1.24"

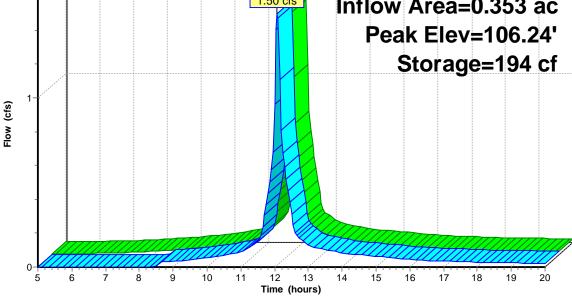
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.77"



### Summary for Pond 1PA: Sediment Foreday


| Inflow Area = | 0.353 ac, 87.36% Impervious, Inflow | Depth > 3.55" for 10-Year event   |
|---------------|-------------------------------------|-----------------------------------|
| Inflow =      | 1.50 cfs @ 12.07 hrs, Volume=       | 0.105 af                          |
| Outflow =     | 1.50 cfs @ 12.08 hrs, Volume=       | 0.101 af, Atten= 0%, Lag= 0.6 min |
| Primary =     | 1.50 cfs @ 12.08 hrs, Volume=       | 0.101 af                          |

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 106.24' @ 12.08 hrs Surf.Area= 221 sf Storage= 194 cf


Plug-Flow detention time= 24.2 min calculated for 0.101 af (96% of inflow) Center-of-Mass det. time= 11.3 min (769.5 - 758.2)

| Volume                                                     | Inv                       | ert Avai                                       | il.Storage                                           | Storage Descripti                                                          | ion                                                |                                                |  |
|------------------------------------------------------------|---------------------------|------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|--|
| #1                                                         | 104.                      | 50'                                            | 283 cf                                               | Custom Stage Da                                                            | <b>ata (Irregular)</b> List                        | ed below (Recalc)                              |  |
| Elevation<br>(feet<br>104.50<br>105.00<br>106.00<br>106.60 | :)<br>D<br>D<br>D         | Surf.Area<br>(sq-ft)<br>28<br>66<br>189<br>274 | Perim.<br>(feet)<br>30.0<br>46.0<br>68.0<br>75.0     | Inc.Store<br>(cubic-feet)<br>0<br>23<br>122<br>138                         | Cum.Store<br>(cubic-feet)<br>0<br>23<br>145<br>283 | Wet.Area<br>(sq-ft)<br>28<br>127<br>334<br>425 |  |
| Device<br>#1                                               | <u>Routing</u><br>Primary | In                                             | vert Outl<br>5.00' <b>5.0'</b><br>Hea<br>2.50<br>Coe | <u>et Devices</u><br>long x 2.0' breadt<br>d (feet) 0.20 0.40<br>3.00 3.50 | h Broad-Crested<br>0.60 0.80 1.00                  |                                                |  |

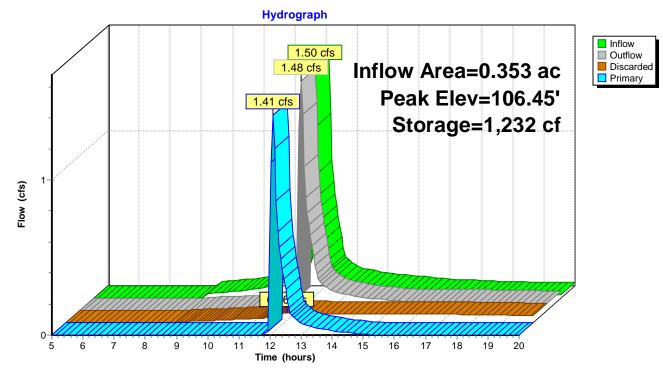
Primary OutFlow Max=1.45 cfs @ 12.08 hrs HW=106.23' (Free Discharge) ←1=Broad-Crested Rectangular Weir (Weir Controls 1.45 cfs @ 1.23 fps)



Printed 8/13/2020



### Summary for Pond 1PB: Infiltration Basin

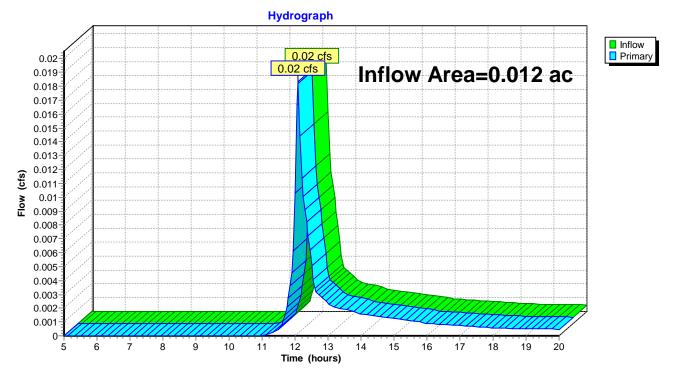

| Inflow Area = | 0.353 ac, 87.36% Impervious, Inflow E | Depth > 3.44" for 10-Year event   |
|---------------|---------------------------------------|-----------------------------------|
| Inflow =      | 1.50 cfs @ 12.08 hrs, Volume=         | 0.101 af                          |
| Outflow =     | 1.48 cfs @ 12.10 hrs, Volume=         | 0.084 af, Atten= 1%, Lag= 1.3 min |
| Discarded =   | 0.06 cfs @ 12.10 hrs, Volume=         | 0.043 af                          |
| Primary =     | 1.41 cfs @ 12.10 hrs, Volume=         | 0.041 af                          |

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 106.45' @ 12.10 hrs Surf.Area= 681 sf Storage= 1,232 cf

Plug-Flow detention time= 106.3 min calculated for 0.084 af (83% of inflow) Center-of-Mass det. time= 59.9 min (829.4 - 769.5)

| Volume   | Invert                                                                                                                        | Avail.St | orage                     | Storage Description                                                                                                              |                                                                 |                                           |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------|--|
| #1       | 103.00'                                                                                                                       | 1,3      | 335 cf                    | Custom Stage Data                                                                                                                | (Irregular) Listed                                              | below (Recalc)                            |  |
| Elevatio |                                                                                                                               |          | Perim.                    | Inc.Store                                                                                                                        | Cum.Store                                                       | Wet.Area                                  |  |
| (fee     | et)                                                                                                                           | (sq-ft)  | (feet)                    | (cubic-feet)                                                                                                                     | (cubic-feet)                                                    | <u>(sq-ft)</u>                            |  |
| 103.0    | 00                                                                                                                            | 103      | 54.0                      | 0                                                                                                                                | 0                                                               | 103                                       |  |
| 104.0    | 00                                                                                                                            | 227      | 71.0                      | 161                                                                                                                              | 161                                                             | 283                                       |  |
| 105.0    | 00                                                                                                                            | 387      | 89.0                      | 303                                                                                                                              | 464                                                             | 526                                       |  |
| 106.0    | 00                                                                                                                            | 583      | 105.0                     | 482                                                                                                                              | 946                                                             | 791                                       |  |
| 106.6    | 60                                                                                                                            | 714      | 113.0                     | 388                                                                                                                              | 1,335                                                           | 945                                       |  |
| Device   | Routing                                                                                                                       | Inver    | t Outle                   | et Devices                                                                                                                       |                                                                 |                                           |  |
| #1       | Device 2                                                                                                                      | 106.25   | ' <b>18.0</b> "           | Horiz. Orifice/Grate                                                                                                             | C= 0.600 Lim                                                    | ited to weir flow at low heads            |  |
| #2       | Primary                                                                                                                       | 105.05   | ' 12.0"                   | Round Culvert                                                                                                                    |                                                                 |                                           |  |
| #3       | Discarded                                                                                                                     | 103.00   | Inlet /<br>n= 0.<br>2.410 | 69.0' CPP, projecting<br>/ Outlet Invert= 105.0<br>013 Corrugated PE,<br><b>) in/hr Exfiltration ov</b><br>luctivity to Groundwa | 5' / 104.20' S= 0<br>smooth interior,<br><b>er Surface area</b> | .0050 '/' Cc= 0.900<br>Flow Area= 0.79 sf |  |
|          | <b>Discarded OutFlow</b> Max=0.06 cfs @ 12.10 hrs HW=106.45' (Free Discharge)<br><b>1</b> -3=Exfiltration (Controls 0.06 cfs) |          |                           |                                                                                                                                  |                                                                 |                                           |  |

Primary OutFlow Max=1.39 cfs @ 12.10 hrs HW=106.45' (Free Discharge) -2=Culvert (Passes 1.39 cfs of 2.63 cfs potential flow) -1=Orifice/Grate (Weir Controls 1.39 cfs @ 1.47 fps)

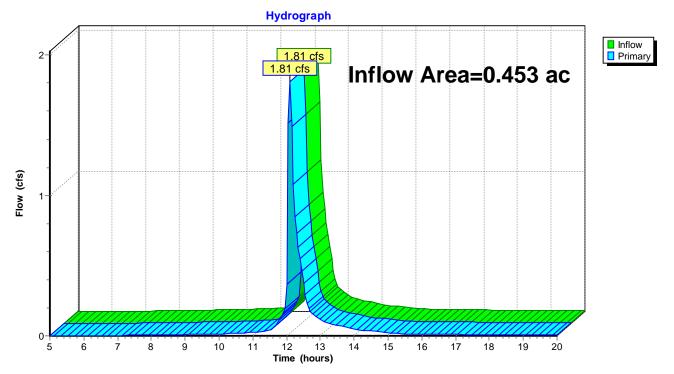



Pond 1PB: Infiltration Basin

## Summary for Link 1L.: Direct Runon to Beacon Street

| Inflow Area = | 0.012 ac, 40.60% Impervious, Inflow E | Depth > 1.24" for 10-Year event   |
|---------------|---------------------------------------|-----------------------------------|
| Inflow =      | 0.02 cfs @ 12.09 hrs, Volume=         | 0.001 af                          |
| Primary =     | 0.02 cfs @ 12.09 hrs, Volume=         | 0.001 af, Atten= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs




# Link 1L.: Direct Runon to Beacon Street

# Summary for Link 2L.: Manhole Adjacent to Property

| Inflow Area = | 0.453 ac, 87.25% Impervious, Inflow D | Depth > 1.85" for 10-Year event   |
|---------------|---------------------------------------|-----------------------------------|
| Inflow =      | 1.81 cfs @ 12.10 hrs, Volume=         | 0.070 af                          |
| Primary =     | 1.81 cfs @ 12.10 hrs, Volume=         | 0.070 af, Atten= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs



# Link 2L.: Manhole Adjacent to Property

| PRE VS POST                                                       | 7  |
|-------------------------------------------------------------------|----|
| Prepared by {enter your company name here}                        |    |
| HydroCAD® 10.10-4a s/n 10611 © 2020 HydroCAD Software Solutions L | LC |

# Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

| Subcatchment 1S.:                                 | Runoff Area=15,374 sf 87.36% Impervious Runoff Depth>4.71"<br>Tc=5.0 min CN=91 Runoff=1.96 cfs 0.139 af                       |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Subcatchment 1SA:                                 | Runoff Area=4,349 sf 86.87% Impervious Runoff Depth>4.61"<br>Tc=5.0 min CN=90 Runoff=0.55 cfs 0.038 af                        |
| Subcatchment 2S.:                                 | Runoff Area=537 sf 40.60% Impervious Runoff Depth>2.01"<br>Tc=5.0 min CN=63 Runoff=0.03 cfs 0.002 af                          |
| Pond 1PA: Sediment Foreday                        | Peak Elev=106.28' Storage=204 cf Inflow=1.96 cfs 0.139 af<br>Outflow=1.95 cfs 0.135 af                                        |
| Pond 1PB: Infiltration Basin<br>Discarded=0.06 cf | Peak Elev=106.49' Storage=1,260 cf Inflow=1.95 cfs 0.135 af<br>s 0.047 af Primary=1.86 cfs 0.069 af Outflow=1.92 cfs 0.116 af |
| Link 1L.: Direct Runon to Beacon Street           | Inflow=0.03 cfs 0.002 af<br>Primary=0.03 cfs 0.002 af                                                                         |
| Link 2L.: Manhole Adjacent to Property            | Inflow=2.39 cfs 0.107 af<br>Primary=2.39 cfs 0.107 af                                                                         |
|                                                   | c Runoff Volume = 0.179 af Average Runoff Depth = 4.62"<br>13.99% Pervious = 0.065 ac 86.01% Impervious = 0.400 ac            |

### Summary for Subcatchment 1S.:

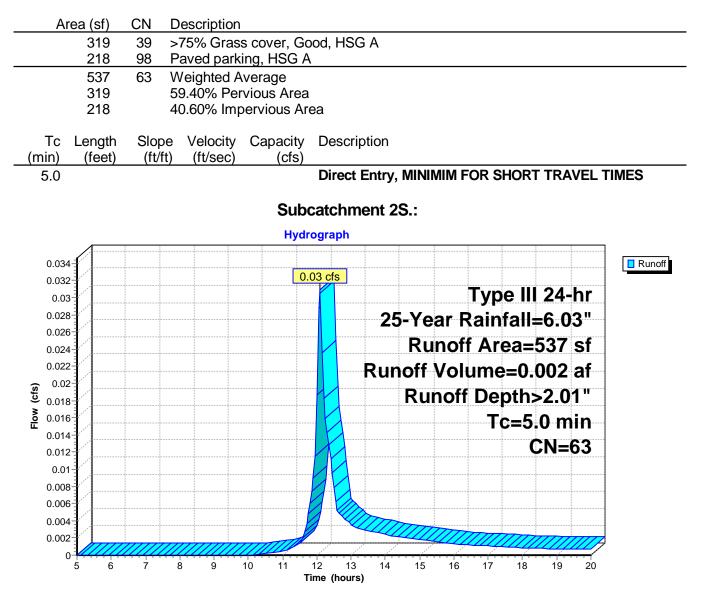
Runoff = 1.96 cfs @ 12.07 hrs, Volume= 0.139 af, Depth> 4.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.03"

| Area (sf)                       | CN                          | Description               | 1                 |                    |        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |
|---------------------------------|-----------------------------|---------------------------|-------------------|--------------------|--------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| 1,944                           | 39                          | >75% Gras                 |                   |                    | ΞA     |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |
| 4,331                           | 98 Unconnected roofs, HSG A |                           |                   |                    |        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |
| 8,079<br>1,020                  | 98<br>98                    | Paved park<br>Water Surfa |                   |                    |        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |
| 15,374                          | <u>98</u><br>91             |                           |                   | \                  |        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |
| 1,944                           | 91                          | Weighted A<br>12.64% Per  |                   |                    |        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |
| 13,430                          |                             | 87.36% Imp                |                   |                    |        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |
| 4,331                           |                             | 32.25% Un                 |                   |                    |        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |
| Tc Length<br>(min) (feet)       | Slop<br>(ft/ft              |                           | Capacity<br>(cfs) | Descri             | ption  |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |
| 5.0                             |                             |                           |                   | Direct             | Entry, | MINI | MIM F | OR SHORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TRAVEL  | TIMES  |
|                                 |                             |                           | Sub               | catchm             | ent 1  | S.:  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |
|                                 |                             |                           | Hydr              | ograph             |        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |
|                                 |                             |                           |                   |                    |        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | Runoff |
| 2-                              |                             |                           | 1.9               | 6 cfs              |        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |
| 27                              |                             |                           |                   |                    |        |      | -     | Type III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24-hr   |        |
|                                 |                             |                           |                   |                    | 25     | 5-Ye | ar R  | ainfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =6.03"  |        |
| -                               |                             |                           |                   |                    | R      | uno  | ff ∆r | ea=15,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 374 cf  |        |
|                                 |                             |                           |                   |                    |        |      |       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |        |
|                                 |                             |                           |                   |                    | кur    | IOIT | νοιι  | ume=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 139 af  |        |
| -<br>1-                         |                             |                           |                   |                    |        | Ru   | noff  | Depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >4.71"  |        |
| MOL 1-                          |                             |                           |                   |                    |        |      |       | Tc=5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 min   |        |
|                                 |                             |                           |                   |                    |        |      |       | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CN=91   |        |
|                                 |                             |                           |                   | X                  |        |      |       | , in the second se | JIN=3 I |        |
| -                               |                             |                           |                   |                    |        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |
|                                 |                             |                           |                   |                    |        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |
|                                 |                             |                           |                   |                    |        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |
|                                 |                             | mm                        |                   |                    |        | Π    | ΠÌ    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | 3      |
| 0- <del>14-14-14-1</del><br>5 6 | 7                           | 8 9 1                     |                   | 2 13<br>me (hours) | 14     | 15   | 16    | 17 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19 20   |        |
|                                 |                             |                           | •••               |                    |        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |

#### Summary for Subcatchment 1SA:

Runoff = 0.55 cfs @ 12.07 hrs, Volume= 0.038 af, Depth> 4.61"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.03"

|            | Area (     | (sf)                      | CN              | De                               | script           | ion |                  |               |                |        |                |       |          |          |       |     |           |
|------------|------------|---------------------------|-----------------|----------------------------------|------------------|-----|------------------|---------------|----------------|--------|----------------|-------|----------|----------|-------|-----|-----------|
|            |            | 571                       | 39              | 39 >75% Grass cover, Good, HSG A |                  |     |                  |               |                |        |                |       |          |          |       |     |           |
|            |            | 157                       | 98              |                                  |                  |     | roofs, H         |               | ١              |        |                |       |          |          |       |     |           |
|            | 3,3        | <u>321</u><br>349         | <u>98</u><br>90 |                                  | ivea p<br>eighte |     | g, HSG           | A             |                |        |                |       |          |          |       |     |           |
|            |            | 549<br>571                | 90              |                                  |                  |     | ous Are          | а             |                |        |                |       |          |          |       |     |           |
|            |            | 78                        |                 |                                  |                  |     | rvious A         |               |                |        |                |       |          |          |       |     |           |
|            |            | 157                       |                 |                                  |                  |     | nnected          |               |                |        |                |       |          |          |       |     |           |
| -<br>(mi   |            | ngth<br><sup>:</sup> eet) | Slop<br>(ft/    |                                  | Veloc<br>(ft/se  |     | Capacity<br>(cfs |               | scrip          | otion  |                |       |          |          |       |     |           |
|            | <u>6.0</u> | eeij                      | (10             |                                  | (1030            | ,0) | (013             |               | ect            | Entry. | MINI           |       | OR S     | SHOR     |       | VEL | TIMES     |
|            |            |                           |                 |                                  |                  |     | C. L             |               | <b>b</b> 100 - |        | C A .          |       |          |          |       |     |           |
|            |            |                           |                 |                                  |                  |     |                  |               |                | ent 1  | 5A:            |       |          |          |       |     |           |
|            | $\Lambda$  |                           |                 |                                  |                  |     | Hy               | drogra        | ph             |        |                |       |          |          |       |     | ]         |
|            | 0.6        |                           |                 |                                  |                  |     |                  |               | _              |        |                |       |          |          |       |     | 📘 Runoff  |
| (          | 0.55       |                           |                 |                                  |                  |     |                  | .55 cfs       |                |        |                |       | Тул      |          | 1 2 / | hr  | -         |
|            | 0.5        |                           |                 |                                  |                  |     |                  |               |                | _      |                | 1     |          | be II    | 1     |     | -         |
|            | - 17       |                           |                 |                                  |                  |     |                  |               |                | 25     | 5-Ye           | ear F | Rain     | itall    | =6.0  | 3"  | -         |
| (          | 0.45       |                           |                 |                                  |                  |     |                  |               |                | F      | Run            | off / | Area     | a=4,     | 349   | sf  | -         |
|            | 0.4        |                           |                 |                                  |                  |     |                  |               |                | Rur    | off            | Vol   | ume      | -=0      | 038   | af  | -         |
| (s)        | 0.35       |                           |                 |                                  |                  |     |                  |               |                |        | -              | -     |          | 1        |       |     |           |
| Flow (cfs) | 0.3        |                           |                 |                                  |                  |     |                  |               |                |        | πu             | nof   |          | <b>.</b> |       | 1   | -         |
| Ē          | 0.25       |                           |                 |                                  |                  |     |                  |               |                |        |                |       | <b>T</b> | c=5      | .0 m  | nin | -         |
| ,          |            |                           |                 |                                  |                  |     |                  |               | 1              |        |                |       |          |          | CN=   | 90  | -         |
|            | 0.2        |                           |                 |                                  |                  |     |                  | IX            | 2              |        |                |       |          |          |       |     | -         |
| (          | 0.15       |                           |                 |                                  |                  |     |                  | AF            |                |        |                |       |          |          |       |     |           |
|            | 0.1        |                           |                 |                                  |                  |     |                  | D             | X              |        |                |       |          |          |       |     |           |
| (          | 0.05       |                           |                 |                                  |                  |     |                  |               | $\bigcirc$     | TT     | $\overline{m}$ |       |          |          |       |     | -         |
|            | 0          |                           |                 |                                  |                  |     |                  |               | 2              |        |                |       |          |          |       |     | <b>\$</b> |
|            | 5          | 6                         | 7               | 8                                | 9                | 10  | 11               | 12<br>Time (h | 13             | 14     | 15             | 16    | 17       | 18       | 19    | 20  |           |

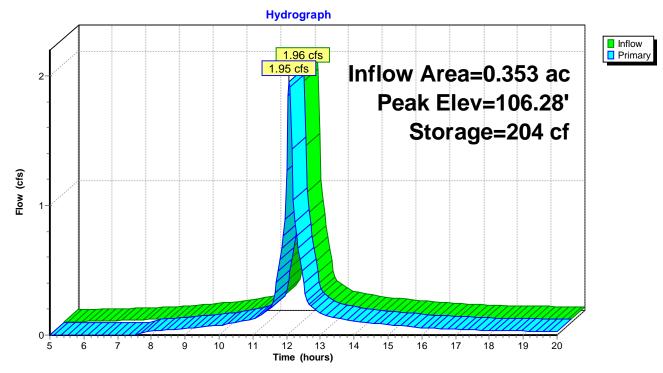
#### Summary for Subcatchment 2S.:

Runoff = 0.03 cfs @ 12.08 hrs, Volume= 0.002 af, Depth> 2.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.03"



### Summary for Pond 1PA: Sediment Foreday


| Inflow Area | a = | 0.353 ac, 8 | 37.36% Impervious | , Inflow Depth > | 4.71" for 25-Y   | 'ear event   |
|-------------|-----|-------------|-------------------|------------------|------------------|--------------|
| Inflow      | =   | 1.96 cfs @  | 12.07 hrs, Volum  | e= 0.139         | af               |              |
| Outflow     | =   | 1.95 cfs @  | 12.08 hrs, Volum  | e= 0.135         | af, Atten= 1%, L | .ag= 0.6 min |
| Primary     | =   | 1.95 cfs @  | 12.08 hrs, Volum  | e= 0.135         | af               |              |

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 106.28' @ 12.08 hrs Surf.Area= 227 sf Storage= 204 cf

Plug-Flow detention time= 19.6 min calculated for 0.135 af (97% of inflow) Center-of-Mass det. time= 9.5 min (762.0 - 752.5)

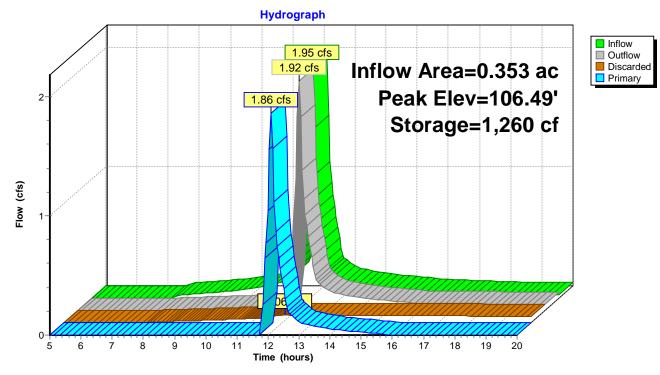
| Volume                        | Inv                       | ert Avai                   | I.Storage                                              | Storage Description                                                         | on                                                      |                           |  |
|-------------------------------|---------------------------|----------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------|---------------------------|--|
| #1                            | 104.                      | 50'                        | 283 cf                                                 | Custom Stage Da                                                             | <b>ita (Irregular)</b> Liste                            | ed below (Recalc)         |  |
| Elevatior<br>(feet)<br>104.50 | )                         | Surf.Area<br>(sq-ft)<br>28 | Perim.<br>(feet)<br>30.0                               | Inc.Store<br>(cubic-feet)<br>0                                              | Cum.Store<br>(cubic-feet)<br>0                          | Wet.Area<br>(sq-ft)<br>28 |  |
| 104.50                        |                           | 20<br>66                   | 30.0<br>46.0                                           | 23                                                                          | 23                                                      | 127                       |  |
| 106.00                        |                           | 189                        | 68.0                                                   | 122                                                                         | 145                                                     | 334                       |  |
| 106.60                        | )                         | 274                        | 75.0                                                   | 138                                                                         | 283                                                     | 425                       |  |
| Device                        | <u>Routing</u><br>Primary |                            | vert Outle<br>.00' <b>5.0'</b><br>Head<br>2.50<br>Coel | <u>et Devices</u><br>long x 2.0' breadtl<br>d (feet) 0.20 0.40<br>3.00 3.50 | h <b>Broad-Crested F</b><br>0.60 0.80 1.00 <sup>2</sup> |                           |  |

Primary OutFlow Max=1.89 cfs @ 12.08 hrs HW=106.28' (Free Discharge) ←1=Broad-Crested Rectangular Weir (Weir Controls 1.89 cfs @ 1.35 fps)



# Pond 1PA: Sediment Foreday

### Summary for Pond 1PB: Infiltration Basin

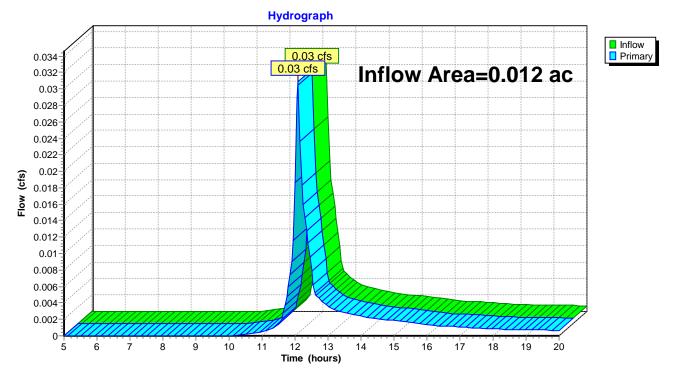

| Inflow Area = | 0.353 ac, 87.36% Impervious, Inflow D | epth > 4.60" for 25-Year event    |
|---------------|---------------------------------------|-----------------------------------|
| Inflow =      | 1.95 cfs @ 12.08 hrs, Volume=         | 0.135 af                          |
| Outflow =     | 1.92 cfs @ 12.10 hrs, Volume=         | 0.116 af, Atten= 1%, Lag= 1.1 min |
| Discarded =   | 0.06 cfs @ 12.10 hrs, Volume=         | 0.047 af                          |
| Primary =     | 1.86 cfs @ 12.10 hrs, Volume=         | 0.069 af                          |

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 106.49' @ 12.10 hrs Surf.Area= 690 sf Storage= 1,260 cf

Plug-Flow detention time= 86.4 min calculated for 0.115 af (85% of inflow) Center-of-Mass det. time= 44.5 min (806.5 - 762.0)

| Volume           | Invert                                                                 | Avail.St             | orage                      | Storage Description                                                                                                            |                                                                 |                                           |  |
|------------------|------------------------------------------------------------------------|----------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------|--|
| #1               | 103.00'                                                                | 1,3                  | 335 cf                     | Custom Stage Data                                                                                                              | (Irregular) Listed                                              | below (Recalc)                            |  |
| Elevatio<br>(fee |                                                                        | rf.Area I<br>(sq-ft) | Perim.<br>(feet)           | Inc.Store<br>(cubic-feet)                                                                                                      | Cum.Store<br>(cubic-feet)                                       | Wet.Area<br>(sq-ft)                       |  |
| 103.0            | 00                                                                     | 103                  | 54.0                       | 0                                                                                                                              | 0                                                               | 103                                       |  |
| 104.0            | 00                                                                     | 227                  | 71.0                       | 161                                                                                                                            | 161                                                             | 283                                       |  |
| 105.0            | 00                                                                     | 387                  | 89.0                       | 303                                                                                                                            | 464                                                             | 526                                       |  |
| 106.0            | 00                                                                     | 583                  | 105.0                      | 482                                                                                                                            | 946                                                             | 791                                       |  |
| 106.6            | 60                                                                     | 714                  | 113.0                      | 388                                                                                                                            | 1,335                                                           | 945                                       |  |
| Device           | Routing                                                                |                      |                            | t Devices                                                                                                                      | C 0.600 Lim                                                     | ited to weir flow at low boads            |  |
| #1<br>#2         | Device 2<br>Primary                                                    | 106.25<br>105.05     |                            | Round Culvert                                                                                                                  | C= 0.600 LIM                                                    | ited to weir flow at low heads            |  |
| #2               | Discarded                                                              | 103.00               | L= 16<br>Inlet /<br>n= 0.0 | 59.0' CPP, projecting<br>Outlet Invert= 105.0<br>013 Corrugated PE,<br><b>in/hr Exfiltration ove</b><br>luctivity to Groundwat | 5' / 104.20' S= 0<br>smooth interior,<br><b>er Surface area</b> | .0050 '/' Cc= 0.900<br>Flow Area= 0.79 sf |  |
|                  | Discarded OutFlow Max=0.06 cfs @ 12.10 hrs HW=106.49' (Free Discharge) |                      |                            |                                                                                                                                |                                                                 |                                           |  |

Primary OutFlow Max=1.86 cfs @ 12.10 hrs HW=106.49' (Free Discharge) -2=Culvert (Passes 1.86 cfs of 2.67 cfs potential flow) -1=Orifice/Grate (Weir Controls 1.86 cfs @ 1.62 fps)

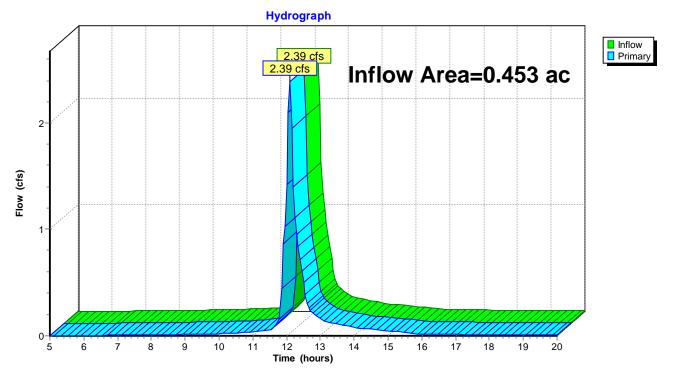



# Pond 1PB: Infiltration Basin

### Summary for Link 1L.: Direct Runon to Beacon Street

| Inflow Area = | 0.012 ac, 40.60% Impervious, Inflow D | Depth > 2.01" for 25-Year event   |
|---------------|---------------------------------------|-----------------------------------|
| Inflow =      | 0.03 cfs @ 12.08 hrs, Volume=         | 0.002 af                          |
| Primary =     | 0.03 cfs @ 12.08 hrs, Volume=         | 0.002 af, Atten= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs




# Link 1L.: Direct Runon to Beacon Street

# Summary for Link 2L.: Manhole Adjacent to Property

| Inflow Area = | 0.453 ac, 87.25% Impervious, Inflow D | Depth > 2.84" for 25-Year event   |
|---------------|---------------------------------------|-----------------------------------|
| Inflow =      | 2.39 cfs @ 12.09 hrs, Volume=         | 0.107 af                          |
| Primary =     | 2.39 cfs @ 12.09 hrs, Volume=         | 0.107 af, Atten= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs



# Link 2L.: Manhole Adjacent to Property

| PRE VS POST                                                     | Туре |
|-----------------------------------------------------------------|------|
| Prepared by {enter your company name here}                      |      |
| HydroCAD® 10.10-4a s/n 10611 © 2020 HydroCAD Software Solutions | LLC  |

# Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

| Subcatchment 1S.:                                 | Runoff Area=15,374 sf 87.36% Impervious Runoff Depth>7.25"<br>Tc=5.0 min CN=91 Runoff=2.95 cfs 0.213 af                       |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Subcatchment 1SA:                                 | Runoff Area=4,349 sf 86.87% Impervious Runoff Depth>7.15"<br>Tc=5.0 min CN=90 Runoff=0.83 cfs 0.059 af                        |
| Subcatchment 2S.:                                 | Runoff Area=537 sf 40.60% Impervious Runoff Depth>3.98"<br>Tc=5.0 min CN=63 Runoff=0.06 cfs 0.004 af                          |
| Pond 1PA: Sediment Foreday                        | Peak Elev=106.37' Storage=224 cf Inflow=2.95 cfs 0.213 af<br>Outflow=2.94 cfs 0.210 af                                        |
| Pond 1PB: Infiltration Basin<br>Discarded=0.07 cf | Peak Elev=106.59' Storage=1,324 cf Inflow=2.94 cfs 0.210 af<br>s 0.053 af Primary=2.75 cfs 0.133 af Outflow=2.82 cfs 0.187 af |
| Link 1L.: Direct Runon to Beacon Street           | Inflow=0.06 cfs 0.004 af<br>Primary=0.06 cfs 0.004 af                                                                         |
| Link 2L.: Manhole Adjacent to Property            | Inflow=3.55 cfs 0.193 af<br>Primary=3.55 cfs 0.193 af                                                                         |
|                                                   | c Runoff Volume = 0.277 af Average Runoff Depth = 7.14"<br>13.99% Pervious = 0.065 ac 86.01% Impervious = 0.400 ac            |

### Summary for Subcatchment 1S.:

Runoff = 2.95 cfs @ 12.07 hrs, Volume= 0.213 af, Depth> 7.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.78"

| Area (sf)                                          | CN I             | Description                                                                      |                   |            |                |      |       |          |              |       |        |
|----------------------------------------------------|------------------|----------------------------------------------------------------------------------|-------------------|------------|----------------|------|-------|----------|--------------|-------|--------|
| 1,944                                              |                  | >75% Gras                                                                        |                   |            | GΑ             |      |       |          |              |       |        |
| 4,331                                              |                  | <ul> <li>98 Unconnected roofs, HSG A</li> <li>98 Paved parking, HSG A</li> </ul> |                   |            |                |      |       |          |              |       |        |
| 8,079<br>1,020                                     |                  | Paved park                                                                       |                   |            |                |      |       |          |              |       |        |
| 15,374                                             |                  | Neighted A                                                                       | · · · ·           |            |                |      |       |          |              |       |        |
| 1,944                                              |                  | 12.64% Per                                                                       |                   |            |                |      |       |          |              |       |        |
| 13,430                                             |                  | 37.36% Imp                                                                       |                   |            |                |      |       |          |              |       |        |
| 4,331                                              |                  | 32.25% Uno                                                                       | connected         |            |                |      |       |          |              |       |        |
| Tc Length<br>(min) (feet)                          | Slope<br>(ft/ft) |                                                                                  | Capacity<br>(cfs) | Descri     | ption          |      |       |          |              |       |        |
| 5.0                                                |                  |                                                                                  |                   | Direct     | Entry,         | MINI | MIM F | OR SHOR  | T TRA        | VEL   | TIMES  |
|                                                    |                  |                                                                                  | 0.1               |            |                |      |       |          |              |       |        |
|                                                    |                  |                                                                                  |                   | catchm     | ient 1         | 5.:  |       |          |              |       |        |
|                                                    |                  | 1 1                                                                              | Hydr              | ograph     |                |      |       | 1        | 1            |       | 1      |
|                                                    |                  |                                                                                  |                   |            |                |      |       |          |              |       | Runoff |
| 3-                                                 |                  |                                                                                  | 2.9               | 5 cfs      |                |      |       |          |              | _     |        |
| -                                                  |                  |                                                                                  |                   |            |                |      |       | Type II  | 24-          | hr    |        |
| -                                                  |                  |                                                                                  |                   |            | 100            | -Ye  | ar R  | lainfall | =8.7         | 8"    |        |
| -                                                  |                  |                                                                                  |                   |            | Rı             | ino  | ff Δ  | rea=15,  | 374          | sf    |        |
| -                                                  |                  |                                                                                  |                   |            |                |      |       | ume=0.   |              |       |        |
| 2-                                                 |                  |                                                                                  |                   |            | Run            |      |       |          |              |       |        |
| Flow (cfs)                                         |                  |                                                                                  |                   |            |                | Ru   | noff  | Depth    | >7.2         | 5"    |        |
| Mo -                                               |                  |                                                                                  |                   |            |                |      |       | Tc=5     | .0 m         | in    |        |
|                                                    |                  |                                                                                  |                   |            |                |      |       |          | CN=          |       |        |
| 1-                                                 |                  |                                                                                  |                   | 11         |                |      |       |          | <b>511</b> - | J I   |        |
|                                                    |                  |                                                                                  |                   |            |                |      |       |          |              |       |        |
|                                                    |                  |                                                                                  |                   |            |                |      |       |          |              |       |        |
| -                                                  |                  |                                                                                  |                   |            | T              |      |       |          |              |       |        |
|                                                    |                  | 111111                                                                           |                   |            | <u> </u>       | Шį   |       |          |              | ///// |        |
| 0 <del>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</del> | 7 8              | 9 1(                                                                             | ) 11 1            | 2 13       | <u>-</u><br>14 | 15   | 16    | 17 18    | 19           | 20    |        |
|                                                    |                  |                                                                                  | Tin               | ne (hours) |                |      |       |          |              |       |        |

### Summary for Subcatchment 1SA:

Runoff = 0.83 cfs @ 12.07 hrs, Volume= 0.059 af, Depth> 7.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.78"

| Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a (sf)          | CN [             | Descriptior          | n                 |                  |        |       |       |                    |       |      |       |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|----------------------|-------------------|------------------|--------|-------|-------|--------------------|-------|------|-------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 571             |                  |                      |                   |                  |        |       |       |                    |       |      |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 457<br>3,321    |                  |                      |                   |                  |        |       |       |                    |       |      |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,349            |                  |                      |                   |                  |        |       |       |                    |       |      |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 571             |                  |                      | rvious Area       |                  |        |       |       |                    |       |      |       |        |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,778            |                  |                      | pervious Ar       | ea               |        |       |       |                    |       |      |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 457             |                  | 2.10% Un             | connected         |                  |        |       |       |                    |       |      |       |        |
| Tc L<br>(min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ength<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Descri           | ption  |       |       |                    |       |      |       |        |
| 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1661)          | (1011)           | (1/360)              | (013)             | Direct           | Entry. | MININ |       | OR SH              | IORT  |      | VEL T | IMES   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                  |                      |                   |                  | •      |       |       |                    |       |      |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                  |                      | Subo              | atchm            | ent 18 | SA:   |       |                    |       |      |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1               |                  |                      | Hydı              | ograph           |        |       |       |                    |       |      |       |        |
| 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                  |                      |                   |                  |        |       |       |                    |       |      |       | Runoff |
| 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ]               |                  |                      | 0.8               | 33 cfs           |        |       |       | -                  |       | ~ 1  |       |        |
| 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                  |                      |                   |                  |        |       |       | Туре               |       |      |       |        |
| 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                  |                      |                   |                  | 100    | -Yea  | ar R  | ainf               | all=  | -8.7 | 8"    |        |
| 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1               |                  |                      |                   |                  | F      | Runc  | off A | rea                | =4.   | 349  | sf    |        |
| 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ]               |                  |                      |                   |                  |        |       |       | Ime                |       |      |       |        |
| <b>⊙</b> <sup>0.55</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,<br>           |                  |                      |                   |                  | nui    |       |       |                    |       |      |       |        |
| 0.5<br>0.5<br>0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                  |                      |                   | -                |        | Rur   | lott  | Dep                | oth>  | >/.1 | 5     |        |
| <b>8</b> 0.45 <b>1</b> 0.4 <b>1</b> |                 |                  |                      |                   |                  |        |       |       | Тс                 | =5.   | 0 m  | in    |        |
| 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                  |                      |                   |                  |        |       |       |                    | - C   | )N=9 | 90    |        |
| 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                  |                      |                   | 11               |        |       |       |                    | ····· | //   |       |        |
| 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                  |                      |                   | 7-12             |        |       |       |                    |       |      |       |        |
| 0.2<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /               |                  |                      |                   | 1                |        |       |       |                    |       |      |       |        |
| 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1               |                  |                      |                   |                  | ~      |       |       |                    |       |      |       |        |
| 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1               | m                | mm                   |                   |                  |        |       | 7777  | 1111               |       |      |       |        |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6               | 7                | 3 9                  | 10 11             | <u></u><br>12 13 | 14     | 15    | 16    | <del> </del><br>17 | 18    | 19   | 20    |        |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0               | r (              | 5 5                  |                   | me (hours        |        | 15    | 10    | 17                 | 10    | 19   | 20    |        |

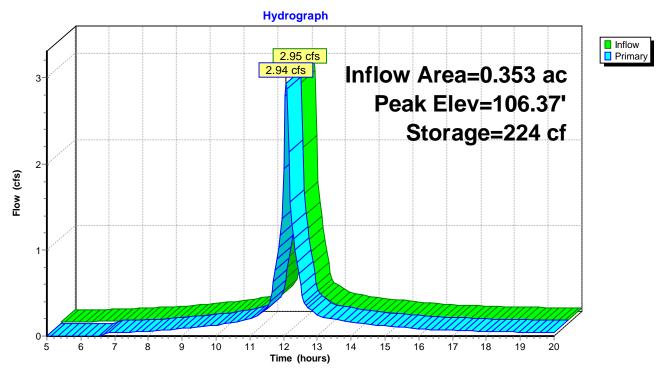
### Summary for Subcatchment 2S.:

Runoff = 0.06 cfs @ 12.08 hrs, Volume= 0.004 af, Depth> 3.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.78"

| A            | Area | (sf)       | CN   | De  | scrip  | tion  |                      |        |               |        |      |                |          |        |                            |          |              |
|--------------|------|------------|------|-----|--------|-------|----------------------|--------|---------------|--------|------|----------------|----------|--------|----------------------------|----------|--------------|
|              |      | 319        | 39   |     |        |       | cover,               |        | , HSC         | βA     |      |                |          |        |                            |          |              |
|              |      | 218        |      |     |        |       |                      |        |               |        |      |                |          |        |                            |          |              |
|              |      | 537        | 63   | We  | eighte | ed Av | erage                |        |               |        |      |                |          |        |                            |          |              |
|              |      | 319<br>218 |      |     |        |       | ious Are<br>rvious / |        |               |        |      |                |          |        |                            |          |              |
|              | 4    | 210        |      | -0  | .0070  | impe  | 1 1003 /             | n ca   |               |        |      |                |          |        |                            |          |              |
| Тс           |      | ngth       | Slop |     | Veloc  |       | Capacit              |        | escrip        | otion  |      |                |          |        |                            |          |              |
| (min)        |      | feet)      | (ft/ | ft) | (ft/se | ec)   | (cfs                 | /      |               |        |      |                |          |        |                            |          |              |
| 5.0          |      |            |      |     |        |       |                      | D      | irect         | Entry, | MINI | MIM F          | OR S     | SHOR   | T TRA                      | VEL 1    | <b>FIMES</b> |
|              |      |            |      |     |        |       | Su                   | hcat   | chm           | ent 2  | ς.   |                |          |        |                            |          |              |
|              |      |            |      |     |        |       |                      |        | -             |        | 5    |                |          |        |                            |          |              |
|              |      | 1          |      |     | 1      |       | Hy                   | /drogr | aph           | 1      |      |                |          | 1      | 1                          |          |              |
|              | 1    |            |      |     |        |       |                      |        |               |        |      |                |          |        |                            |          | 📘 Runof      |
| 0.00         | 65   |            |      |     |        |       |                      | 0.06 ( | ofs<br>A      |        |      |                | <b>.</b> | - 111  | <b>A</b>                   | <b>I</b> | · · · · ·    |
| 0.0          | 06   |            |      |     |        |       |                      |        |               |        |      |                |          | be III |                            |          |              |
| 0.05         | 55-  |            |      |     |        |       |                      |        |               | 100    | -Ye  | ar R           | lair     | fall   | =8.7                       | 8"       |              |
| 0.0          | 05   |            |      |     |        |       |                      |        |               |        | Ru   | nof            | f Ar     | ea=    | 537                        | sf       |              |
| 0.04         | 45   |            |      |     |        |       |                      |        |               | Rur    | off  | Voli           | ım       | e=0.   | 004                        | af       |              |
| <u>و</u> 0.0 | 04   |            |      |     |        |       |                      |        |               | I VAI  |      |                |          |        |                            |          |              |
| 0.0 (cts)    | 35   |            |      |     |        |       |                      |        | 1             |        | Rui  | ηστι           |          | pth:   |                            |          |              |
| Ê 0.0        | 03   |            |      |     |        |       |                      |        |               |        |      |                | Т        | c=5    | .0 m                       | nin      |              |
| 0.02         | 25   |            |      |     |        |       |                      |        |               |        |      |                |          | (      | CN=                        | 63       |              |
| 0.0          | 02   |            |      |     |        |       |                      |        |               |        |      |                |          |        |                            |          |              |
| 0.0          | 15   |            |      |     |        |       |                      | P      | A             |        |      |                |          |        | 1<br>1<br>1<br>1<br>1<br>1 |          |              |
| 0.0          | 3    | 1          |      |     |        |       |                      | D      |               |        |      |                |          |        |                            |          |              |
| 0.00         | /    |            |      |     |        |       |                      |        | V             |        |      | $\overline{m}$ |          |        |                            |          |              |
| 0.00         | 0    |            |      |     |        |       |                      |        | J             |        |      | Щ              | Ш        | ////   | Π                          |          |              |
|              | 5    | 6          | 7    | 8   | 9      | 10    | ) 11                 | 12     | 13<br>(hours) | 14     | 15   | 16             | 17       | 18     | 19                         | 20       |              |

### Summary for Pond 1PA: Sediment Foreday


| Inflow Area = | 0.353 ac,  | 87.36% Impervious,   | Inflow Depth > 7.2 | 25" for 100-Year event  |
|---------------|------------|----------------------|--------------------|-------------------------|
| Inflow =      | 2.95 cfs @ | 2 12.07 hrs, Volume= | = 0.213 af         |                         |
| Outflow =     | 2.94 cfs @ | 2 12.08 hrs, Volume= | = 0.210 af,        | Atten= 1%, Lag= 0.5 min |
| Primary =     | 2.94 cfs @ | 2 12.08 hrs, Volume= | = 0.210 af         |                         |

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 106.37' @ 12.08 hrs Surf.Area= 240 sf Storage= 224 cf

Plug-Flow detention time= 13.9 min calculated for 0.209 af (98% of inflow) Center-of-Mass det. time= 6.9 min (752.2 - 745.2)

| Volume                                                     | Inv                       | ert Avai                                       | il.Storage                                           | Storage Descripti                                                          | ion                                                |                                                |  |
|------------------------------------------------------------|---------------------------|------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|--|
| #1                                                         | 104.                      | 50'                                            | 283 cf                                               | Custom Stage Da                                                            | <b>ata (Irregular)</b> List                        | ed below (Recalc)                              |  |
| Elevation<br>(feet<br>104.50<br>105.00<br>106.00<br>106.60 | :)<br>D<br>D<br>D         | Surf.Area<br>(sq-ft)<br>28<br>66<br>189<br>274 | Perim.<br>(feet)<br>30.0<br>46.0<br>68.0<br>75.0     | Inc.Store<br>(cubic-feet)<br>0<br>23<br>122<br>138                         | Cum.Store<br>(cubic-feet)<br>0<br>23<br>145<br>283 | Wet.Area<br>(sq-ft)<br>28<br>127<br>334<br>425 |  |
| Device<br>#1                                               | <u>Routing</u><br>Primary | In                                             | vert Outl<br>5.00' <b>5.0'</b><br>Hea<br>2.50<br>Coe | <u>et Devices</u><br>long x 2.0' breadt<br>d (feet) 0.20 0.40<br>3.00 3.50 | h Broad-Crested<br>0.60 0.80 1.00                  |                                                |  |

Primary OutFlow Max=2.84 cfs @ 12.08 hrs HW=106.36' (Free Discharge) ←1=Broad-Crested Rectangular Weir (Weir Controls 2.84 cfs @ 1.56 fps)

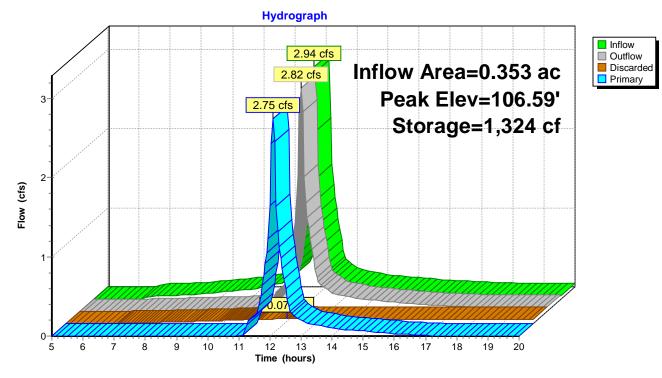


# Pond 1PA: Sediment Foreday

Printed 8/13/2020

Page 41

## Summary for Pond 1PB: Infiltration Basin

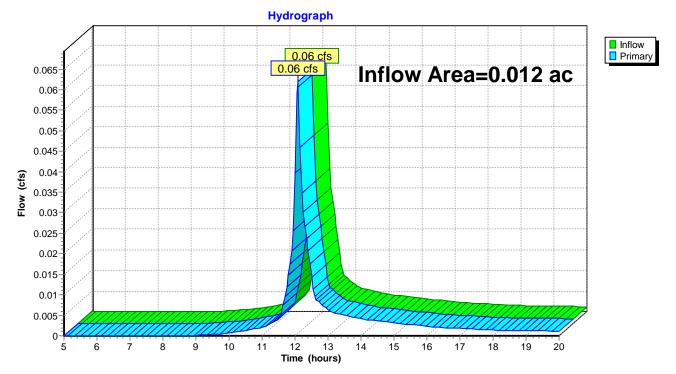

| Inflow Area = | 0.353 ac, 87.36% Impervious, Inflow D | Depth > 7.14" for 100-Year event  |
|---------------|---------------------------------------|-----------------------------------|
| Inflow =      | 2.94 cfs @ 12.08 hrs, Volume=         | 0.210 af                          |
| Outflow =     | 2.82 cfs @ 12.10 hrs, Volume=         | 0.187 af, Atten= 4%, Lag= 1.3 min |
| Discarded =   | 0.07 cfs @ 12.10 hrs, Volume=         | 0.053 af                          |
| Primary =     | 2.75 cfs @ 12.10 hrs, Volume=         | 0.133 af                          |

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 106.59' @ 12.10 hrs Surf.Area= 711 sf Storage= 1,324 cf

Plug-Flow detention time= 65.0 min calculated for 0.186 af (89% of inflow) Center-of-Mass det. time= 30.0 min (782.1 - 752.2)

| Volume     | Invert                                       | Avail.Sto   | orage S      | Storage Description   |                    |                                |  |  |
|------------|----------------------------------------------|-------------|--------------|-----------------------|--------------------|--------------------------------|--|--|
| #1         | 103.00'                                      | 1,3         | 35 cf 🛛 🕻    | Custom Stage Data     | (Irregular) Listed | below (Recalc)                 |  |  |
| <b>-</b> : | -                                            | ( A         |              |                       |                    |                                |  |  |
| Elevatio   |                                              |             | Perim.       | Inc.Store             | Cum.Store          | Wet.Area                       |  |  |
| (fee       | et)                                          | (sq-ft)     | (feet)       | (cubic-feet)          | (cubic-feet)       | <u>(sq-ft)</u>                 |  |  |
| 103.0      | 00                                           | 103         | 54.0         | 0                     | 0                  | 103                            |  |  |
| 104.0      | 00                                           | 227         | 71.0         | 161                   | 161                | 283                            |  |  |
| 105.0      | 00                                           | 387         | 89.0         | 303                   | 464                | 526                            |  |  |
| 106.0      | 00                                           | 583         | 105.0        | 482                   | 946                | 791                            |  |  |
| 106.6      | 60                                           | 714         | 113.0        | 388                   | 1,335              | 945                            |  |  |
|            |                                              |             |              |                       |                    |                                |  |  |
| Device     | Routing                                      | Invert      | Outlet       | Devices               |                    |                                |  |  |
| #1         | Device 2                                     | 106.25'     | 18.0" l      | Horiz. Orifice/Grate  | C= 0.600 Lim       | ited to weir flow at low heads |  |  |
| #2         | Primary                                      | 105.05'     | 12.0"        | Round Culvert         |                    |                                |  |  |
|            | -                                            |             | L= 169       | 9.0' CPP, projecting  | g, no headwall, K  | (e= 0.900                      |  |  |
|            |                                              |             | Inlet /      | Outlet Invert= 105.0  | 05' / 104.20' S= 0 | .0050 '/' Cc= 0.900            |  |  |
|            |                                              |             | n= 0.0       | 13 Corrugated PE,     | smooth interior,   | Flow Area= 0.79 sf             |  |  |
| #3         | Discarded                                    | 103.00'     | <b>2.410</b> | in/hr Exfiltration ov | er Surface area    |                                |  |  |
|            |                                              |             | Condu        | ctivity to Groundwa   | ter Elevation = 10 | )1.00'                         |  |  |
|            |                                              |             |              | •                     |                    |                                |  |  |
| Discard    | ed OutFlow                                   | Max=0.07 cf | s @ 12.      | 10 hrs HW=106.59      | (Free Discharg     | e)                             |  |  |
|            | <b>1</b> -3=Exfiltration (Controls 0.07 cfs) |             |              |                       |                    |                                |  |  |

Primary OutFlow Max=2.76 cfs @ 12.10 hrs HW=106.59' (Free Discharge) -2=Culvert (Barrel Controls 2.76 cfs @ 3.52 fps) -1=Orifice/Grate (Passes 2.76 cfs of 2.99 cfs potential flow)

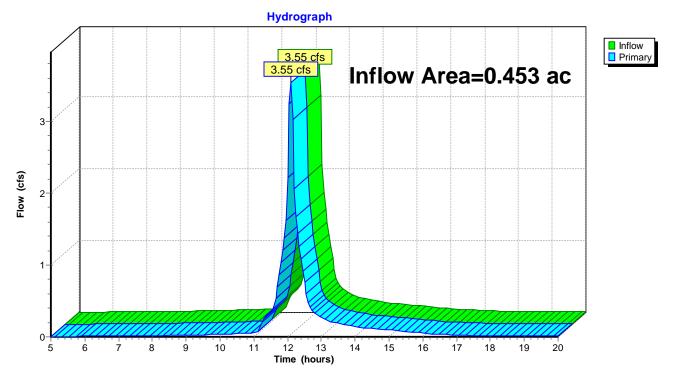



# Pond 1PB: Infiltration Basin

# Summary for Link 1L.: Direct Runon to Beacon Street

| Inflow Area = | 0.012 ac, 40.60% Impervious, Inflow D | Depth > 3.98" for 100-Year event  |
|---------------|---------------------------------------|-----------------------------------|
| Inflow =      | 0.06 cfs @ 12.08 hrs, Volume=         | 0.004 af                          |
| Primary =     | 0.06 cfs @ 12.08 hrs, Volume=         | 0.004 af, Atten= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs




# Link 1L.: Direct Runon to Beacon Street

# Summary for Link 2L.: Manhole Adjacent to Property

| Inflow Area = | 0.453 ac, 87.25% Impervious, Inflow I | Depth > 5.11" for 100-Year event  |
|---------------|---------------------------------------|-----------------------------------|
| Inflow =      | 3.55 cfs @ 12.09 hrs, Volume=         | 0.193 af                          |
| Primary =     | 3.55 cfs @ 12.09 hrs, Volume=         | 0.193 af, Atten= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs



# Link 2L.: Manhole Adjacent to Property

### TABLE OF CONTENTS

### **Project Reports**

- 1 Routing Diagram
- 2 Rainfall Events Listing
- 3 Area Listing (selected nodes)
- 4 Soil Listing (selected nodes)
- 5 Ground Covers (selected nodes)

### 2-Year Event

- 6 Node Listing
- 7 Subcat 1S .:
- 8 Subcat 1SA:
- 9 Subcat 2S .:
- 10 Pond 1PA: Sediment Foreday
- 12 Pond 1PB: Infiltration Basin
- 14 Link 1L.: Direct Runon to Beacon Street
- 15 Link 2L.: Manhole Adjacent to Property

### **10-Year Event**

- 16 Node Listing
- 17 Subcat 1S.:
- 18 Subcat 1SA:
- 19 Subcat 2S.:
- 20 Pond 1PA: Sediment Foreday
- 22 Pond 1PB: Infiltration Basin
- 24 Link 1L.: Direct Runon to Beacon Street
- 25 Link 2L.: Manhole Adjacent to Property

#### 25-Year Event

- 26 Node Listing
- 27 Subcat 1S.:
- 28 Subcat 1SA:
- 29 Subcat 2S.:
- 30 Pond 1PA: Sediment Foreday
- 32 Pond 1PB: Infiltration Basin
- 34 Link 1L.: Direct Runon to Beacon Street
- 35 Link 2L.: Manhole Adjacent to Property

### 100-Year Event

- 36 Node Listing
- 37 Subcat 1S.:
- 38 Subcat 1SA:
- 39 Subcat 2S.:
- 40 Pond 1PA: Sediment Foreday
- 42 Pond 1PB: Infiltration Basin
- 44 Link 1L.: Direct Runon to Beacon Street
- 45 Link 2L.: Manhole Adjacent to Property



# Appendix D

Stormwater Management Checklist



## Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

## A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.



A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.<sup>1</sup> This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8<sup>2</sup>
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

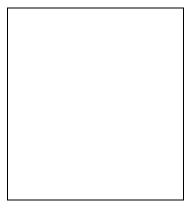
<sup>&</sup>lt;sup>1</sup> The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

<sup>&</sup>lt;sup>2</sup> For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.



## **B. Stormwater Checklist and Certification**

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.


*Note:* Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

### **Registered Professional Engineer's Certification**

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature



Signature and Date

### Checklist

**Project Type:** Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

X Redevelopment

Mix of New Development and Redevelopment



**LID Measures:** Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

| X | No disturbance to any Wetland Resource Areas                                  |
|---|-------------------------------------------------------------------------------|
|   | Site Design Practices (e.g. clustered development, reduced frontage setbacks) |
| X | Reduced Impervious Area (Redevelopment Only)                                  |
|   | Minimizing disturbance to existing trees and shrubs                           |
|   | LID Site Design Credit Requested:                                             |
|   | Credit 1                                                                      |
|   | Credit 2                                                                      |
|   | Credit 3                                                                      |
|   | Use of "country drainage" versus curb and gutter conveyance and pipe          |
|   | Bioretention Cells (includes Rain Gardens)                                    |
|   | Constructed Stormwater Wetlands (includes Gravel Wetlands designs)            |
|   | Treebox Filter                                                                |
|   | Water Quality Swale                                                           |
|   | Grass Channel                                                                 |
|   | Green Roof                                                                    |
| X | Other (describe):                                                             |
|   |                                                                               |

#### Standard 1: No New Untreated Discharges

- X No new untreated discharges
- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.



#### Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

#### Standard 3: Recharge

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

| 🔀 Static | Simple Dynamic |
|----------|----------------|
|----------|----------------|

Dynamic Field<sup>1</sup>

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
  - Site is comprised solely of C and D soils and/or bedrock at the land surface
  - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
  - Solid Waste Landfill pursuant to 310 CMR 19.000
  - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

<sup>&</sup>lt;sup>1</sup> 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.



#### Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

#### **Standard 4: Water Quality**

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
  - is within the Zone II or Interim Wellhead Protection Area
  - is near or to other critical areas
  - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
  - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.



| Checklist | (continued) |
|-----------|-------------|
|-----------|-------------|

#### Standard 4: Water Quality (continued)

- The BMP is sized (and calculations provided) based on:
  - The ½" or 1" Water Quality Volume or
  - The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- ☐ The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

#### Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

#### **Standard 6: Critical Areas**

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.



# Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

| Limited Project |
|-----------------|
|-----------------|

- Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
- Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

#### Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.



Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

#### **Standard 9: Operation and Maintenance Plan**

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
  - Name of the stormwater management system owners;
  - Party responsible for operation and maintenance;
  - Schedule for implementation of routine and non-routine maintenance tasks;
  - Plan showing the location of all stormwater BMPs maintenance access areas;
  - Description and delineation of public safety features;
  - Estimated operation and maintenance budget; and
  - Operation and Maintenance Log Form.
- The responsible party is **not** the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
  - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
  - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

#### Standard 10: Prohibition of Illicit Discharges

- X The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.



Appendix F BMP Sizing Calculations



# Inifltration Basin and Sdiment Forebay

Objective: Size Best Management Practice (BMP) in accordance with Standards 3 and 4 of the MA Stormwater Handbook. BMP shall be sized to infiltrate the required recharge volume (Standard 3) and provide treatment for the required water quality volume (Standard 4).

| 1) Calculate Required Recharge Volume (Standard 3<br>Rv = (F/12)*(A <sub>IMP</sub> )                  | -      | cf        | F (target depth factor)<br>A <sub>IMP</sub> (impervious area)               | 0.6<br>16,188        | • •              | o A, Table 2.3.2 (               | of MA Stormwat        | er Handbook)                          |
|-------------------------------------------------------------------------------------------------------|--------|-----------|-----------------------------------------------------------------------------|----------------------|------------------|----------------------------------|-----------------------|---------------------------------------|
| 2) Calculate Drawdown Time (Standard 3)<br>T <sub>d</sub> =Storage Volume / (K*(1'/12")*Bottom Area)= | 50     | hours     | Storage Volume<br>K (sat. hydraulic conductivity)<br>Bottom Area            | 1,036<br>2.41<br>103 | cf at lowest c   | 5                                |                       | of MA Stormwater Ha                   |
| 50                                                                                                    | <      | 72 hrs    |                                                                             |                      |                  |                                  |                       |                                       |
| 3) Calculate Water Quality Volume (WQv) (Standar $V_{WQ} = (D_{WQ} / 12)^* (A_{IMP}) =$               |        | cf        | D <sub>WQ</sub> (water quality depth)<br>A <sub>IMP</sub> (impervious area) | 0.5<br>16,188        | -                | UHPPL, Zone I contributing area, |                       | 0.5" other)<br>of water quality depth |
| 4) Size BMP to store greater of $V_{WQ}$ and $R_{V}$                                                  |        |           |                                                                             |                      |                  | Surface Area                     | Cumulative            |                                       |
| V <sub>WQ</sub> =                                                                                     |        | cf        |                                                                             |                      | Elevation        | (SF)                             | Storage<br>(CF)       |                                       |
| R <sub>v</sub> =                                                                                      |        | cf        |                                                                             |                      | 103.00           | 103                              |                       |                                       |
| Actual Storage=                                                                                       | 1,036  | cf        | (from HydroCAD)                                                             |                      | 104.00<br>105.00 | 227<br>387                       | 161<br>464            |                                       |
| 1,036                                                                                                 | >      | 809       |                                                                             |                      | 105.00           | 583                              | 404<br>946            |                                       |
| .,                                                                                                    | -      |           |                                                                             |                      | 106.15           | 615                              |                       | Lowest orifice elevation              |
|                                                                                                       |        |           |                                                                             |                      | 106.60           | 714                              | 1,335                 |                                       |
| 5) Pretreatment BMP - Sediment Forebay                                                                | 16 199 | sf (imper | rvious area flowing to forebay)                                             |                      | Elevation        | Surface Area<br>(SF)             | Cumulative<br>Storage |                                       |
| Req. Storage Volume= $(0.1)^{(11/12)}(A_{IMP})$ =                                                     | 135    | si (imper | vious area nowing to rorebay)                                               |                      | 104.50           | 28                               | (CF)                  |                                       |
|                                                                                                       | 155    | CI        |                                                                             |                      | 105.00           | 66                               |                       |                                       |
| Actual Storage=                                                                                       | 145    | cf        |                                                                             |                      | 105.50           | 120                              |                       |                                       |
| 1 4 5                                                                                                 |        | 105       |                                                                             |                      | 106.00           | 189                              |                       | Lowest orifice elevation              |
| 145                                                                                                   | >      | 135       |                                                                             |                      | 106.60           | 274                              | 283                   | l                                     |

Handbook)

oth)

ation (from HydroCad)

ation (from HydroCad)

5/6/2020

### PRE VS POST\_NEW

Prepared by {enter your company name here} HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAD Software Solutions LLC

### Stage-Area-Storage for Pond 1PA: Sediment Forebay

| Elevation        | Surface    | Storage      | Elevation        | Surface    | Storage                   |
|------------------|------------|--------------|------------------|------------|---------------------------|
| (feet)           | (sq-ft)    | (cubic-feet) | (feet)           | (sq-ft)    | (cubic-feet)              |
| 104.50           | 28         | 0            | 105.58           | 130        | 79                        |
| 104.52           | 29         | 1            | 105.60           | 132        | 81                        |
| 104.54           | 30         | 1            | 105.62           | 135        | 84                        |
| 104.56           | 32         | 2            | 105.64           | 137        | 87                        |
| 104.58           | 33         | 2            | 105.66           | 140        | 89                        |
| 104.60           | 34         | 3            | 105.68           | 143        | 92                        |
| 104.62           | 36         | 4            | 105.70           | 145        | 95                        |
| 104.64           | 37         | 5            | 105.72           | 148        | 98                        |
| 104.66           | 38         | 5            | 105.74           | 151        | 101                       |
| 104.68           | 40         | 6            | 105.76           | 154        | 104                       |
| 104.70           | 41         | 7            | 105.78           | 157        | 107                       |
| 104.72           | 43         | 8            | 105.80           | 159        | 110                       |
| 104.74           | 44         | 9            | 105.82           | 162        | 113                       |
| 104.76           | 46         | 9            | 105.84           | 165        | 117                       |
| 104.78           | 47         | 10           | 105.86           | 168        | 120                       |
| 104.80           | 49         | 11           | 105.88           | 171        | 123                       |
| 104.82           | 50         | 12           | 105.90           | 174        | 127                       |
| 104.84           | 52         | 13           | 105.92           | 177        | 130                       |
| 104.86           | 54         | 14           | 105.94           | 180        | 134                       |
| 104.88           | 55         | 16           | 105.96           | 183        | 138                       |
| 104.90           | 57         | 17           | 105.98           | 186        | 141                       |
| 104.92           | 59         | 18           | 106.00           | 189        | 145                       |
| 104.94           | 61         | 19           | 106.02           | 192        | 149                       |
| 104.96           | 62         | 20           | 106.04           | 194        | 153                       |
| 104.98           | 64         | 22           | 106.06           | 197        | 157                       |
| 105.00           | 66         | 23           | 106.08           | 199        | 161                       |
| 105.02           | 68         | 24           | 106.10           | 202        | 165                       |
| 105.04           | 70         | 26           | 106.12           | 205        | 169                       |
| 105.06           | 72         | 27           | 106.14           | 207        | 173                       |
| 105.08           | 74         | 28           | 106.16           | 210        | 177                       |
| 105.10           | 75         | 30           | 106.18           | 213        | 181                       |
| 105.12           | 77         | 31           | 106.20           | 216        | 185                       |
| 105.14           | 79         | 33           | 106.22           | 218        | 190                       |
| 105.16           | 81         | 35           | 106.24           | 221        | 194                       |
| 105.18           | 83         | 36           | 106.26           | 224        | 199                       |
| 105.20           | 86         | 38           | 106.28           | 227        | 203                       |
| 105.22           | 88         | 40           | 106.30           | 230        | 208                       |
| 105.24           | 90         | 41           | 106.32           | 232        | 212                       |
| 105.26           | 92         | 43           | 106.34           | 235        | 217                       |
| 105.28           | 94         | 45           | 106.36           | 238        | 222                       |
| 105.30           | 96         | 47           | 106.38           | 241        | 227                       |
| 105.32           | 98         | 49           | 106.40           | 244        | 231                       |
| 105.34           | 101        | 51           | 106.42           | 247        | 236                       |
| 105.36           | 103        | 53           | 106.44           | 250        | 241                       |
| 105.38           | 105<br>108 | 55           | 106.46           | 253<br>256 | 246<br>251                |
| 105.40           |            | 57           | 106.48<br>106.50 |            |                           |
| 105.42<br>105.44 | 110<br>112 | 59<br>62     | 106.50           | 259<br>262 | 257<br>262                |
| 105.44           | 112        | 64           | 106.52           | 262<br>265 | 262<br>267                |
| 105.48           | 115        | 66           | 106.54           | 265<br>268 | 207<br>272                |
| 105.50           | 120        | 69           | 106.58           | 200<br>271 | 272<br>278                |
| 105.50           | 120        | 71           | 106.60           | 271<br>274 | <b>2</b> 78<br><b>283</b> |
| 105.54           | 122        | 73           | 100.00           | 2/4        | 203                       |
| 105.56           | 125        | 76           |                  |            |                           |
| 100.00           | 121        | 70           | l                |            |                           |

Prepared by {enter your company name here} HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAD Software Solutions LLC

### Stage-Area-Storage for Pond 1PB: Infiltration Basin (continued)

| Elevation        | Surface    | Storage      | Elevation        | Surface    | Storage        |
|------------------|------------|--------------|------------------|------------|----------------|
| (feet)           | (sq-ft)    | (cubic-feet) | (feet)           | (sq-ft)    | (cubic-feet)   |
| 105.16           | 416        | 529          | 105.70           | 520        | 781            |
| 105.17           | 417        | 533          | 105.71           | 522        | 786            |
| 105.18           | 419        | 537          | 105.72           | 524        | 791            |
| 105.19           | 421        | 541          | 105.73           | 526        | 796            |
| 105.20           | 423        | 545          | 105.74           | 528        | 802            |
| 105.21           | 425        | 550          | 105.75           | 530        | 807            |
| 105.22           | 427        | 554          | 105.76           | 532        | 812            |
| 105.23           | 429        | 558          | 105.77           | 534        | 818            |
| 105.24           | 430        | 562          | 105.78           | 536        | 823            |
| 105.25           | 432        | 567          | 105.79           | 539        | 828            |
| 105.26           | 434        | 571          | 105.80           | 541        | 834            |
| 105.27           | 436        | 575          | 105.81           | 543        | 839            |
| 105.28           | 438        | 580          | 105.82           | 545        | 845            |
| 105.29           | 440        | 584          | 105.83           | 547        | 850            |
| 105.30           | 442        | 589          | 105.84           | 549        | 856            |
| 105.31           | 443        | 593          | 105.85           | 551        | 861            |
| 105.32           | 445        | 598          | 105.86           | 553        | 867            |
| 105.33           | 447        | 602          | 105.87           | 555        | 872            |
| 105.34           | 449        | 606          | 105.88           | 557        | 878            |
| 105.35           | 451        | 611          | 105.89           | 559        | 883            |
| 105.36           | 453        | 615          | 105.90           | 562        | 889            |
| 105.37           | 455        | 620          | 105.91           | 564        | 894            |
| 105.38           | 457        | 625          | 105.92           | 566        | 900            |
| 105.39           | 459        | 629          | 105.93           | 568        | 906            |
| 105.40           | 461        | 634          | 105.94           | 570        | 912            |
| 105.41           | 463        | 638          | 105.95           | 572        | 917            |
| 105.42           | 464        | 643          | 105.96           | 574        | 923            |
| 105.43           | 466        | 648          | 105.97           | 577        | 929            |
| 105.44           | 468        | 652          | 105.98           | 579        | 934            |
| 105.45           | 470        | 657          | 105.99           | 581        | 940            |
| 105.46           | 472        | 662          | 106.00           | 583        | 946            |
| 105.47           | 474        | 666          | 106.01           | 585        | 952            |
| 105.48           | 476        | 671          | 106.02           | 587        | 958            |
| 105.49           | 478        | 676          | 106.03           | 589        | 964            |
| 105.50           | 480        | 681          | 106.04           | 591        | 970            |
| 105.51           | 482        | 686          | 106.05           | 593        | 976            |
| 105.52           | 484        | 690          | 106.06           | 596        | 981            |
| 105.53           | 486        | 695          | 106.07           | 598        | 987            |
| 105.54           | 488        | 700          | 106.08           | 600        | 993            |
| 105.55           | 490<br>492 | 705<br>710   | 106.09           | 602<br>604 | 999            |
| 105.56<br>105.57 | 492<br>494 | 710          | 106.10<br>106.11 | 606        | 1,005<br>1,011 |
| 105.57           | 494        | 715          | 106.12           | 608        | 1,018          |
| 105.58           | 490        | 720          | 106.12           | 610        | 1,018          |
| 105.60           | 500        | 723          | 106.14           | 612        | 1,030          |
| 105.61           | 502        | 735          | 106.15           | 615        | 1,030          |
| 105.62           | 504        | 740          | 106.16           | 617        | 1,042          |
| 105.63           | 506        | 745          | 106.17           | 619        | 1,048          |
| 105.64           | 508        | 750          | 106.18           | 621        | 1,054          |
| 105.65           | 510        | 755          | 106.19           | 623        | 1,061          |
| 105.66           | 512        | 760          | 106.20           | 625        | 1,067          |
| 105.67           | 514        | 765          | 106.21           | 627        | 1,073          |
| 105.68           | 516        | 770          | 106.22           | 629        | 1,079          |
| 105.69           | 518        | 776          | 106.23           | 632        | 1,086          |
|                  |            |              |                  |            | .,             |



Appendix G TSS Removal Calculations

#### **TSS Removal Calculation Sheet Instructions**

Either a completed automated form or non-automated form must be submitted as part of the Stormwater Report accompanying the Wetlands NOI

#### **Automated Version Instructions**

The automated version may be used EXCEPT when a Proprietary BMP is proposed. This is because Proprietary BMPs have variable removal rates. The only exceptions are for Proprietary BMPs reviewed through the TARP Tier II Field Protocol for which MassDEP has granted written reciprocity. BMPs must be designed in accordance with the Design Specifications contained in Mass. Stormwater Handbook Volume II to receive the TSS Removal Rating. Separate Excel spreadsheets must be completed for each stormwater outlet or BMP train. E.g. if there are two separate BMP trains discharging to two separate stormwater outlets, two separate sheets must be submitted. Separate sheets must be submitted for Pretreatment (e.g. for 44% TSS removal prior to recharge) and Treatment (e.g. 80% TSS removal for new development). To use automated sheet: Click on Worksheet Tab labeled Automated Sheet Click on Cell B11 (Shaded Blue) Carrot Appears in lower right side of Cell B11 Click on Carrot Drop Down Menu of BMPs will open. The BMPs are those listed in Volume I. No proprietary BMPs are listed in Drop Down Menu. BMPs are listed alphabetically Select One BMP per block. Start with most upgradient practices. After BMP is selected in Cell B11, Cell C11 will automatically be populated with the DEP assigned TSS Removal Rate. If there are multiple BMPs, go to Cell B12, select BMP, and so on (i.e. select BMPs in Cell B13, B14, and B15). Final result is returned in Cell E16 All cells are locked except for Column B (to select BMPs) and Location, Project, Prepared By, and Date blocks. Complete Location, Project, Prepared by, and Date Blocks.

#### **Non-automated Sheet**

The non-automated version must be completed if any Proprietary BMPs or traditional non-listed BMPs are proposed. The non-automated version is locked to prevent it from being manipulated. The non-automated version must be printed and completed by hand or typewriter. Write name of BMP in Column B. Write annual TSS removal rate in Column C (written documentation must be submitted to issuing authority substantiating TSS removal claim) Multiply Column C by Starting Load in Column D and enter Result in Column E (e.g. Deep Sump CB 0.25 x 1 = 0.25, Enter 0.25 in Column E). Subtract Column E from D, Enter Result in Column F (e.g. 1.00 - 0.25 = 0.75, Enter 0.75 in Column F). Enter new BMP in Column B, next row down. Enter TSS Removal Rate in that same row. In Column D, enter Starting Load from prior Row (e.g. 0.75). Multiply Column C TSS Removal Rate by new starting load, and enter result into Column E, and so on. Add up all the values listed in Column E. Enter final result in Cell E16, block that is labeled Total TSS Removal.

Complete Location, Project, Prepared by, and Date Blocks.

#### **Documentation**

VERSION 1, March 4, 2008 Automated Sheet Drop Down Menu in Column B created using "Data Validation" Column C populated using data array from hidden table using "Vertical Lookup" Column D values from Column F Column E values producrs of Column C x Column D values Column F values Column D - Column E

### INSTRUCTIONS:

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

|                                      | Location:                           | Pretreatment for discharge t  | o public storm system |                             |                                                                        |
|--------------------------------------|-------------------------------------|-------------------------------|-----------------------|-----------------------------|------------------------------------------------------------------------|
|                                      | В                                   | С                             | D                     | Е                           | F                                                                      |
|                                      |                                     | TSS Removal                   | Starting TSS          | Amount                      | Remaining                                                              |
|                                      | BMP <sup>1</sup>                    | Rate <sup>1</sup>             | Load*                 | Removed (C*D)               | Load (D-E)                                                             |
| heet                                 | Deep Sump and Hooded<br>Catch Basin | 0.25                          | 1.00                  | 0.25                        | 0.75                                                                   |
| ioval<br>/orksl                      |                                     | 0.00                          | 0.75                  | 0.00                        | 0.75                                                                   |
| TSS Removal<br>Calculation Worksheet |                                     | 0.00                          | 0.75                  | 0.00                        | 0.75                                                                   |
| TSS<br>Iculat                        |                                     | 0.00                          | 0.75                  | 0.00                        | 0.75                                                                   |
| Cal                                  |                                     | 0.00                          | 0.75                  | 0.00                        | 0.75                                                                   |
|                                      |                                     |                               | SS Removal =          | 25%                         | Separate Form Needs to<br>be Completed for Each<br>Outlet or BMP Train |
|                                      | Project:                            | 1158 Beacon Street Newton, MA | •                     |                             | -                                                                      |
|                                      | Prepared By:                        | Fuss & O'Neill                |                       | *Equals remaining load from | n previous BMP (E)                                                     |
|                                      | Date:                               | 5/6/2020                      |                       | which enters the BMP        |                                                                        |
| Non-automate                         | ed TSS Calculation Sheet            |                               |                       |                             |                                                                        |

Version 1, Automated: Mar. 4, 2008

V

Non-automated TSS Calculation Sheet must be used if Proprietary BMP Proposed 1. From MassDEP Stormwater Handbook Vol. 1

### INSTRUCTIONS:

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

|                       | Location:               | Pretreatment for Infiltration I | Basin        |                             |                                                                        |
|-----------------------|-------------------------|---------------------------------|--------------|-----------------------------|------------------------------------------------------------------------|
|                       | В                       | С                               | D            | E                           | F                                                                      |
|                       |                         | TSS Removal                     | Starting TSS | Amount                      | Remaining                                                              |
|                       | BMP <sup>1</sup>        | Rate <sup>1</sup>               | Load*        | Removed (C*D)               | Load (D-E)                                                             |
| eet                   | Sodimont Forshov        | 0.25                            | 4.00         | 0.05                        | 0.75                                                                   |
|                       | Sediment Forebay        | 0.25                            | 1.00         | 0.25                        | 0.75                                                                   |
| moval<br>Worksheet    |                         | 0.00                            | 0.75         | 0.00                        | 0.75                                                                   |
| (D)                   |                         | 0.00                            | 0.75         | 0.00                        | 0.75                                                                   |
| TSS Ro<br>Calculation |                         | 0.00                            | 0.75         | 0.00                        | 0.75                                                                   |
| Cal                   |                         | 0.00                            | 0.75         | 0.00                        | 0.75                                                                   |
|                       |                         | Total T                         | SS Removal = | 25%                         | Separate Form Needs to<br>be Completed for Each<br>Outlet or BMP Train |
|                       | Project:                | 1158 Beacon Street Newton, MA   |              |                             | 2J                                                                     |
|                       | Prepared By:            | Fuss & O'Neill                  |              | *Equals remaining load from | n previous BMP (E)                                                     |
|                       | Date:                   | 5/6/2020                        |              | which enters the BMP        |                                                                        |
| Non-automate          | d TSS Calculation Sheet |                                 |              |                             |                                                                        |

Version 1, Automated: Mar. 4, 2008

V

### INSTRUCTIONS:

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

|                       | Location:                | Infiltration Basin            |              | ]                           |                                                                        |
|-----------------------|--------------------------|-------------------------------|--------------|-----------------------------|------------------------------------------------------------------------|
|                       | В                        | С                             | D            | E                           | F                                                                      |
|                       |                          | TSS Removal                   | Starting TSS | Amount                      | Remaining                                                              |
|                       | BMP <sup>1</sup>         | Rate <sup>1</sup>             | Load*        | Removed (C*D)               | Load (D-E)                                                             |
| heet                  | Infiltration Basin       | 0.80                          | 1.00         | 0.80                        | 0.20                                                                   |
| moval<br>Worksheet    |                          | 0.00                          | 0.20         | 0.00                        | 0.20                                                                   |
| 0                     |                          | 0.00                          | 0.20         | 0.00                        | 0.20                                                                   |
| TSS Re<br>Calculation |                          | 0.00                          | 0.20         | 0.00                        | 0.20                                                                   |
| Cal                   |                          | 0.00                          | 0.20         | 0.00                        | 0.20                                                                   |
|                       |                          |                               | SS Removal = | 80%                         | Separate Form Needs to<br>be Completed for Each<br>Outlet or BMP Train |
|                       |                          | 1158 Beacon Street Newton, MA |              |                             | _                                                                      |
|                       | Prepared By:             |                               |              | *Equals remaining load from | n previous BMP (E)                                                     |
|                       | Date:                    | 5/6/2020                      |              | which enters the BMP        |                                                                        |
| Non-automate          | ed TSS Calculation Sheet |                               |              |                             |                                                                        |

Version 1, Automated: Mar. 4, 2008

V

must be used if Proprietary BMP Proposed 1. From MassDEP Stormwater Handbook Vol. 1

| Wet Basins         80% provided it is combined with sediment forebay           Conveyance         Conveyance           Drainage Channels         For conveyance only. No TSS Removal credit.           Grass Channels (formerly biofilter swales)         50% if combined with sediment forebay or equivalent           Water Quality Swale – wet & dry         70% provided it is combined with sediment forebay or equivalent           Dry Wells         80% for runoff from non-metal roofs; may also be use for runoff from metal roofs but only if metal roof is not located within a Zone II, or IWPA or at an industrial site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Non-Struc                           | ncies for Best Management Practices                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Street Sweeping         0-10%, See Volume 2, Chapter 1.           Structural Pretreatment BMPs           Deep Sump Catch Basins         25% only if used for pretreatment and only if off-line           Oil Grit Separator         25% only if used for pretreatment and only if off-line           Proprietary Separators         Varies – see Volume 2, Chapter 4.           Sediment Forebays         25% if used for pretreatment           Vegetated filter strips         10% if at least 25 feet wide, 45% if at least 50 feet wide           Treatment BMPs           Bioretention Areas including rain gardens         90% provided it is combined with adequate pretreatment           Constructed Stormwater Wetlands         80% provided it is combined with a sediment forebay           Extended Dry Detention Basins         50% provided it is combined with a sediment forebay           Gravel Wetlands         80% provided it is combined with a sediment forebay           Proprietary Media Filters         Varies – see Volume 2, Chapter 4           Sand/Organic Filters         80% provided it is combined with adequate pretreatment           Wet Basins         80% provided it is combined with adequate pretreatment           Wet Basins         80% provided it is combined with adequate pretreatment           Wet Basins         80% provided it is combined with sediment forebay           Conveyance         70% provided i                                                                                                                                                                                                                                                                                                                                                                                                              | treet Sweeping                      | TSS Removal Efficiency                                                                                                        |
| Structural Pretreatment BMPs           Deep Sump Catch Basins         25% only if used for pretreatment and only if off-line           Oil Grit Separator         25% only if used for pretreatment and only if off-line           Proprietary Separators         Varies – see Volume 2, Chapter 4.           Sediment Forebays         25% if used for pretreatment           Vegetated filter strips         10% if at least 25 feet wide, 45% if at least 50 feet wide           Image: Second Secon |                                     | ctural Pretreatment BMPs                                                                                                      |
| Deep Sump Catch Basins         25% only if used for pretreatment and only if off-line           Oil Grit Separator         25% only if used for pretreatment and only if off-line           Proprietary Separators         Varies – see Volume 2, Chapter 4.           Sediment Forebays         25% if used for pretreatment           Vegetated filter strips         10% if at least 25 feet wide, 45% if at least 50 feet wide           Image: Separator Separators         90% provided it is combined with adequate pretreatment           Vegetated filter strips         90% provided it is combined with a sediment forebay           Bioretention Areas including rain gardens         90% provided it is combined with a sediment forebay           Constructed Stormwater Wetlands         80% provided it is combined with a sediment forebay           Extended Dry Detention Basins         50% provided it is combined with a sediment forebay           Gravel Wetlands         80% provided it is combined with a sediment forebay           Proprietary Media Filters         Varies – see Volume 2, Chapter 4           Sand/Organic Filters         80% provided it is combined with adequate pretreatment           Wet Basins         80% provided it is combined with adequate pretreatment           Wet Basins         80% provided it is combined with sediment forebay           Conveyance         50% if combined with sediment forebay or equivalent           Water Quality Swale – <th>Structur</th> <th>0-10%, See Volume 2, Chapter 1.</th>                                                                                                                                                                                                                                                                                                    | Structur                            | 0-10%, See Volume 2, Chapter 1.                                                                                               |
| Deep Sump Catch Basins         25% only if used for pretreatment and only if off-line           Oil Grit Separator         25% only if used for pretreatment and only if off-line           Proprietary Separators         Varies – see Volume 2, Chapter 4.           Sediment Forebays         25% if used for pretreatment           Vegetated filter strips         10% if at least 25 feet wide, 45% if at least 50 feet wide           Image: Separator Separators         90% provided it is combined with adequate pretreatment           Vegetated filter strips         90% provided it is combined with a sediment forebay           Bioretention Areas including rain gardens         90% provided it is combined with a sediment forebay           Constructed Stormwater Wetlands         80% provided it is combined with a sediment forebay           Extended Dry Detention Basins         50% provided it is combined with a sediment forebay           Gravel Wetlands         80% provided it is combined with a sediment forebay           Proprietary Media Filters         Varies – see Volume 2, Chapter 4           Sand/Organic Filters         80% provided it is combined with adequate pretreatment           Wet Basins         80% provided it is combined with adequate pretreatment           Wet Basins         80% provided it is combined with sediment forebay           Conveyance         50% if combined with sediment forebay or equivalent           Water Quality Swale – <th></th> <th>ral Pretreatment BMPs</th>                                                                                                                                                                                                                                                                                                                      |                                     | ral Pretreatment BMPs                                                                                                         |
| Oil Grit Separator       25% only if used for pretreatment and only if off-line         Proprietary Separators       Varies – see Volume 2, Chapter 4.         Sediment Forebays       25% if used for pretreatment         Vegetated filter strips       10% if at least 25 feet wide, 45% if at least 50 feet wide         Bioretention Areas including rain gardens       90% provided it is combined with adequate pretreatm         Constructed Stormwater Wetlands       80% provided it is combined with a sediment forebay         Extended Dry Detention Basins       50% provided it is combined with a sediment forebay         Gravel Wetlands       80% provided it is combined with a sediment forebay         Proprietary Media Filters       Varies – see Volume 2, Chapter 4         Sand/Organic Filters       80% provided it is combined with a sediment forebay         Treebox filter       80% provided it is combined with adequate pretreatm         Wet Basins       80% provided it is combined with adequate pretreatm         Wet Basins       80% provided it is combined with sediment forebay         Drainage Channels       For conveyance only. No TSS Removal credit.         Somy for runoff from non-metal roofs; may also be use for runoff from non-metal roofs; may also be use for runoff from metal roofs but only if metal roof is not located within a Zone II, or IWPA or at an industrial sit                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                                                                                                                               |
| Proprietary Separators         Varies – see Volume 2, Chapter 4.           Sediment Forebays         25% if used for pretreatment           Vegetated filter strips         10% if at least 25 feet wide, 45% if at least 50 feet wide           Bioretention Areas including rain gardens         90% provided it is combined with adequate pretreatment           Constructed Stormwater Wetlands         80% provided it is combined with a sediment forebay           Extended Dry Detention Basins         50% provided it is combined with a sediment forebay           Gravel Wetlands         80% provided it is combined with a sediment forebay           Proprietary Media Filters         Varies – see Volume 2, Chapter 4           Sand/Organic Filters         80% provided it is combined with adequate pretreatm           Wet Basins         80% provided it is combined with sediment forebay           Drainage Channels         For conveyance only. No TSS Removal credit.           Grass Channels (formerly biofilter swales)         So% if combined with sediment forebay or equivalent           Water Quality Swale – wet & dry         70% provided it is combined with sediment forebay or equivalent           Dry Wells         80% for runoff from non-metal roofs; may also be use for runoff from metal roofs but only if metal roof is not located within a Zone II, or IWPA or at an industrial si                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                                                                                                               |
| Sediment Forebays       25% if used for pretreatment         Vegetated filter strips       10% if at least 25 feet wide, 45% if at least 50 feet wide         Bioretention Areas including rain gardens       90% provided it is combined with adequate pretreatm         Constructed Stormwater Wetlands       80% provided it is combined with a sediment forebay         Extended Dry Detention Basins       50% provided it is combined with a sediment forebay         Gravel Wetlands       80% provided it is combined with a sediment forebay         Proprietary Media Filters       Varies – see Volume 2, Chapter 4         Sand/Organic Filters       80% provided it is combined with adequate pretreatm         Wet Basins       80% provided it is combined with adequate pretreatm         Wet Basins       80% provided it is combined with adequate pretreatm         Wet Basins       80% provided it is combined with adequate pretreatm         Wet Basins       80% provided it is combined with adequate pretreatm         Wet Basins       80% provided it is combined with sediment forebay         Drainage Channels       For conveyance only. No TSS Removal credit.         Grass Channels (formerly biofilter swales)       50% if combined with sediment forebay or equivalent         Water Quality Swale –       70% provided it is combined with sediment forebay or equivalent         Dry Wells       80% for runoff from non-metal roofs; may also be use for run                                                                                                                                                                                                                                                                                                                                                                             |                                     |                                                                                                                               |
| Vegetated filter strips       10% if at least 25 feet wide, 45% if at least 50 feet wide         Treatment BMPs         Bioretention Areas including rain gardens       90% provided it is combined with adequate pretreatm         Constructed Stormwater Wetlands       80% provided it is combined with a sediment forebay         Extended Dry Detention Basins       50% provided it is combined with a sediment forebay         Gravel Wetlands       80% provided it is combined with a sediment forebay         Proprietary Media Filters       Varies – see Volume 2, Chapter 4         Sand/Organic Filters       80% provided it is combined with adequate pretreatm         Wet Basins       80% provided it is combined with adequate pretreatm         Wet Basins       80% provided it is combined with adequate pretreatm         Wet Basins       80% provided it is combined with adequate pretreatm         Wet Basins       80% provided it is combined with adequate pretreatm         Wet Basins       80% provided it is combined with sediment forebay         Drainage Channels       For conveyance         Orweyance       50% if combined with sediment forebay or equivalent         Water Quality Swale –       70% provided it is combined with sediment forebay or equivalent         Mater Quality Swale –       70% provided it is combined with sediment forebay or equivalent         Dry Wells       80% for runoff from no                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                                                                                                               |
| Treatment BMPs           Bioretention Areas including rain gardens         90% provided it is combined with adequate pretreatm           Constructed Stormwater Wetlands         80% provided it is combined with a sediment forebay           Extended Dry Detention Basins         50% provided it is combined with a sediment forebay           Gravel Wetlands         80% provided it is combined with a sediment forebay           Proprietary Media Filters         Varies – see Volume 2, Chapter 4           Sand/Organic Filters         80% provided it is combined with adequate pretreatm           Wet Basins         80% provided it is combined with adequate pretreatm           Wet Basins         80% provided it is combined with adequate pretreatm           Drainage Channels         For conveyance           Drainage Channels (formerly biofilter swales)         So% if combined with sediment forebay or equivalent           Water Quality Swale – wet & dry         70% provided it is combined with sediment forebay or equivalent           Dry Wells         80% for runoff from non-metal roofs; may also be use for runoff from metal roofs but only if metal roof is not located within a Zone II, or IWPA or at an industrial si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                                                                                                                               |
| Bioretention Areas including rain gardens       90% provided it is combined with adequate pretreatm         Constructed Stormwater Wetlands       80% provided it is combined with a sediment forebay         Extended Dry Detention Basins       50% provided it is combined with a sediment forebay         Gravel Wetlands       80% provided it is combined with a sediment forebay         Proprietary Media Filters       Varies – see Volume 2, Chapter 4         Sand/Organic Filters       80% provided it is combined with sediment forebay         Treebox filter       80% provided it is combined with adequate pretreatm         Wet Basins       80% provided it is combined with adequate pretreatm         Drainage Channels       For conveyance         Drainage Channels (formerly biofilter swales)       For conveyance only. No TSS Removal credit.         Somy or provided it is combined with sediment forebay or equivalent       70% provided it is combined with sediment forebay or equivalent         Drainage Channels (formerly biofilter swales)       70% provided it is combined with sediment forebay or equivalent         Drainage Matter Quality Swale –       70% provided it is combined with sediment forebay or equivalent         Drainage Channels (formerly biofilter swales)       80% for runoff from non-metal roofs; may also be use for runoff from metal roofs but only if metal roof is not located within a Zone II, or IWPA or at an industrial si                                                                                                                                                                                                                                                                                                                                                                         | egetated inter strips               | 1070 il at least 2010et wide, 4070 il at least 0010et wide                                                                    |
| Bioretention Areas including rain gardens       90% provided it is combined with adequate pretreatm         Constructed Stormwater Wetlands       80% provided it is combined with a sediment forebay         Extended Dry Detention Basins       50% provided it is combined with a sediment forebay         Gravel Wetlands       80% provided it is combined with a sediment forebay         Proprietary Media Filters       Varies – see Volume 2, Chapter 4         Sand/Organic Filters       80% provided it is combined with sediment forebay         Treebox filter       80% provided it is combined with adequate pretreatm         Wet Basins       80% provided it is combined with adequate pretreatm         Drainage Channels       For conveyance         Drainage Channels (formerly biofilter swales)       For conveyance only. No TSS Removal credit.         Somy or provided it is combined with sediment forebay or equivalent       70% provided it is combined with sediment forebay or equivalent         Drainage Channels (formerly biofilter swales)       70% provided it is combined with sediment forebay or equivalent         Drainage Matter Quality Swale –       70% provided it is combined with sediment forebay or equivalent         Drainage Channels (formerly biofilter swales)       80% for runoff from non-metal roofs; may also be use for runoff from metal roofs but only if metal roof is not located within a Zone II, or IWPA or at an industrial si                                                                                                                                                                                                                                                                                                                                                                         | 7                                   | Treatment BMPs                                                                                                                |
| gardens       80% provided it is combined with a sediment forebay         Extended Dry Detention Basins       50% provided it is combined with a sediment forebay         Gravel Wetlands       80% provided it is combined with a sediment forebay         Broprietary Media Filters       Varies – see Volume 2, Chapter 4         Sand/Organic Filters       80% provided it is combined with sediment forebay         Treebox filter       80% provided it is combined with sediment forebay         Wet Basins       80% provided it is combined with sediment forebay         Drainage Channels       For conveyance only. No TSS Removal credit.         Grass Channels (formerly biofilter swales)       50% if combined with sediment forebay or equivalent         Water Quality Swale – wet & dry       70% provided it is combined with sediment forebay or equivalent         B0% for runoff from non-metal roofs; may also be use for runoff from metal roofs but only if metal roof is not located within a Zone II, or IWPA or at an industrial si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                                                                                                                               |
| Constructed Stormwater Wetlands         80% provided it is combined with a sediment forebay           Extended Dry Detention Basins         50% provided it is combined with a sediment forebay           Gravel Wetlands         80% provided it is combined with a sediment forebay           Proprietary Media Filters         Varies – see Volume 2, Chapter 4           Sand/Organic Filters         80% provided it is combined with sediment forebay           Treebox filter         80% provided it is combined with sediment forebay           Wet Basins         80% provided it is combined with sediment forebay           Conveyance         Conveyance           Drainage Channels         For conveyance only. No TSS Removal credit.           Grass Channels (formerly biofilter swales)         50% if combined with sediment forebay or equivalent           Water Quality Swale – wet & dry         70% provided it is combined with sediment forebay or equivalent           Dry Wells         80% for runoff from non-metal roofs; may also be use for runoff from metal roofs but only if metal roof is not located within a Zone II, or IWPA or at an industrial si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                                                                                                                               |
| Extended Dry Detention Basins       50% provided it is combined with a sediment forebay         Gravel Wetlands       80% provided it is combined with a sediment forebay         Proprietary Media Filters       Varies – see Volume 2, Chapter 4         Sand/Organic Filters       80% provided it is combined with sediment forebay         Treebox filter       80% provided it is combined with adequate pretreatm         Wet Basins       80% provided it is combined with sediment forebay         Drainage Channels       For conveyance         Drainage Channels       For conveyance only. No TSS Removal credit.         Grass Channels (formerly biofilter swales)       50% if combined with sediment forebay or equivalent         Water Quality Swale –       70% provided it is combined with sediment forebay or equivalent         Dry Wells       80% for runoff from non-metal roofs; may also be use for runoff from metal roofs but only if metal roof is not located within a Zone II, or IWPA or at an industrial si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | 80% provided it is combined with a sediment forebay                                                                           |
| Gravel Wetlands       80% provided it is combined with a sediment forebay         Proprietary Media Filters       Varies – see Volume 2, Chapter 4         Sand/Organic Filters       80% provided it is combined with sediment forebay         Treebox filter       80% provided it is combined with adequate pretreatm         Wet Basins       80% provided it is combined with sediment forebay         Conveyance       Drainage Channels         For conveyance only. No TSS Removal credit.       50% if combined with sediment forebay or equivalent         Water Quality Swale –       70% provided it is combined with sediment forebay or equivalent         Dry Wells       80% for runoff from non-metal roofs; may also be use for runoff from metal roofs but only if metal roof is not located within a Zone II, or IWPA or at an industrial si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                                                                                                               |
| Proprietary Media Filters       Varies – see Volume 2, Chapter 4         Sand/Organic Filters       80% provided it is combined with sediment forebay         Treebox filter       80% provided it is combined with adequate pretreatm         Wet Basins       80% provided it is combined with sediment forebay         Drainage Channels       For conveyance         Drainage Channels (formerly biofilter swales)       50% if combined with sediment forebay or equivalent         Water Quality Swale – wet & dry       70% provided it is combined with sediment forebay or equivalent         Dry Wells       80% for runoff from non-metal roofs; may also be use for runoff from metal roofs but only if metal roof is not located within a Zone II, or IWPA or at an industrial site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | xtended Dry Detention Basins        | 50% provided it is combined with a sediment forebay                                                                           |
| Proprietary Media Filters       Varies – see Volume 2, Chapter 4         Sand/Organic Filters       80% provided it is combined with sediment forebay         Treebox filter       80% provided it is combined with adequate pretreatm         Wet Basins       80% provided it is combined with sediment forebay         Drainage Channels       For conveyance         Drainage Channels (formerly biofilter swales)       50% if combined with sediment forebay or equivalent         Water Quality Swale – wet & dry       70% provided it is combined with sediment forebay or equivalent         Dry Wells       80% for runoff from non-metal roofs; may also be use for runoff from metal roofs but only if metal roof is not located within a Zone II, or IWPA or at an industrial site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     | , , , , , , , , , , , , , , , , , , , ,                                                                                       |
| Sand/Organic Filters         80% provided it is combined with sediment forebay           Treebox filter         80% provided it is combined with adequate pretreatm           Wet Basins         80% provided it is combined with adequate pretreatm           Wet Basins         80% provided it is combined with adequate pretreatm           Drainage Channels         For conveyance           Drainage Channels         For conveyance only. No TSS Removal credit.           Grass Channels (formerly biofilter swales)         50% if combined with sediment forebay or equivalent           Water Quality Swale –         70% provided it is combined with sediment forebay or equivalent           Dry Wells         80% for runoff from non-metal roofs; may also be use for runoff from metal roofs but only if metal roof is not located within a Zone II, or IWPA or at an industrial si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | aravel Wetlands                     | 80% provided it is combined with a sediment forebay                                                                           |
| Sand/Organic Filters         80% provided it is combined with sediment forebay           Treebox filter         80% provided it is combined with adequate pretreatm           Wet Basins         80% provided it is combined with adequate pretreatm           Wet Basins         80% provided it is combined with adequate pretreatm           Drainage Channels         For conveyance           Drainage Channels         For conveyance only. No TSS Removal credit.           Grass Channels (formerly biofilter swales)         50% if combined with sediment forebay or equivalent           Water Quality Swale –         70% provided it is combined with sediment forebay or equivalent           Dry Wells         80% for runoff from non-metal roofs; may also be use for runoff from metal roofs but only if metal roof is not located within a Zone II, or IWPA or at an industrial si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                                                                                                                               |
| Treebox filter       80% provided it is combined with adequate pretreatm         Wet Basins       80% provided it is combined with adequate pretreatm         Wet Basins       80% provided it is combined with sediment forebay         Drainage Channels       For conveyance         Drainage Channels       For conveyance only. No TSS Removal credit.         Grass Channels (formerly biofilter swales)       50% if combined with sediment forebay or equivalent         Water Quality Swale – wet & dry       70% provided it is combined with sediment forebay or equivalent         Dry Wells       80% for runoff from non-metal roofs; may also be use for runoff from metal roofs but only if metal roof is not located within a Zone II, or IWPA or at an industrial site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | roprietary Media Filters            | Varies – see Volume 2, Chapter 4                                                                                              |
| Wet Basins         80% provided it is combined with sediment forebay           Conveyance         Conveyance           Drainage Channels         For conveyance only. No TSS Removal credit.           Grass Channels (formerly biofilter swales)         50% if combined with sediment forebay or equivalent           Water Quality Swale – wet & dry         70% provided it is combined with sediment forebay or equivalent           Dry Wells         80% for runoff from non-metal roofs; may also be use for runoff from metal roofs but only if metal roof is not located within a Zone II, or IWPA or at an industrial site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and/Organic Filters                 | 80% provided it is combined with sediment forebay                                                                             |
| Conveyance           Drainage Channels         For conveyance only. No TSS Removal credit.           Grass Channels (formerly biofilter<br>swales)         50% if combined with sediment forebay or equivalent           Water Quality Swale –<br>wet & dry         70% provided it is combined with sediment forebay or<br>equivalent           Infiltration BMPs         10% for runoff from non-metal roofs; may also be use<br>for runoff from metal roofs but only if metal roof is not<br>located within a Zone II, or IWPA or at an industrial sit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | reebox filter                       | 80% provided it is combined with adequate pretreatment                                                                        |
| Conveyance           Drainage Channels         For conveyance only. No TSS Removal credit.           Grass Channels (formerly biofilter<br>swales)         50% if combined with sediment forebay or equivalent           Water Quality Swale –<br>wet & dry         70% provided it is combined with sediment forebay or<br>equivalent           Dry Wells         Infiltration BMPs<br>80% for runoff from non-metal roofs; may also be use<br>for runoff from metal roofs but only if metal roof is not<br>located within a Zone II, or IWPA or at an industrial sit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |                                                                                                                               |
| Drainage Channels         For conveyance only. No TSS Removal credit.           Grass Channels (formerly biofilter<br>swales)         50% if combined with sediment forebay or equivalent           Water Quality Swale –<br>wet & dry         70% provided it is combined with sediment forebay or<br>equivalent           Infiltration BMPs         10% for runoff from non-metal roofs; may also be use<br>for runoff from metal roofs but only if metal roof is not<br>located within a Zone II, or IWPA or at an industrial sit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /et Basins                          | 80% provided it is combined with sediment forebay                                                                             |
| Grass Channels (formerly biofilter swales)       50% if combined with sediment forebay or equivalent         Water Quality Swale – wet & dry       70% provided it is combined with sediment forebay or equivalent         Infiltration BMPs       Infiltration BMPs         Dry Wells       80% for runoff from non-metal roofs; may also be use for runoff from metal roofs but only if metal roof is not located within a Zone II, or IWPA or at an industrial site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | Conveyance                                                                                                                    |
| Grass Channels (formerly biofilter<br>swales)       50% if combined with sediment forebay or equivalent         Water Quality Swale –<br>wet & dry       70% provided it is combined with sediment forebay or<br>equivalent         Infiltration BMPs       Infiltration BMPs         Dry Wells       80% for runoff from non-metal roofs; may also be use<br>for runoff from metal roofs but only if metal roof is not<br>located within a Zone II, or IWPA or at an industrial site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rainage Channels                    | For conveyance only. No TSS Removal credit.                                                                                   |
| swales)       70% provided it is combined with sediment forebay or equivalent         wet & dry       10% provided it is combined with sediment forebay or equivalent         Dry Wells       80% for runoff from non-metal roofs; may also be use for runoff from metal roofs but only if metal roof is not located within a Zone II, or IWPA or at an industrial site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                   | 50% if combined with sediment forebay or equivalent                                                                           |
| wet & dry         equivalent           Infiltration BMPs           Dry Wells         80% for runoff from non-metal roofs; may also be use<br>for runoff from metal roofs but only if metal roof is not<br>located within a Zone II, or IWPA or at an industrial site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                                                                               |
| Infiltration BMPs Dry Wells 80% for runoff from non-metal roofs; may also be use for runoff from metal roofs but only if metal roof is not located within a Zone II, or IWPA or at an industrial sit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vater Quality Swale –               | 70% provided it is combined with sediment forebay or                                                                          |
| Dry Wells<br>80% for runoff from non-metal roofs; may also be use<br>for runoff from metal roofs but only if metal roof is not<br>located within a Zone II, or IWPA or at an industrial sit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vet & dry                           | equivalent                                                                                                                    |
| for runoff from metal roofs but only if metal roof is not<br>located within a Zone II, or IWPA or at an industrial sit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | nfiltration BMPs                                                                                                              |
| located within a Zone II, or IWPA or at an industrial si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ry Wells                            | 80% for runoff from non-metal roofs; may also be used                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | for runoff from metal roofs but only if metal roof is not                                                                     |
| Infiltration Desire 9 Infiltration 200/ provided it is combined with edgewate protocolor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | located within a Zone II, or IWPA or at an industrial site                                                                    |
| Infiltration Basing & Infiltration 90% provided it is combined with adapted protocom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | filtration Basins & Infiltration    | 80% provided it is combined with adequate pretreatment                                                                        |
| Trenches (sediment forebay or vegetated filter strip, grass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | renches                             |                                                                                                                               |
| channel, water quality swale) prior to infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | channel, water quality swale) prior to infiltration                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                                                                                                               |
| Leaching Catch Basins 80% provided a deep sump catch basin is used for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eaching Catch Basins                |                                                                                                                               |
| pretreatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                                                                                                                               |
| Subsurface Structure 80% provided they are combined with one or more pretreatment BMPs prior to infiltration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ubsurface Structure                 |                                                                                                                               |
| Other BMPs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | For peak rate attenuation only. No TSS Removal credit.                                                                        |
| For peak rate attenuation only. No 155 Removal cred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ny Detention Regin-                 | For peak rate attenuation only. No 155 Removal credit.                                                                        |
| Green Poofs See Volume 2. Chapter 2. May reduce required wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pry Detention Basins                | See Volume 2. Chapter 2. May reduce required water                                                                            |
| quality volume. No TSS Removal Credit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                   |                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bry Detention Basins<br>Green Roofs |                                                                                                                               |
| obvin designed to provent randinand with adoquate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Breen Roofs                         |                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                   | 80% if designed to prevent runon and with adequate                                                                            |
| Rain Barrels and Cisterns May reduce required water quality volume. No TSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Breen Roofs                         | 80% if designed to prevent runon and with adequate storage capacity. Limited to uses identified in Volume 2,                  |
| Removal Credit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Breen Roofs<br>Porous Pavement      | 80% if designed to prevent runon and with adequate<br>storage capacity. Limited to uses identified in Volume 2,<br>Chapter 2. |

From MassDEP Stormwater Handbook Vol. 1



Appendix H Long Term O&M Plan

Long-Term Operation and Maintenance Plan Union Twist Dispensary 1158 Beacon Street

1158 Beacon Street Newton, Massachusetts

PREPARED FOR:

### Union Twist, INC. 1 International Place Suite 3700

Boston, Massachusetts

August 13, 2020



108 Myrtle Street Suite 502 Quincy, Massachusetts 02171



# Table of Contents

## Long-Term Operation and Maintenance Plan Union Twist Dispensary

| 1 | Intro                                                                                             | Introduction        |                                         |   |
|---|---------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------|---|
| 2 | Pollution Prevention         2.1       Good Housekeeping         2.1.1       Parking Lot Sweeping |                     |                                         | 3 |
|   | 2.2                                                                                               | Cher<br>2.2.1       | nical and Petroleum Products            | 3 |
|   | 2.3                                                                                               |                     | Spill Control Practices<br>scaped Areas |   |
|   | 2.4                                                                                               |                     |                                         |   |
|   | 2.5                                                                                               |                     | Management                              |   |
| 3 | Inspection and Maintenance Requirements for Permanent                                             |                     |                                         |   |
|   | Stor                                                                                              | Stormwater Controls |                                         |   |
|   | 3.1                                                                                               | Infiltra            | Infiltration Basins                     |   |
|   |                                                                                                   | 3.1.1               | Post-Construction Inspections           |   |
|   |                                                                                                   | 3.1.2               | Monthly Periodic Inspections            | 5 |
|   |                                                                                                   | 3.1.3               | Semiannual Inspection                   | 6 |
|   | 3.2                                                                                               | Sedir               | Sediment Forebays                       |   |
|   |                                                                                                   | 3.2.1               | Post-Construction Inspections           |   |
|   |                                                                                                   | 3.2.2               | Monthly Periodic Inspections            | 6 |
|   |                                                                                                   | 3.2.3               | Quarterly Inspections                   | 7 |
|   | 3.3                                                                                               | Drainage Structures |                                         | 7 |
|   |                                                                                                   | 3.3.1               | Post-Construction Inspections           | 7 |
|   |                                                                                                   | 3.3.2               | Quarterly Inspections                   | 7 |
|   | 3.4                                                                                               | Antic               | ipated Costs                            | 7 |

### **Figures**

### **End of Report**

**End of Report** 

- 1 Site Location Map
- 2 BMP Location Map
- 3 Snow Storage Map

### **Appendices**

- A Operation, Maintenance, and Management Inspection Checklists
- B Annual O&M Budgetary Opinion of Cost

F:\P2019\0241\A30\Local Permitting\O&M Plan\O&M Plan(1).doc

i



# 1 Introduction

The purpose of this Long-Term Operation and Maintenance Plan (O&M Plan) is to outline the requirements for source control and pollution prevention for the proposed marijuana dispensary located at 1158 Beacon St, Newton, Massachusetts. The property is currently developed and occupied by a restaurant and a dry cleaners and related site development (parking, sidewalks, etc.). The site is bounded by Beacon Street to the north and commercial properties to the east and west, and residential properties to the south. The project location is depicted in Figure 1, Site Location Map.

The project proposes modifications to the existing site including conversion of the existing structure to a marijuana dispensary along with modifications to the existing site development including parking lots, driveways, sidewalks, stormwater infrastructure, utilities, and landscaping. The overall drainage pattern of the site will not change with this new project.

Stormwater Management is achieved through two separate systems on the northern and southern portion of the site. One system is comprised of one sediment forebay and one infiltration basin while the other system is comprised of one deep sump catch basin. Through these best management practices (BMPs), groundwater recharge, and stormwater treatment are achieved. The redevelopment results in a decrease in net impervious area, providing stormwater peak discharge reduction. A map depicting the location of the BMPs is provided in *Figure 2*.

The long-term requirements include following proper site operation procedures and implementing an inspection and maintenance program to ensure the success and minimize the deterioration of the stormwater system over time. The Contractor is responsible for implementing this O&M Plan during construction. The Owner is responsible thereafter. Maintenance operations shall be funded by the Owner. In the event the facility becomes owned by different entities, this Long-Term Operation and Maintenance Plan shall be transferred to the future owners/operators. Checklists to assist with the inspection and maintenance activities are provided in *Appendix A*.

This plan has been prepared in accordance with the requirements set forth in Standard 4 and Standard 9 of the Massachusetts Stormwater Handbook.



# 2 Pollution Prevention

The following pollution prevention activities shall be conducted to minimize potential impacts on stormwater runoff quality. The Contractor is responsible for all activities during construction. The Owner is responsible thereafter.

### 2.1 Good Housekeeping

Good housekeeping shall be implemented to minimize the impacts to protected areas by pollutants, soil, and fugitive sediment. The site shall be kept in good working order. Trash shall be kept in covered containers (i.e., dumpsters) to prevent waste from escaping. Fugitive litter that is deposited on the site shall be removed and placed in a proper enclosed container.

### 2.1.1 Parking Lot Sweeping

Parking lots and paved roadway areas on the site shall be swept at a minimum of once every other month, or 6 times per year, with sweeping scheduled primarily in the spring and fall time. Sweeping shall be accomplished with a rotary broom type sweeper or equivalent. Sweeping activities shall take place during off-peak hours for the proposed marijuana dispensary, to ensure accessibility for the sweeper to get as close to curbs as possible.

### 2.2 Chemical and Petroleum Products

All chemical and petroleum product containers stored on the site (excluding those contained within vehicles and equipment) shall be provided with impermeable containment which will hold at least 110% of the volume of the largest container, or 10% of the total volume of all containers in the area, whichever is larger, without overflow from the containment area. All chemicals and their containers shall be stored under a roofed area. Containers of 100 gallon capacity or more may be stored without a roof only if stored in a double-walled tank. On-site vehicles shall be monitored for leaks and receive maintenance as needed.

### 2.2.1 Spill Control Practices

Any discharge of waste oil or other pollutant to the stormwater system will be reported immediately to the Massachusetts Department of Environmental Protection (MA DEP). The Owner will be responsible for any incident of groundwater contamination resulting from the improper discharge of pollutants to the stormwater system, and may be required by MA DEP to remediate incidents that may impact groundwater quality. Should property ownership be transferred, the subsequent owner/operator will be informed of the legal responsibilities associated with operation of the stormwater system, as indicated above.

The following practices shall be implemented to mitigate spills of material and prevent their release to the waters of the Commonwealth:



- Manufacturers' recommended methods for spill cleanup shall be clearly posted and site personnel will be made aware of the procedures and the location of the information and cleanup supplies.
- Materials and equipment necessary for spill cleanup will be kept in material storage areas. Equipment and materials will include but not be limited to brooms, dust pans, mops, rags, gloves, goggles, kitty litter, sand, sawdust, and plastic and metal trash containers specifically for this purpose.
- Spills will be cleaned up immediately after discovery.
- Spills of toxic or hazardous material will be reported to the appropriate State and local government agency, regardless of size.

### 2.3 Landscaped Areas

Lawn areas will be mowed during the growing seasons as required to maintain a health stand of vegetation. This is typically once a week but can vary depending on weather conditions. If bagged, grass clippings are to be removed from the site and legally disposed of at an off-site location.

Fertilizers, if required for the maintenance of lawn areas, will be applied only in the amounts recommended by the manufacturer. If kept on site, fertilizers will be stored in a covered area. The contents of any partially used bags of fertilizer will be transferred to a sealable plastic bin to avoid spills.

### 2.4 Pet Waste Management

There are no provisions for accommodating pets as part of the marijuana dispensary operation. If pets or service animals are required by facility staff, the O&M Plan shall be amended to include pet waste management practices.

### 2.5 Snow Management

Stormwater runoff caused by snow melt must be properly managed to prevent erosion and pollution. Therefore, a snow management plan has been developed to identify storage areas throughout the site.

Snow management operations can vary depending on current weather patterns, available equipment, and previous storm events. Below is a general description of how snow will be managed on the site.

- Keep pedestrian and emergency routes cleared. Ensure stockpiles do not obstruct sight lines at driveway or road intersections.
- Snow removed from the drive aisle and parking spaces will be stored in the marked areas of the parking lot.



- Snow removed from the sidewalks along the front of the building will be stored in the adjacent lawn areas.
- Snow will be stockpiled onsite until the available capacity is exceed at which point it will be loaded into trucks and properly disposed of at an off-site location.

A Snow Storage Plan is provided as Figure 3.

# 3 Inspection and Maintenance Requirements for Permanent Stormwater Controls

The following inspection and maintenance activities shall be conducted to ensure the success and minimize the deterioration of the stormwater system over time. A map depicting the location of the components of the stormwater management system is provided in *Figure 2*. Checklists to assist with the inspection and maintenance activities are provided in *Appendix A*.

### 3.1 Infiltration Basins

### 3.1.1 Post-Construction Inspections

Following construction, the infiltration basin shall be inspected after every storm event larger than oneinch in the first six months. If after these storm there is standing water in the basin 48 to 72 hours after may indicate that there is clogging. Clogging can be the result of upland sediment erosion, excessive compaction of soil, or low spots and should be addressed immediately.

Vegetation shall be watered once every two to three days for first two months, then sporadically after establishment during the first year after installation. If droughty, watering after the initial year may be required.

If at least 25 percent vegetation coverage is not established after the first growing season, reinforcement planting should be installed. If the surface of the basins becomes clogged to the point that standing water is observed on the surface 36 hours after precipitation events, remove accumulated sediment or till the surface to breakup any hard-packed soil and then vegetate.

### 3.1.2 Monthly Periodic Inspections

The infiltration basin shall be inspected monthly for evidence for vegetation health and the presence of trash (e.g., litter, debris, etc.). Trash deposited on the surface of the basins shall be removed manually and shall be disposed of in accordance with applicable local, state, and federal guidelines and regulations. Mowing shall occur when vegetation reaches a height at which it cannot support its own weight (typically two (2) to twelve (12) times per year), remove grass clippings and accumulated organic matter to prevent an impervious organic mat from forming. Remove trash and debris at the same time. Inspect and clean pretreatment devices associated with basins at least twice a year, and ideally every other month.



## 3.1.3 Semiannual Inspection

Inspections should occur twice per year. During these inspections the infiltration basin should be checked for signs of differential settlement, cracking, erosion, leakage, conditions of riprap, sediment accumulation, and the health of the turf.

Sediment shall be removed from the basins when the accumulation exceeds one inch or when there is evidence that the infiltration capacity has been significantly reduced. Sediment and debris must be removed manually with rakes rather than heavy equipment to avoid compacting. Removed sediments shall be dewatered (if necessary) and disposed of in an acceptable manner.

Use deep tilling to break up clogged surfaces, and revegetate immediately. Remove sediment from the basin as necessary, but wait until the floor of the basin is thoroughly dry. Use light equipment to remove the top layer so as to not compact the underlying soil. Deeply till the remaining soil, and revegetate as soon as possible.

Any areas within the extents of the basins that are subject to erosion or gullying shall be replenished with the original design material and re-vegetated according to design drawings. Prune vegetated areas and remove any dead materials. Separation of herbaceous vegetation rootstock should occur when over-crowding is observed, or approximately once every three years. If required, apply fertilizer to areas where vegetation is not fully established.

### 3.2 Sediment Forebays

### 3.2.1 Post-Construction Inspections

Following construction, the sediment forebays shall be inspected after every storm event larger than oneinch in the first six months following construction.

Vegetation shall be watered once every two to three days for first two months, then sporadically after establishment during the first year after installation. If droughty, watering after the initial year may be required.

If at least 25 percent vegetation coverage is not established after the first growing season, reinforcement planting should be installed. If the surface of the basins becomes clogged to the point that standing water is observed on the surface 36 hours after precipitation events, remove accumulated sediment or till the surface to breakup any hard-packed soil and then vegetate.

### 3.2.2 Monthly Periodic Inspections

The sediment forebay shall be inspected monthly for evidence for vegetation health, the presence of trash (e.g., litter, debris, etc.), and sediment accumulation. Trash deposited on the surface of the basins should be removed manually and shall be disposed of in accordance with applicable local, state, and federal guidelines and regulations. The forebay shall be mowed as required to maintain a healthy stand of grass between three (3) and six (6) inches tall.



If sediment has accumulated to half the depth of the forebay, remove the sediment. Otherwise, note the depth on the inspection checklist.

### 3.2.3 Quarterly Inspections

Remove accumulated sediment on a quarterly basis, regardless of the depth. Sediment and debris must be removed manually with rakes rather than heavy equipment to avoid compacting. Removed sediments shall be dewatered (if necessary) and disposed of in an acceptable manner. Any areas that are subject to erosion or gullying shall be replenished with topsoil and re-vegetated according to design drawings. Erosion control blankets shall be used as needed to ensure stabilization of the floor and side slopes of the forebays during revegetation.

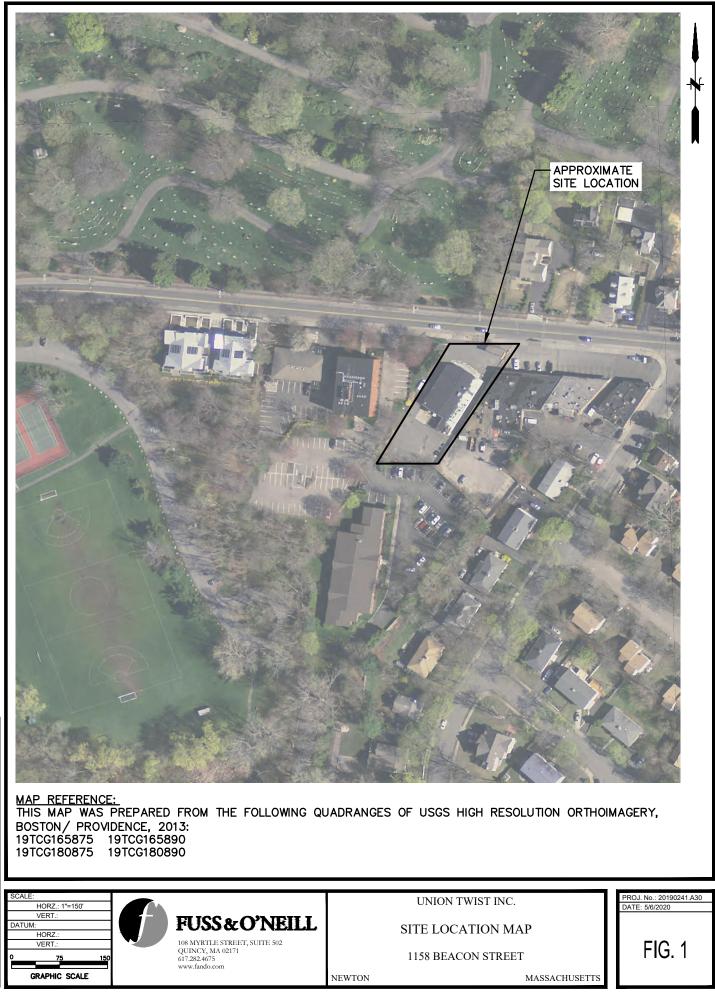
The quarterly inspection of the basin should include checking for standing water or other evidence of clogging by accumulated sediments, checking inlets and outlets for signs of erosion and damage, checking the overflow structures for blockage and structural integrity, and checking the slopes of the basins for erosion or gullying. Inspect stone to determine if high flows have caused scour beneath the channels or dislodged any of the stone. If repairs are needed, they should be performed immediately.

### 3.3 Drainage Structures

### 3.3.1 Post-Construction Inspections

Immediately prior to the end of construction and acceptance by the Owner, the Contractor shall clean all drainage structures (i.e. catch basin and yard drains).

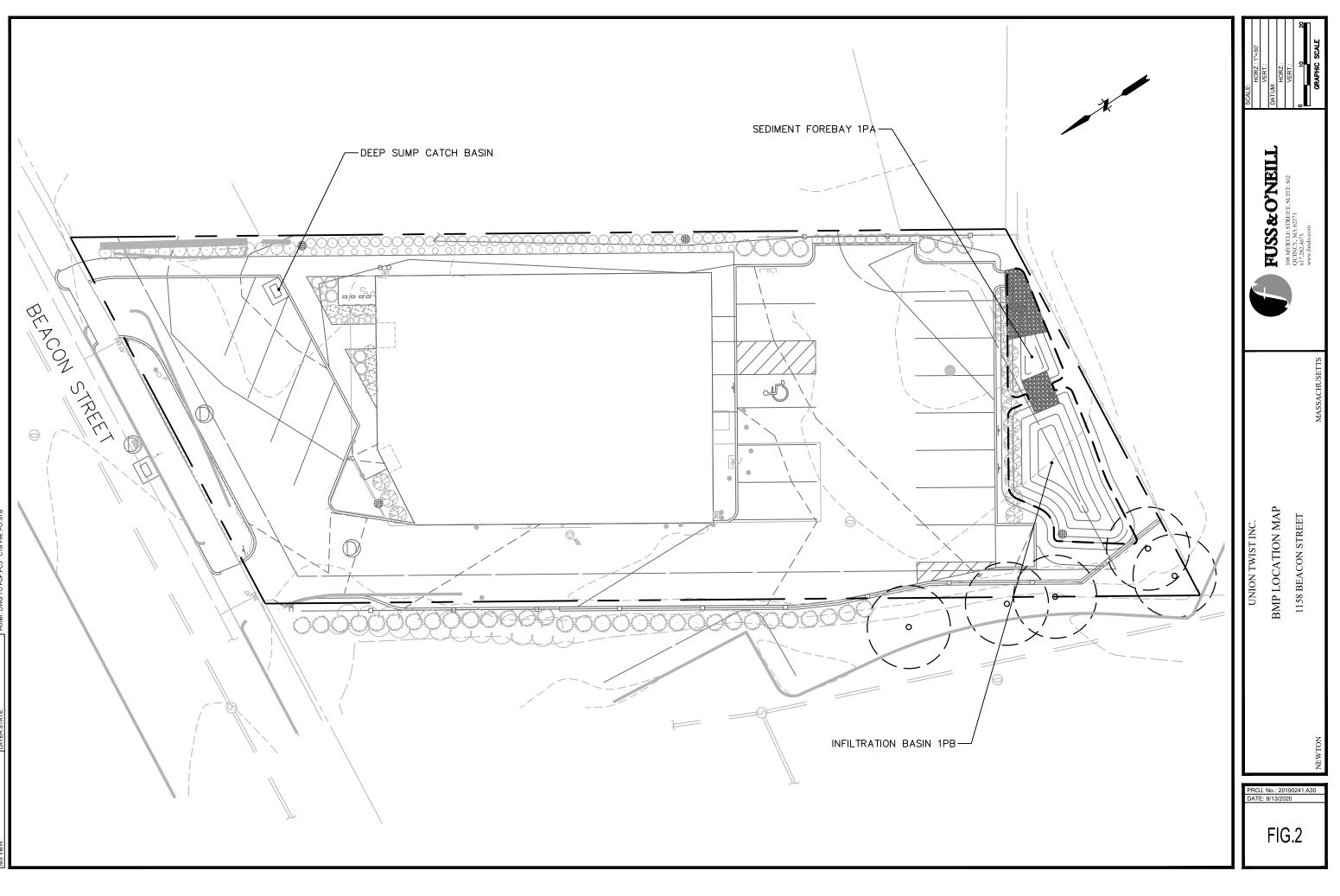
### 3.3.2 Quarterly Inspections


Drainage structures shall be inspected at minimum of four times per year, at minimum. Sediment shall be removed at least twice per year, or when the depth reaches half the height between the bottom of the structure and the lowest pipe invert elevation. Inspections shall include checking for debris, sediment, and hydrocarbons, and structural integrity or damage. Deficiencies must be corrected immediately. Disposal of the accumulated sediment and hydrocarbons must be in accordance with applicable local, state, and federal guidelines and regulations. Grates shall not be welded to the frame so the structures can be easily inspected and maintained.

### 3.4 Anticipated Costs

The annual cost for the inspections and maintenance for the property is estimated to be from \$9,500 to \$14,500 per year, if performed by an independent third party. A budgetary opinion of cost for the maintenance is included in Appendix B.

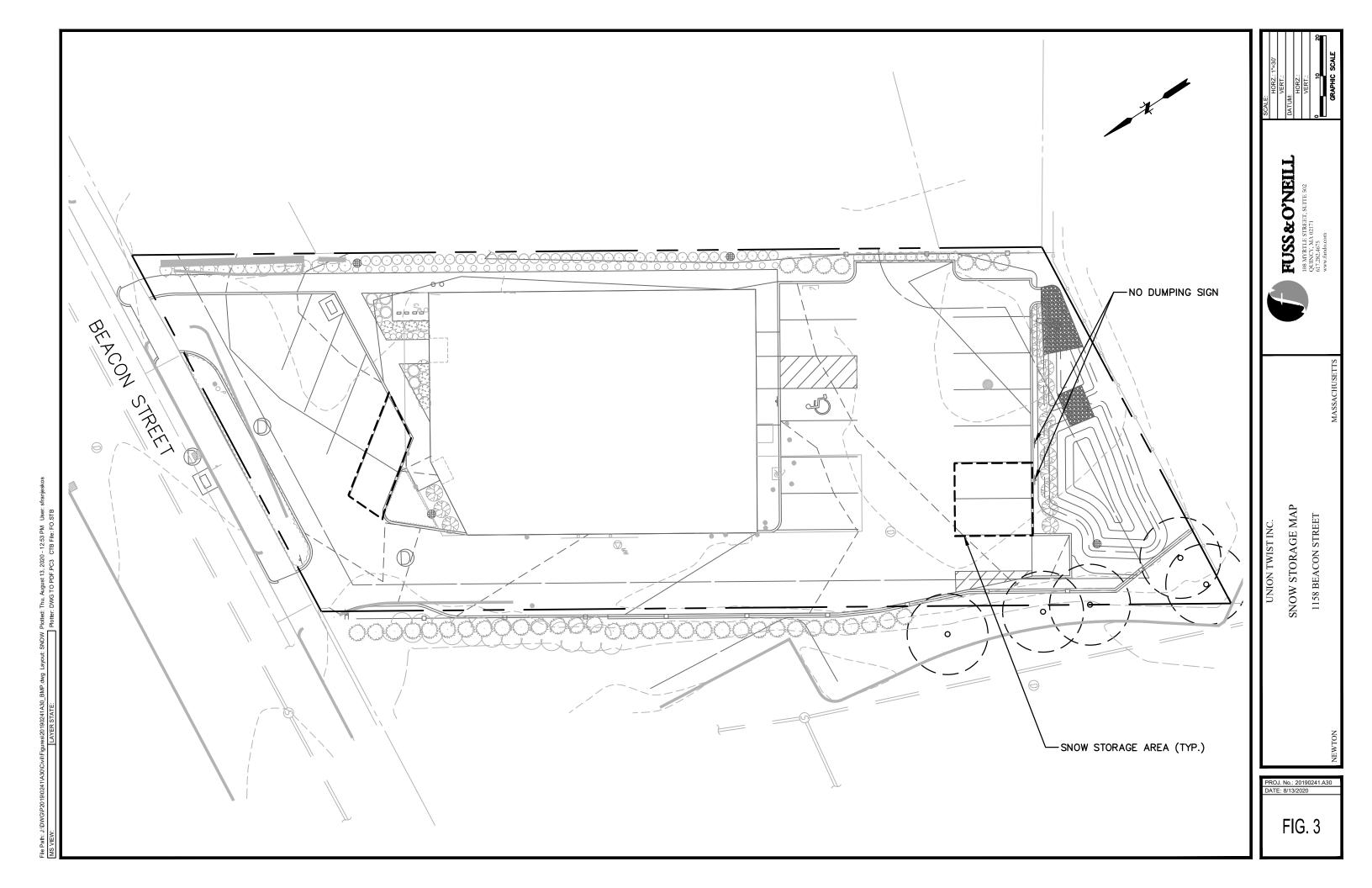



Figure 1 USGS Site Location Map



File Path. J:DWG/P2019/0241A30/Civil/Temp/20190241A30\_AERIALS.dwg Layout FIG 1. Plotted: Mon, May 11, 2020 -4:23 PM User: sfranjeskos MS VIEW: LAYER STATE: Plotter: DWG TO PDF.PC3 CTB File: FO.STB




# Figure 2 BMP Location Map





# Figure 3

Snow Storage Map





## Appendix A

Operation, Maintenance, and Management Inspection Checklists

#### Operation, Maintenance, and Management Inspection Checklists Master Checklist 1158 Beacon Street

Inspection Year:

|                                        |     |     |     |     |     |     |     |     |     | <u> </u> |     |     |
|----------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|-----|-----|
|                                        | Jan | ⊦eb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct      | Nov | Dec |
| Infiltration Basin                     |     |     |     |     |     |     |     |     |     |          |     |     |
| Inspect for and Remove Trash (monthly) |     |     |     |     |     |     |     |     |     |          |     |     |
| Mow (as required)                      |     |     |     |     |     |     |     |     |     |          |     |     |
| Semi-Annual inspection                 |     |     |     |     |     |     |     |     |     |          |     |     |
| Sediment Forebay                       |     |     |     |     |     |     |     |     |     |          |     |     |
| Inspect for and Remove Trash (monthly) |     |     |     |     |     |     |     |     |     |          |     |     |
| Mow (as required)                      |     |     |     |     |     |     |     |     |     |          |     |     |
| Quarterly Inspection                   |     |     |     |     |     |     |     |     |     |          |     |     |
| Drainage Structures                    |     |     |     |     |     |     |     |     |     |          |     |     |
| Quarterly Inspection                   |     |     |     |     |     |     |     |     |     |          |     |     |

#### Operation, Maintenance, and Management Inspection Checklists Infiltration Basin 1158 Beacon Street

| Inspector Name:  | _ Type of Inspection (Circle One): |
|------------------|------------------------------------|
| Inspection Date: | _ Monthly Annual                   |
| Reviewed By:     | _ BMP Name:                        |
| Review Date:     |                                    |

| Nc | Monthly | Annual | Item         | Criteria                                                                 | Satisfactory | Unsatisfactory | Notes |
|----|---------|--------|--------------|--------------------------------------------------------------------------|--------------|----------------|-------|
| 1  |         |        | Trash/Debris | Basin is free of debris, litter, and waste.                              |              |                |       |
| 2  |         |        |              | Grass has not reached a height at which it cannot support its own weight |              |                |       |
| 3  |         |        | Sediment     | Depth of Sediment is less than one inch.                                 |              |                |       |

F:\P2019\0241\A30\Local Permitting\O&M Plan\Appendices\O&M Checklist.xlsxO&M Checklist.xlsx

#### Operation, Maintenance, and Management Inspection Checklists Infiltration Basin 1158 Beacon Street

| 4 |  | Clogging   | Basins appears to be draining freely and not clogged.                                            |  |  |
|---|--|------------|--------------------------------------------------------------------------------------------------|--|--|
| 5 |  |            | Overflow structures are free of blockage and are structurally sound                              |  |  |
| 6 |  | Erosion    | There are no signs of erosion and scouring.                                                      |  |  |
| 7 |  | Vegetation | Vegetation is satisfactorily pruned to remove any dead material. Rootstocks are not overcrowded. |  |  |

#### Operation, Maintenance, and Management Inspection Checklists Sediment Forebay 1158 Beacon Street

| Inspector Name:  | Type of Inspection (Circle O |  |  |  |  |  |
|------------------|------------------------------|--|--|--|--|--|
| Inspection Date: | _ Monthly Quarterly          |  |  |  |  |  |
| Reviewed By:     | _ BMP Name:                  |  |  |  |  |  |
| Review Date:     |                              |  |  |  |  |  |

| No | Monthly | Quarterly | Item         | Criteria                                                    | Satisfactory | Unsatisfactory | Notes |
|----|---------|-----------|--------------|-------------------------------------------------------------|--------------|----------------|-------|
| 1  |         |           | Trash/Debris | Forebay is free of debris, litter, and waste.               |              |                |       |
| 2  |         |           | Turf         | Grass height is between 3 and 6 inches.                     |              |                |       |
| 3  |         |           |              | Depth of Sediment is less than half the depth of the basin. |              |                |       |

#### Operation, Maintenance, and Management Inspection Checklists Sediment Forebay 1158 Beacon Street

| 4 |  | Sediment<br>Removal    | Accumulated sediment has been removed.                              |  |  |
|---|--|------------------------|---------------------------------------------------------------------|--|--|
| 5 |  | Inlet<br>Stabilization | River stone inlets do not show scouring.                            |  |  |
| 6 |  |                        | Overflow structures are free of blockage and are structurally sound |  |  |
| 7 |  | Erosion                | There are no signs of erosion and scouring.                         |  |  |

#### Operation, Maintenance, and Management Inspection Checklists Drainage Structures 1158 Beacon Street

| 3 |  |  | Concrete surfaces are structurally sound and have negligible spalling and cracking. |  |  |  |
|---|--|--|-------------------------------------------------------------------------------------|--|--|--|
|---|--|--|-------------------------------------------------------------------------------------|--|--|--|

F:\P2019\0241\A30\Local Permitting\O&M Plan\Appendices\O&M Checklist.xlsxO&M Checklist.xlsx

### Inspector Name: \_\_\_\_\_

Inspection Date: \_\_\_\_\_

| Reviewed By: |  |
|--------------|--|
|--------------|--|

Review Date: \_\_\_\_\_

| N | Quarterly | Item         | Criteria                                                                                                                                                                          | Satisfactory | Unsatisfactory | Notes |
|---|-----------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|-------|
| 1 |           | Trash/Debris | Structure is free of debris, litter, and waste.                                                                                                                                   |              |                |       |
| 2 |           | Nonimont     | Depth of sediment is less than half the height<br>between the bottom of the structure and the lowest<br>pipe invert elevation and has been removed within the<br>last six months. |              |                |       |
| 3 |           |              | Concrete surfaces are structurally sound and have negligible spalling and cracking.                                                                                               |              |                |       |

Page 6 of 6

Type of Inspection (Circle One):

Quarterly

Structure Name:



# Appendix B

Annual O&M Budgetary Opinion of Cost



### FUSS & O'NEILL, INC.

108 Myrtle Street, Suite 502

Quincy, MA 02171

| BUDGETARY OPINION OF COST                  | DATE PREPARED | 08/13/20 | SHEET 1   | 1 0   | IF 1 |  |
|--------------------------------------------|---------------|----------|-----------|-------|------|--|
| PROJECT : Union Twist Dispensary           | BASIS :       |          |           |       |      |  |
| LOCATION : 1158 Beacon Street, Newton, MA  |               |          |           |       |      |  |
| DESCRIPTION Long Term Stormwater O&M Costs | ESTIMATOR :   | JEV      | CHECKED E | 3Y: S | M    |  |

Since Fuss & O'Neill has no control over the cost of labor, materials, equipment or services furnished by others, or over the Contractor(s)' methods of determining prices, or over competitive bidding or market conditions, Fuss & O'Neill's opinion of probable Total Project Costs and Construction Cost are made on the basis of Fuss & O'Neill's experience and qualifications and represent Fuss & O'Neill's best judgment as an experienced and qualified professional engineer, familiar with the construction industry; but Fuss & O'Neill cannot and does not guarantee that proposals, bids or actual Total Project or Construction Costs will not vary from opinions of probable cost prepared by Fuss & O'Neill. If prior to the bidding or negotiating Phase the Owner wishes greater assurance as to Total Project or Construction Costs, the Owner shall employ an independent cost estimator.

| ITEM | ITEM                                                                     | UNIT          | NO.           |     | PER       |       | TOTAL    |
|------|--------------------------------------------------------------------------|---------------|---------------|-----|-----------|-------|----------|
| NO.  | DESCRIPTION                                                              | MEAS.         | UNITS         |     | UNIT      |       | COST     |
|      |                                                                          |               |               |     |           |       |          |
| 1    | Site Inspections <sup>(2)</sup>                                          | EA            | 12            | \$  | 250.00    | \$    | 3,000.0  |
| 2    | Monthly Removal of Trash <sup>(3)</sup>                                  | EA            | 12            | \$  | 125.00    | \$    | 1,500.0  |
| 3    | Mowing of Infiltration Basins <sup>(4)</sup>                             | EA            | 6             | \$  | 300.00    | \$    | 1,800.0  |
| 4    | Mowing of Sediment Forebays <sup>(5)</sup>                               | EA            | 12            | \$  | -         | \$    | -        |
| 5    | Sediment Removal <sup>(6)</sup>                                          | EA            | 4             | \$  | 500.00    | \$    | 2,000.0  |
| 6    | Vacuum Truck - Drainage Structures & Infiltration Systems <sup>(7)</sup> | DAY           | 2             | \$  | 1,400.00  | \$    | 2,800.0  |
| 7    | Parking Lot Sweeping <sup>(8)</sup>                                      | DAY           | 6             | \$  | 100.00    | \$    | 600.0    |
|      |                                                                          | SUBTOTAL OPIN | ION OF CONSTR | UCT | TION COST | \$    | 11,700.0 |
|      |                                                                          |               |               |     |           |       |          |
|      | TOTAL COST (                                                             | -15% TO +30   | % ROUNDED     | ))  | \$10,000  | о т с | D \$15.0 |

Notes

1. The following equipment and labor rates were used for this estimate: Site Inspector - \$1,000/day; Laborer - \$500/day; Skidsteer & Operator - \$1,000/day; Dump Truck - \$500/day; Vacum Truck - \$1800/day

2. Assume a Site Inspector is required for 1/4 day per inspection.

3. Assumes 1 Laborer for a 1/4 day.

4. Assumes 1 Laborer for a 1/2 day and an additional 50 for a weedwacker.

5. Assumes mowing is done as part of normal landscaping maintenance.

6. Assumes 1 Laborer, 1 Skidsteer & Operator, and 1 Dump Truck for 1/2 day.

7. Assumes 2 Laborers and 1 Vaccum Truck for 1/2 Day.

8. Assumes \$100 per sweep performed on average every other month.