# STORMWATER REPORT 189-193 ADAMS STREET NEWTON, MASSACHUSETTS



February 12, 2018

Prepared by: Nestor R. Martinez

Reviewed by: Marc Besio, PE, SIT

VTP Associates, Inc. 132 Adams Street 2<sup>nd</sup> Floor, Suite 3 Newton Massachusetts 02465 1-617-332-8271 Job # 218100

ų,

#### INTRODUCTION

VTP Associates has performed a stormwater management analysis to evaluate the post-development impacts created by the proposed residential at #189-193 Adams Street in Newton, Massachusetts. The project will include a new residence building with approximately 18 units, a new surface driveway with parking, landscaped areas, and an associated stormwater management system.

VTP Associates analyzed the hydrology for the drainage areas impacted by the proposed work utilizing the Soil Conservation Service's (SCS) Runoff Curve Number (CN) methodology. VTP Associates used the HydroCAD computer modeling system in conjunction with the SCS's methods to determine the peak rate of runoff for the 2, 10, and 100-year storm events.

VTP Associates proposes the use of best management practices (BMPs) as defined by the Massachusetts Department of Environmental Protection (MA DEP) for stormwater management onsite to protect downstream receiving waters from adverse water quality impacts due to stormwater runoff. Mitigating the rate and quality of stormwater runoff from the project site will also help to lessen the environmental impact of the proposed development.

#### METHODOLOGY

#### Hydrology and Hydraulics

VTP Associates analyzed the survey base plan and conducted a site visit to determine the existing drainage flow patterns onsite. The existing conditions survey, in conjunction with aerial photography, and site visits were used to determine existing surface coverage areas for the site. VTP Associates determined that a majority of the pre-developed surface cover for the study area is impervious cover. Initial soil research was determined using the Natural Resources Conservation Service (NRCS) soil survey maps for Middlesex County, Massachusetts via Web Soil Survey 1.1. According to the soil survey, the soil on the site consists of the following:

#### 626B: Merrimac – Urban land complex

VTP Associates used a Hydrologic soil group 'A' for its drainage calculations. As per the Mass DEP Stormwater Hydrology Handbook for Conservation Commissions, VTP used a design infiltration rate of 7.0 in/hr for 'A' soils.

For each subcatchment area, VTP Associates determined drainage flow path lengths, surface cover type and slopes for sheet and shallow concentrated flow. The information was used to calculate the time of concentration (Tc) for each subcatchment areas. Where applicable, a minimum Tc of 5 minutes was used; the minimum value for highly developed, small catchment areas. SCS Runoff Curve Numbers were selected by using the cover type and hydrologic soil group of each area. The peak runoff rates for the 2, 10 and 100-year storm events were then determined by inputting the weighted CN, Tc, drainage areas, and drainage system information into the HydroCAD storm water modeling system computer program. The storm events were based on the 24-hour duration storm with a SCS Type III storm distribution curve.

#### **Storm Event**

VTP Associates used Massachusetts rainfall data maps from Technical Paper 40, Rainfall Frequency Atlas of the United States and the City of Newton's Requirements for On-Site Drainage to estimate the rainfall depth for the 2, 10 and 100-year storms. The rainfall depths for the 24-hour storm events used are as follows:

| Storm Event | 24-Hour Rainfall Depth (inches) |
|-------------|---------------------------------|
| 2-year      | 3.1                             |
| 10-year     | 4.5                             |
| 100-year    | 8.78                            |

#### HYDROLOGICAL ANALYSIS

#### **Pre-Development Conditions**

The existing site consists of a two-half-story wood building, a detached on- story mason garage, a detached one-story wood garage, a two-story wood house, a surface driveway with parking. Approximately 15,730 square feet (81.3%) of the site is impervious cover. The site is bound by residential building to the southwest, northwest and southeast, and Adams Street to the northeast.

VTP Associates compiled the existing drainage areas from an existing conditions survey prepared by VTP Associates. Additionally, VTP Associates conducted site visits to evaluate the existing onsite drainage patterns and watershed divides from the existing conditions survey. At present, stormwater runoffs from the existing study area drain to Adams Street to the northeast (E1), to the northwest (E2) and southwest (E3) abutters. The pre-development drainage areas are shown on "Figure 1: Pre-Development Drainage Areas."

#### **Post Development Conditions**

The proposed project includes the construction of a new multi-family residence, consisting 18 units, on ground parking, walkways, landscaped areas, and associated drainage improvements. As a result, approximately 16,093 square feet (83.1%) of the site is impervious. The same overall area was analyzed for the proposed conditions as the pre-development conditions and is shown on "Figure 2: Post-Development Drainage Areas." Similar to pre-development conditions, the stormwater runoff flows in the same direction. The same design points were used as in the pre-development conditions.

The new residence will have approximately 7,180 square feet of impervious, or roof, and the driveway will be approximately 9,129 square feet. The roof runoff areas are separated into two drainage areas and discharge to a respective underground infiltration system. The roof runoff areas (PR1) and (PR2) will be collected by roof leaders and discharge into the onsite 8,000 gal. Tank (TNK) with a verflow into the infiltration system #1 (INF-1)). The driveway runoff (PD1) will be collected by a catch basin and discharge into onsite infiltration system #1 (INF-1). The driveway runoff (PD2) and (PD3) will be collected by two catch basins and discharge into onsite infiltration system #2 (INF-2). The runoff from (AD1) will be collected by an area drain and discharge into onsite infiltration system #2 (INF-2). The runoff from (AD2) and (AD3) will be collected by two area drains and discharge into onsite infiltration system #1 (INF-1). The intent of the proposed stormwater management systems are to infiltrate stormwater runoff of the proposed building and driveway/parking. The infiltration system was designed to control the 100-year storm with the addition of overflow to the infiltration systems and help mitigate proposed peak rates of runoff to less than existing conditions. The drainage areas can be seen on "Figure 2: Post-Development Drainage Areas."

VTP Associates analyzed the pre- and post-development site conditions to determine the peak rates of runoff at the design points. By incorporating the stormwater management features discussed above, the peak rates of runoff in the post-development condition is to be better than pre-development levels. Pre-development peak runoff rates vs. post-development peak runoff rates for the 2, 10, and 100-year storm events are presented in Table 1 below.

#### Table 1, Pre-development vs. Post-Development Peak Rate of Runoff

#### Design Point #1 – Adams Street (Northeast)

| STORM EVENT    | <b>PRE-DEVELOPMENT</b> | POST-DEVELOPMENT | <b>PRE-DEVELOPMENT</b> | POST-DEVELOPMENT |
|----------------|------------------------|------------------|------------------------|------------------|
| (DESIGN POINT) | PEAK RATE OF           | PEAK RATE OF     | VOLUME OF              | VOLUME OF RUNOFF |
|                | RUNOFF (CFS)           | RUNOFF (CFS)     | RUNOFF (AF)            | (AF)             |
| 2-YEAR         | 0.43                   | 0.00             | 0.032                  | 0.000            |
| 10-YEAR        | 0.63                   | 0.01             | 0.048                  | 0.001            |
| 100-YEAR       | 1.25                   | 0.08             | 0.098                  | 0.005            |

#### Design Point #2 – Northwest Abutter

| STORM EVENT    | PRE-DEVELOPMENT | POST-DEVELOPMENT | PRE-DEVELOPMENT | POST-DEVELOPMENT |
|----------------|-----------------|------------------|-----------------|------------------|
| (DESIGN POINT) | PEAK RATE OF    | PEAK RATE OF     | VOLUME OF       | VOLUME OF RUNOFF |
|                | RUNOFF (CFS)    | RUNOFF (CFS)     | RUNOFF (AF)     | (AF)             |
| 2-YEAR         | 0.42            | 0.00             | 0.029           | 0.000            |
| 10-YEAR        | 0.77            | 0.00             | 0.053           | 0.000            |
| 100-YEAR       | 1.92            | 0.00             | 0.135           | 0.000            |

#### **Design Point #3 – Southwest Abutter**

| STORM EVENT    | PRE-DEVELOPMENT | POST-DEVELOPMENT | PRE-DEVELOPMENT | POST-DEVELOPMENT |
|----------------|-----------------|------------------|-----------------|------------------|
| (DESIGN POINT) | RUNOFF (CFS)    | RUNOFF (CFS)     | RUNOFF (AF)     | (AF)             |
| 2-YEAR         | 0.07            | 0.00             | 0.005           | 0.000            |
| 10-YEAR        | 0.17            | 0.00             | 0.012           | 0.000            |
| 100-YEAR       | 0.57            | 0.00             | 0.039           | 0.000            |

#### CONCLUSION

The post-development peak rate of runoff is expected to be less than or equal to pre-development levels for the 2, 10, and 100-year storm events. Although there is increased impervious coverage on the site as a result of the proposed redevelopment, the addition of the underground infiltration systems controls the post-development runoff to pre-development levels or better.

#### **ENCLOSURES**

NRCS Soil Map Pre-Development Drainage Areas (Figure 1) Post-Development Drainage Areas (Figure 2) Pre & Post Development HydroCAD Calculations

#### Custom Soil Resource Report Soil Map



|                                          | MAP L                  | EGEND                 |                       | MAP INFORMATION                                                                                                                                                                                                                              |
|------------------------------------------|------------------------|-----------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Area of Inte                             | erest (AOI)            | 30                    | Spoil Area            | The soil surveys that comprise your AOI were mapped at                                                                                                                                                                                       |
|                                          | Area of Interest (AOI) | ۵                     | Stony Spot            | 1:25,000.                                                                                                                                                                                                                                    |
| Soils                                    |                        | m                     | Very Stony Spot       | Warning: Soil Man may not be valid at this scale                                                                                                                                                                                             |
|                                          | Soil Map Unit Polygons | 69                    | Wet Spot              | Warning. Soir Map may not be valid at this scale.                                                                                                                                                                                            |
| ~                                        | Soil Map Unit Lines    | N N                   | Other                 | Enlargement of maps beyond the scale of mapping can cause                                                                                                                                                                                    |
|                                          | Soil Map Unit Points   | -                     | Special Line Features | misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of                                                                                                                       |
| Special P                                | Point Features         | Water Fea             | tures                 | contrasting soils that could have been shown at a more detailed                                                                                                                                                                              |
| అ                                        | Blowout                | ~                     | Streams and Canals    | scale.                                                                                                                                                                                                                                       |
|                                          | Borrow Pit             | Transporta            | ation                 | Please rely on the bar scale on each map sheet for map                                                                                                                                                                                       |
| 英                                        | Clay Spot              | +++                   | Rails                 | measurements.                                                                                                                                                                                                                                |
| $\diamond$                               | Closed Depression      | ~                     | Interstate Highways   | Source of Man: Natural Resources Conservation Service                                                                                                                                                                                        |
| X                                        | Gravel Pit             | ~                     | US Routes             | Web Soil Survey URL:                                                                                                                                                                                                                         |
| 00                                       | Gravelly Spot          | ~                     | Major Roads           | Coordinate System: Web Mercator (EPSG:3857)                                                                                                                                                                                                  |
| 0                                        | Landfill               | ~                     | Local Roads           | Maps from the Web Soil Survey are based on the Web Mercator                                                                                                                                                                                  |
| ٨.                                       | Lava Flow              | Backgrou              | nd                    | projection, which preserves direction and shape but distorts                                                                                                                                                                                 |
| <u>مل</u> د                              | Marsh or swamp         | and the second second | Aerial Photography    | Albers equal-area conic projection that preserves area, such as the                                                                                                                                                                          |
| 衆                                        | Mine or Quarry         |                       |                       | accurate calculations of distance or area are required.                                                                                                                                                                                      |
| 0                                        | Miscellaneous Water    |                       |                       | This product is generated from the USDA-NRCS certified data as                                                                                                                                                                               |
| 0                                        | Perennial Water        |                       |                       | of the version date(s) listed below.                                                                                                                                                                                                         |
| ~                                        | Rock Outcrop           |                       |                       | Soil Survey Area: Middlesex County Massachusetts                                                                                                                                                                                             |
| +                                        | Saline Spot            |                       |                       | Survey Area Data: Version 17, Oct 6, 2017                                                                                                                                                                                                    |
| •<br>• •                                 | Sandy Spot             |                       |                       | Soil man units are labeled (as snace allows) for man scales                                                                                                                                                                                  |
| -                                        | Severely Eroded Spot   |                       |                       | 1:50,000 or larger.                                                                                                                                                                                                                          |
| ~                                        | Sinkhole               |                       |                       | Deta(a) equiplimente una shetesrashedi. Aus 10,2011, Aus                                                                                                                                                                                     |
| ~ ~                                      | Slide or Slip          |                       |                       | 25, 2014 2014 2014 2014 2014 2014 2014 2014                                                                                                                                                                                                  |
| n an | Sodic Spot             |                       |                       |                                                                                                                                                                                                                                              |
| jΨ                                       |                        |                       |                       | I ne orthophoto or other base map on which the soil lines were<br>compiled and digitized probably differs from the background<br>imagery displayed on these maps. As a result, some minor<br>shifting of map unit boundaries may be evident. |

# Map Unit Legend

| Map Unit Symbol             | Map Unit Name                                         | Acres in AOI | Percent of AOI |
|-----------------------------|-------------------------------------------------------|--------------|----------------|
| 626B                        | Merrimac-Urban land complex,<br>0 to 8 percent slopes | 0.5          | 100.0%         |
| Totals for Area of Interest |                                                       | 0.5          | 100.0%         |







# Summary for Subcatchment AD1: Area Drain-1

Runoff = 0.00 cfs @ 12.42 hrs, Volume= 0.000 af, Depth= 0.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 2-Year Rainfall=3.10"

| Area (sf)                 | CN Description                                                |  |  |  |  |  |  |  |  |  |
|---------------------------|---------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| * 14                      | 98 Ret. Wall                                                  |  |  |  |  |  |  |  |  |  |
| 48                        | 39 >75% Grass cover, Good, HSG A                              |  |  |  |  |  |  |  |  |  |
| 62                        | 52 Weighted Average                                           |  |  |  |  |  |  |  |  |  |
| 48                        | 77.42% Pervious Area                                          |  |  |  |  |  |  |  |  |  |
| 14                        | 22.58% Impervious Area                                        |  |  |  |  |  |  |  |  |  |
| Tc Length<br>(min) (feet) | Slope Velocity Capacity Description<br>(ft/ft) (ft/sec) (cfs) |  |  |  |  |  |  |  |  |  |
| 5.0                       | Direct Entry, Minimum                                         |  |  |  |  |  |  |  |  |  |
|                           | Subcatchment AD1: Area Drain-1                                |  |  |  |  |  |  |  |  |  |
| Hydrograph                |                                                               |  |  |  |  |  |  |  |  |  |
|                           | Runoff                                                        |  |  |  |  |  |  |  |  |  |



#### Summary for Subcatchment AD2: Area Drain-2

Runoff = 0.00 cfs @ 13.78 hrs, Volume= 0.000 af, Depth= 0.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 2-Year Rainfall=3.10"

| A                | rea (sf) | CN Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | scription                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |          |                                                                                          |             |                            |        |
|------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------|------------------------------------------------------------------------------------------|-------------|----------------------------|--------|
| r                | 36       | 98 Ret                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . Wall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |          |                                                                                          |             |                            |        |
|                  | 187      | 39 >75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | % Grass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s cover, Go              | ood, HS  | G A                                                                                      |             |                            |        |
|                  | 223      | 49 We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ighted A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | verage                   |          |                                                                                          |             |                            |        |
|                  | 187      | 83.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 86% Per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vious Area               |          |                                                                                          |             |                            |        |
|                  | 36       | 16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14% Imp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ervious Ar               | ea       |                                                                                          |             |                            |        |
| Tc               | Length   | Slope V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /elocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Capacity                 | Descri   | ption                                                                                    |             |                            |        |
| (min)            | (feet)   | (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (ft/sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (cfs)                    |          |                                                                                          |             |                            |        |
| 5.0              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | Direct   | Entry, Mini                                                                              | imum        |                            |        |
|                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Suk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aatahma                  | nt AD    |                                                                                          | roin 2      |                            |        |
|                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Catchine                 |          | 2. Area Di                                                                               | all-2       |                            |        |
|                  | -+       | -+ +-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hydro                    | graph    | +                                                                                        | +           | - + ++                     | 1      |
| ° <del>T</del>   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |          |                                                                                          |             |                            | Runoff |
| 0                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00 cfs                 |          |                                                                                          |             |                            |        |
| 0                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |          |                                                                                          | Iype        | III 24-hr                  |        |
| 0                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |          | 2-Yea                                                                                    | r Rainfa    | all=3.10"                  |        |
| 0                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |          | Run                                                                                      | off Area    | a=223 sf                   |        |
| 0                |          | $-\frac{1}{1} - \frac{1}{1} - 1$ | $-\frac{1}{1}$ | ·                        |          | noff V                                                                                   | /olume=     | :0.000 af                  |        |
| (cfs)            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |          | <b>D</b> un                                                                              | off Dep     | th=0.09"                   |        |
| E E I O          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · -  + - + -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |          |                                                                                          |             | -5 0 min                   |        |
|                  |          | - +i + - + -<br>I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · -i ii -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · -iii                   |          |                                                                                          |             |                            |        |
|                  |          | - <mark> </mark>   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · -¦ ¦¦ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |          |                                                                                          |             | - <b>CN=49</b>             |        |
|                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | <br>     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     |             | -l Ll L L<br>I I I I I I I |        |
|                  | +        | -++-+-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | +        | $\begin{array}{c c}  - & + & - &  - & - & + & - \\   &   &   &   &   &   \\ \end{array}$ |             | - +++                      |        |
|                  |          | - +  + - + -<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · -  + - + -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · -i - · · · · · · · · · |          |                                                                                          |             |                            |        |
|                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |          |                                                                                          |             |                            | l      |
| 0 <del>-51</del> | 2 3 4    | 5 6 7 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 10 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12 13 14                 | 15 16 17 | 18 19 20 21                                                                              | 22 23 24 25 | 26 27 28 29 30             |        |
|                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rime                     | (nours)  |                                                                                          |             |                            |        |

# Summary for Subcatchment AD3: Area Drain-3

Runoff = 0.00 cfs @ 13.78 hrs, Volume= 0.000 af, Depth= 0.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 2-Year Rainfall=3.10"

|   | Aı          | rea (sf)                                                      | CN    | Des                  | criptio             | n              |                                    |                                                  |                                          |                                        |          |          |             |        |
|---|-------------|---------------------------------------------------------------|-------|----------------------|---------------------|----------------|------------------------------------|--------------------------------------------------|------------------------------------------|----------------------------------------|----------|----------|-------------|--------|
| * |             | 67                                                            | 98    | Ret.                 | Wall                |                |                                    |                                                  |                                          |                                        |          |          |             |        |
|   |             | 311                                                           | 39    | >75                  | <u>% Gra</u>        | ss cov         | ver, Go                            | od, HS                                           | G A                                      |                                        |          |          |             |        |
|   |             | 378                                                           | 49    | Wei                  | ghted               | Avera          | ige<br>s Aroa                      |                                                  |                                          |                                        |          |          |             |        |
|   |             | 67                                                            |       | 17.7                 | '2% In              | pervi          | ous Ar                             | ea                                               |                                          |                                        |          |          |             |        |
|   |             |                                                               |       |                      |                     |                |                                    |                                                  |                                          |                                        |          |          |             |        |
|   | Tc<br>(min) | Length                                                        | Slop  | e V                  | elocity             | ' Ca           | pacity                             | Desci                                            | ription                                  |                                        |          |          |             |        |
|   | 5.0         | (ieet)                                                        | (11/1 | ()                   | n/sec)              |                | (015)                              | Direc                                            | t Entry                                  | Mini                                   | mum      |          |             |        |
|   | 0.0         |                                                               |       |                      |                     |                |                                    | Bileo                                            |                                          | ,                                      | in ann   |          |             |        |
|   |             |                                                               |       |                      | Sı                  | ubcat          | tchme                              | ent AD                                           | <b>)3: Ar</b>                            | ea Dr                                  | ain-3    |          |             |        |
|   |             |                                                               |       |                      |                     |                | Hydro                              | graph                                            |                                          |                                        |          |          |             |        |
|   |             |                                                               |       | <br>    <br>         | -                   |                |                                    |                                                  |                                          | +-                                     |          |          |             | Bunoff |
|   | 0.000       | )]] / [<br>]] / [<br>]] / [                                   |       |                      |                     |                | <mark>0.00 c</mark> t              | is                                               | ⊤ − ⊤ − −ı−<br><u>-</u> − <u>-</u> − -!- |                                        |          |          |             |        |
|   | 0.000       | ) - + - + -<br>- + - + -<br>- +                               |       |                      | -i                  |                |                                    |                                                  | + - + -                                  |                                        | <b>F</b> | ype l    | ll 24-hr    |        |
|   | (           |                                                               |       |                      | -!L                 |                |                                    |                                                  | 2                                        | -Yea                                   | ir Ra    | infal    | l=3.10"     |        |
|   | 0           | )                                                             |       |                      | - +<br>-            |                |                                    | <br>                                             |                                          | Rur                                    | noff /   | Area:    | =378 sf     |        |
|   | 0           | ) <del>]</del> / + - + -<br>     <br>) <del>]</del> / + - + - |       | ⊢ <br>         <br>⊢ | -   <br>   <br>-    | <br>  _  <br>r | <b>  </b> -+ -<br>  <b>  </b> -+ - |                                                  | <b>N</b> in                              | ∩¦ff¦\                                 | /olur    | no-f     | ) 000 af    |        |
|   | <b>a</b> 0  |                                                               |       |                      |                     |                |                                    |                                                  |                                          |                                        |          |          |             |        |
|   | 5 (<br>3    |                                                               |       |                      |                     |                |                                    |                                                  |                                          | HUN                                    |          | eptr     | 1=0.09      |        |
|   | E C         | )=* / +                                                       |       | L _ J<br>       <br> | -!L<br>     <br>-!t | !  <br>        |                                    | l L _<br>     <br>-                              | L<br>             <br>+ - + -            |                                        |          | Tc=:     | 5.0 min     |        |
|   | 0           |                                                               |       |                      | -                   |                |                                    |                                                  | <br>  -   <br>  -   -                    |                                        |          |          | CN=49       |        |
|   | 0           | )                                                             |       |                      | -  -  <br>-         |                |                                    |                                                  |                                          |                                        |          |          |             |        |
|   | 0           | )                                                             |       |                      | -ii                 |                |                                    |                                                  |                                          |                                        |          |          |             |        |
|   | 0           | )]<br>                                                        |       | <br>                 | -¦                  |                |                                    |                                                  | └                                        | + -<br>                                | ·        |          |             |        |
|   | C           |                                                               |       | <br>                 | <br>-               | <br>   <br>    |                                    | <br>                                             | <br>+ - + -<br>                          |                                        |          |          |             |        |
|   | (<br>(      |                                                               |       |                      |                     |                |                                    | <del>/////////////////////////////////////</del> |                                          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          |          |             |        |
|   |             | 123                                                           | 45    | 67                   | 89                  | 10 11 1        | 12 13 14<br>Tir                    | 15 16 16 16 16                                   | 17 18 19<br>5)                           | 9 20 21                                | 22 23 2  | 24 25 26 | 27 28 29 30 |        |

#### Summary for Subcatchment E1: Adams Street (Northeast)

Runoff = 0.43 cfs @ 12.07 hrs, Volume= 0.032 af, Depth= 2.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 2-Year Rainfall=3.10"

| >75% Grass cover, Good, HSG A |  |  |  |  |  |
|-------------------------------|--|--|--|--|--|
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |

# Subcatchment E1: Adams Street (Northeast)



#### Summary for Subcatchment E2: Northwest Abutter

Runoff = 0.42 cfs @ 12.08 hrs, Volume= 0.029 af, Depth= 1.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 2-Year Rainfall=3.10"

|      | Area (sf) | CN    | Description |              |                       |  |
|------|-----------|-------|-------------|--------------|-----------------------|--|
| *    | 1,717     | 98    | Ex. Concret | te Garage F  | Roof (Portion)        |  |
| *    | 187       | 98    | Ex. Wood C  | arage Roo    | of (Portion)          |  |
| *    | 5,671     | 98    | Paved Drive | eway (Portio | on)                   |  |
| *    | 107       | 98    | Conc./brick | pads         |                       |  |
| *    | 48        | 98    | Ret. Wall   | •            |                       |  |
|      | 3,129     | 39    | >75% Gras   | s cover, Go  | ood, HSG A            |  |
|      | 10,859    | 81    | Weighted A  | verage       |                       |  |
|      | 3,129     |       | 28.81% Per  | vious Area   |                       |  |
|      | 7,730     |       | 71.19% Imp  | pervious Are | ea                    |  |
|      |           |       |             |              |                       |  |
| Т    | c Length  | Slop  | e Velocity  | Capacity     | Description           |  |
| (mir | n) (feet) | (ft/f | t) (ft/sec) | (cfs)        |                       |  |
| 5.   | 0         |       |             |              | Direct Entry, Minimum |  |





#### Summary for Subcatchment E3: Southwest Abutter

Runoff = 0.07 cfs @ 12.09 hrs, Volume= 0.005 af, Depth= 0.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 2-Year Rainfall=3.10"

|      | Area (sf) | CN    | Description         |                               |                       |  |  |  |  |
|------|-----------|-------|---------------------|-------------------------------|-----------------------|--|--|--|--|
| *    | 887       | 98    | Ex. House           | Roof                          |                       |  |  |  |  |
| *    | 63        | 98    | Ex. Wood C          | Garage Roc                    | of (Portion)          |  |  |  |  |
| *    | 621       | 98    | Paved Drive         | eway                          |                       |  |  |  |  |
| *    | 354       | 98    | Landing/Ste         | eps/Walks                     |                       |  |  |  |  |
| *    | 63        | 98    | Ret. Wall           |                               |                       |  |  |  |  |
| *    | 34        | 98    | Bulkhead            |                               |                       |  |  |  |  |
|      | 2,135     | 39    | >75% Gras           | >75% Grass cover, Good, HSG A |                       |  |  |  |  |
|      | 4,157     | 68    | 68 Weighted Average |                               |                       |  |  |  |  |
|      | 2,135     |       | 51.36% Pei          | rvious Area                   |                       |  |  |  |  |
|      | 2,022     |       | 48.64% Imp          | pervious Ar                   | ea                    |  |  |  |  |
|      |           |       |                     |                               |                       |  |  |  |  |
| Т    | c Length  | Slop  | e Velocity          | Capacity                      | Description           |  |  |  |  |
| (mir | n) (feet) | (ft/f | t) (ft/sec)         | (cfs)                         |                       |  |  |  |  |
| 5.   | 0         |       |                     |                               | Direct Entry, Minimum |  |  |  |  |

#### Subcatchment E3: Southwest Abutter



#### Summary for Subcatchment P1: Adams Street (Northeast)

Runoff = 0.00 cfs @ 12.39 hrs, Volume= 0.000 af, Depth= 0.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 2-Year Rainfall=3.10"

|          | Area (sf)               | CN            | Description               |                   |                       |  |  |
|----------|-------------------------|---------------|---------------------------|-------------------|-----------------------|--|--|
| *        | 154                     | 98            | Walks/Con                 | c. Pads           |                       |  |  |
| *        | 59                      | 98            | Ret. Wall                 |                   |                       |  |  |
|          | 704                     | 39            | >75% Gras                 | s cover, Go       | bod, HSG A            |  |  |
|          | 917                     | 53            | 53 Weighted Average       |                   |                       |  |  |
|          | 704                     |               | 76.77% Pervious Area      |                   |                       |  |  |
|          | 213                     |               | 23.23% Imp                | pervious Ar       | ea                    |  |  |
| -<br>(mi | Tc Length<br>in) (feet) | Slop<br>(ft/f | e Velocity<br>t) (ft/sec) | Capacity<br>(cfs) | Description           |  |  |
| 5        | 5.0                     |               |                           |                   | Direct Entry, Minimum |  |  |

# Subcatchment P1: Adams Street (Northeast)



#### Summary for Subcatchment PD1: Driveway/Parking-1

Runoff = 0.35 cfs @ 12.07 hrs, Volume= 0.024 af, Depth= 1.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 2-Year Rainfall=3.10"

|     | Area (sf) | CN                      | Description |             |                       |  |  |  |
|-----|-----------|-------------------------|-------------|-------------|-----------------------|--|--|--|
| *   | 5,232     | 98                      | Driveway/P  | arking Lot  |                       |  |  |  |
| *   | 22        | 98                      | Curbing     | c           |                       |  |  |  |
| *   | 168       | 98                      | Ret. Walls  |             |                       |  |  |  |
| *   | 50        | 98                      | Walks       | Valks       |                       |  |  |  |
|     | 1,148     | 39                      | >75% Gras   | s cover, Go | ood, HSG A            |  |  |  |
|     | 6,620     | 620 88 Weighted Average |             |             |                       |  |  |  |
|     | 1,148     |                         | 17.34% Pe   | rvious Area | 1                     |  |  |  |
|     | 5,472     |                         | 82.66% Imp  | pervious Ar | rea                   |  |  |  |
|     |           |                         |             |             |                       |  |  |  |
| -   | Tc Length | Slop                    | e Velocity  | Capacity    | Description           |  |  |  |
| (mi | n) (feet) | (ft/f                   | t) (ft/sec) | (cfs)       |                       |  |  |  |
| 5   | 5.0       |                         |             |             | Direct Entry, Minimum |  |  |  |
|     |           |                         |             |             |                       |  |  |  |

#### Subcatchment PD1: Driveway/Parking-1



#### Summary for Subcatchment PD2: Driveway/Parking-2

Runoff = 0.21 cfs @ 12.08 hrs, Volume= 0.014 af, Depth= 1.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 2-Year Rainfall=3.10"

|      | Area (sf) | CN                        | Description |                              |                                            |  |  |  |
|------|-----------|---------------------------|-------------|------------------------------|--------------------------------------------|--|--|--|
| *    | 3,066     | 98                        | Driveway/P  | arking Lot                   |                                            |  |  |  |
| *    | 82        | 98                        | Curbing     |                              |                                            |  |  |  |
| *    | 417       | 98                        | Walks       | Walks                        |                                            |  |  |  |
|      | 1,098     | 39                        | >75% Gras   | 75% Grass cover, Good, HSG A |                                            |  |  |  |
|      | 4,663     | 4,663 84 Weighted Average |             |                              |                                            |  |  |  |
|      | 1,098     |                           | 23.55% Pe   | rvious Area                  | 1                                          |  |  |  |
|      | 3,565     |                           | 76.45% Im   | pervious Ar                  | rea li |  |  |  |
|      |           |                           |             |                              |                                            |  |  |  |
| Т    | c Length  | Slop                      | e Velocity  | Capacity                     | Description                                |  |  |  |
| (mir | n) (feet) | (ft/f                     | t) (ft/sec) | (cfs)                        |                                            |  |  |  |
| 5.   | .0        |                           |             |                              | Direct Entry, Minimum                      |  |  |  |

# Subcatchment PD2: Driveway/Parking-2



# Summary for Subcatchment PD3: Driveway/Parking-3

Runoff = 0.05 cfs @ 12.07 hrs, Volume= 0.004 af, Depth= 1.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 2-Year Rainfall=3.10"

|      |           | (11/11                  | ) (II/Sec)  | (015)             | Direct Entry Minimum |  |  |  |
|------|-----------|-------------------------|-------------|-------------------|----------------------|--|--|--|
| (mir | (foot)    | 010p<br>/ft/ft          | (ft/soc)    | Capacity<br>(cfc) | Description          |  |  |  |
| т    | o Longth  | Slop                    | o Volocity  | Capacity          | Description          |  |  |  |
|      | 852       |                         | 80.30% Imp  | pervious Ar       | ea                   |  |  |  |
|      | 209       |                         | 19.70% Pei  | vious Area        |                      |  |  |  |
|      | 1,061     | 061 86 Weighted Average |             |                   |                      |  |  |  |
|      | 209       | 39                      | >75% Gras   | s cover, Go       | bod, HSG A           |  |  |  |
| *    | 21        | 98                      | Curbing     | Curbing           |                      |  |  |  |
| *    | 831       | 98                      | Driveway    |                   |                      |  |  |  |
|      | Area (sf) | CN                      | Description |                   |                      |  |  |  |

# Subcatchment PD3: Driveway/Parking-3



#### Summary for Subcatchment PR1: Roof-1

Runoff = 0.17 cfs @ 12.07 hrs, Volume= 0.013 af, Depth= 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 2-Year Rainfall=3.10"



#### Summary for Subcatchment PR2: Roof-2

Runoff = 0.34 cfs @ 12.07 hrs, Volume= 0.026 af, Depth= 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 2-Year Rainfall=3.10"



# Summary for Pond CB1: Catch Basin-1

| Inflow Area | l = | 0.152 ac, 8 | 2.66% Impe   | rvious, Inflow D | epth = 1.91" | for 2-Year event      |
|-------------|-----|-------------|--------------|------------------|--------------|-----------------------|
| Inflow      | =   | 0.35 cfs @  | 12.07 hrs, \ | Volume=          | 0.024 af     |                       |
| Outflow     | =   | 0.35 cfs @  | 12.07 hrs, \ | Volume=          | 0.024 af, At | ten= 0%, Lag= 0.0 min |
| Primary     | =   | 0.35 cfs @  | 12.07 hrs, Y | Volume=          | 0.024 af     |                       |

Routing by Dyn-Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Peak Elev= 47.00' @ 12.07 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                       |
|--------|---------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 46.70' | 8.0" Round 8"CCP L= 13.7' Ke= 0.200<br>Inlet / Outlet Invert= 46.70' / 46.25' S= 0.0328 '/' Cc= 0.900<br>n= 0.009 Corrugated PE, smooth interior, Flow Area= 0.35 sf |

Primary OutFlow Max=0.35 cfs @ 12.07 hrs HW=47.00' TW=42.08' (Dynamic Tailwater) **1=8''CCP** (Inlet Controls 0.35 cfs @ 2.32 fps)



#### Pond CB1: Catch Basin-1

# Summary for Pond CB2: Catch Basin-2

| Inflow Area | = | 0.107 ac, 7 | 6.45% Imper  | vious, Inflow De | epth = 1.60"   | for 2-Year event     |
|-------------|---|-------------|--------------|------------------|----------------|----------------------|
| Inflow      | = | 0.21 cfs @  | 12.08 hrs, V | /olume=          | 0.014 af       |                      |
| Outflow     | = | 0.21 cfs @  | 12.08 hrs, V | /olume=          | 0.014 af, Atte | en= 0%, Lag= 0.0 min |
| Primary     | = | 0.21 cfs @  | 12.08 hrs, V | /olume=          | 0.014 af       |                      |

Routing by Dyn-Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Peak Elev= 46.92' @ 12.08 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                       |
|--------|---------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 46.70' | 8.0" Round 8"CCP L= 22.5' Ke= 0.200<br>Inlet / Outlet Invert= 46.70' / 46.25' S= 0.0200 '/' Cc= 0.900<br>n= 0.009 Corrugated PE, smooth interior, Flow Area= 0.35 sf |

Primary OutFlow Max=0.21 cfs @ 12.08 hrs HW=46.92' TW=42.27' (Dynamic Tailwater) 1=8"CCP (Inlet Controls 0.21 cfs @ 2.01 fps)

#### **Hydrograph** 46.92 46.91 Elevation Inflow 46.9 Primary 0.23 Inflow Area=0.107 ac 46.89 0.21 cfs 0.22 46.88 0.21 cfs 0.21 Peak Elev=46.92' 46.87 0.2 46.86 0.19 46.85 8.0" 0.18 46.84 Elevation (feet) 0.17 **Round Culvert** 46.83 0.16 46.82 0.15 46.81 n=0.009 0.14 (cfs) 46.8 0.13 46.79 L=22.5' 0.12 46.78 Flow 0.11 46.77 S=0.0200 '/' 0.1 46.76 0.09 46.75 0.08 46.74 0.07 46.73 0.06 46.72 0.05 46.71 0.04 -46.7 0.03 0.02 0.01 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

# Pond CB2: Catch Basin-2

#### Summary for Pond CB3: Catch Basin-3

| Inflow Area | = | 0.024 ac, 8 | 0.30% Impe | ervious, In | flow Depth = | 1.75"    | for 2-Y | ear event    |
|-------------|---|-------------|------------|-------------|--------------|----------|---------|--------------|
| Inflow      | = | 0.05 cfs @  | 12.07 hrs, | Volume=     | 0.004        | af       |         |              |
| Outflow     | = | 0.05 cfs @  | 12.07 hrs, | Volume=     | 0.004        | af, Atte | en= 0%, | Lag= 0.0 min |
| Primary     | = | 0.05 cfs @  | 12.07 hrs, | Volume=     | 0.004        | af       |         |              |

Routing by Dyn-Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Peak Elev= 47.61' @ 12.07 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                        |
|--------|---------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 47.50' | 8.0" Round 8"CCP L= 125.8' Ke= 0.200<br>Inlet / Outlet Invert= 47.50' / 46.25' S= 0.0099 '/' Cc= 0.900<br>n= 0.009 Corrugated PE, smooth interior, Flow Area= 0.35 sf |

Primary OutFlow Max=0.05 cfs @ 12.07 hrs HW=47.61' TW=42.26' (Dynamic Tailwater) 1=8"CCP (Inlet Controls 0.05 cfs @ 1.40 fps)



# Pond CB3: Catch Basin-3

# Summary for Pond INF-1: Inf. System #1 Galleys

| Inflow Area = | 0.331 ac, 88.57% Impervious | , Inflow Depth = 1.68" for 2-Year event |
|---------------|-----------------------------|-----------------------------------------|
| Inflow =      | 0.78 cfs @ 12.10 hrs, Volum | e= 0.046 af                             |
| Outflow =     | 0.21 cfs @ 12.07 hrs, Volum | e= 0.046 af, Atten= 74%, Lag= 0.0 min   |
| Discarded =   | 0.21 cfs @ 12.07 hrs, Volum | e= 0.046 af                             |

Routing by Dyn-Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Peak Elev= 42.75' @ 12.47 hrs Surf.Area= 0.029 ac Storage= 0.008 af

Plug-Flow detention time= 7.9 min calculated for 0.046 af (100% of inflow) Center-of-Mass det. time= 7.9 min (849.7 - 841.8)

| Volume | Invert | Avail.Storage | Storage Description                                           |
|--------|--------|---------------|---------------------------------------------------------------|
| #1A    | 42.00' | 0.026 af      | 26.50'W x 48.00'L x 5.25'H Field A                            |
|        |        |               | 0.153 af Overall - 0.079 af Embedded = 0.075 af x 35.0% Voids |
| #2A    | 43.00' | 0.059 af      | Concrete Galley 4x4x4.25 x 55 Inside #1                       |
|        |        |               | Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf        |
|        |        |               | Outside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf       |
|        |        |               | 5 Rows of 11 Chambers                                         |
|        |        | 0.085 af      | Total Available Storage                                       |

Storage Group A created with Chamber Wizard

| Device  | Routing    | Invert       | Outlet Devices                             |                 |
|---------|------------|--------------|--------------------------------------------|-----------------|
| #1      | Discarded  | 42.00'       | 7.000 in/hr Exfiltration over Surface area | Phase-In= 0.01' |
| Discard | ed OutFlow | Max=0.21 cfs | s @ 12.07 hrs HW=42.07' (Free Discharge)   |                 |

**1=Exfiltration** (Exfiltration Controls 0.21 cfs)

# Pond INF-1: Inf. System #1 Galleys - Chamber Wizard Field A

Chamber Model = Concrete Galley 4x4x4.25 (Concrete Galley, Shea LE-EGH, LE-CGH or equivalent) Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf Outside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf

11 Chambers/Row x 4.00' Long = 44.00' Row Length +24.0" End Stone x 2 = 48.00' Base Length 5 Rows x 54.0" Wide + 24.0" Side Stone x 2 = 26.50' Base Width 12.0" Base + 51.0" Chamber Height = 5.25' Field Height

55 Chambers x 46.4 cf = 2,550.9 cf Chamber Storage 55 Chambers x 62.3 cf = 3,428.2 cf Displacement

6,678.0 cf Field - 3,428.2 cf Chambers = 3,249.8 cf Stone x 35.0% Voids = 1,137.4 cf Stone Storage

Chamber Storage + Stone Storage = 3,688.4 cf = 0.085 afOverall Storage Efficiency = 55.2%Overall System Size =  $48.00' \times 26.50' \times 5.25'$ 

55 Chambers 247.3 cy Field 120.4 cy Stone







# Pond INF-1: Inf. System #1 Galleys

# Summary for Pond INF-2: Inf. System #2 Galleys

| Inflow Area = | 0.133 ac,  | 76.58% Impervious,  | Inflow Depth = 1.6 | 1" for 2-Year event      |
|---------------|------------|---------------------|--------------------|--------------------------|
| Inflow =      | 0.26 cfs @ | 12.08 hrs, Volume   | e= 0.018 af        |                          |
| Outflow =     | 0.08 cfs @ | 2 12.00 hrs, Volume | e= 0.018 af,       | Atten= 68%, Lag= 0.0 min |
| Discarded =   | 0.08 cfs @ | 2 12.00 hrs, Volume | e 0.018 af         |                          |

Routing by Dyn-Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Peak Elev= 42.65' @ 12.39 hrs Surf.Area= 0.012 ac Storage= 0.003 af

Plug-Flow detention time= 6.6 min calculated for 0.018 af (100% of inflow) Center-of-Mass det. time= 6.6 min (835.4 - 828.8)

| Volume | Invert | Avail.Storage | Storage Description                                           |
|--------|--------|---------------|---------------------------------------------------------------|
| #1A    | 42.00' | 0.013 af      | 13.00'W x 40.00'L x 5.25'H Field A                            |
|        |        |               | 0.063 af Overall - 0.026 af Embedded = 0.037 af x 35.0% Voids |
| #2A    | 43.00' | 0.019 af      | Concrete Galley 4x4x4.25 x 18 Inside #1                       |
|        |        |               | Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf        |
|        |        |               | Outside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf       |
|        |        |               | 2 Rows of 9 Chambers                                          |
|        |        | 0.032 af      | Total Available Storage                                       |

Storage Group A created with Chamber Wizard

| Device  | Routing    | Invert       | Outlet Devices                             |                 |
|---------|------------|--------------|--------------------------------------------|-----------------|
| #1      | Discarded  | 42.00'       | 7.000 in/hr Exfiltration over Surface area | Phase-In= 0.01' |
| Discard | ed OutFlow | Max=0.08 cfs | s @ 12.00 hrs HW=42.06' (Free Discharge)   |                 |

**1=Exfiltration** (Exfiltration Controls 0.08 cfs)

# Pond INF-2: Inf. System #2 Galleys - Chamber Wizard Field A

Chamber Model = Concrete Galley 4x4x4.25 (Concrete Galley, Shea LE-EGH, LE-CGH or equivalent) Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf Outside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf

9 Chambers/Row x 4.00' Long = 36.00' Row Length +24.0" End Stone x 2 = 40.00' Base Length 2 Rows x 54.0" Wide + 24.0" Side Stone x 2 = 13.00' Base Width 12.0" Base + 51.0" Chamber Height = 5.25' Field Height

18 Chambers x 46.4 cf = 834.9 cf Chamber Storage 18 Chambers x 62.3 cf = 1,122.0 cf Displacement

2,730.0 cf Field - 1,122.0 cf Chambers = 1,608.0 cf Stone x 35.0% Voids = 562.8 cf Stone Storage

Chamber Storage + Stone Storage = 1,397.7 cf = 0.032 afOverall Storage Efficiency = 51.2%Overall System Size =  $40.00' \times 13.00' \times 5.25'$ 

18 Chambers 101.1 cy Field 59.6 cy Stone







# Pond INF-2: Inf. System #2 Galleys

# Summary for Pond TNK: 8000gal. TANK

| Inflow Area | l = | 0.165 ac,10 | 0.00% Impe   | rvious, | Inflow Depth | = 2.87'  | ' for 2-Ye | ar event     |
|-------------|-----|-------------|--------------|---------|--------------|----------|------------|--------------|
| Inflow      | =   | 0.51 cfs @  | 12.07 hrs, \ | Volume= | = 0.0        | 39 af    |            |              |
| Outflow     | =   | 0.46 cfs @  | 12.11 hrs, \ | Volume= | = 0.02       | 22 af, A | tten= 11%, | Lag= 2.4 min |
| Primary     | =   | 0.46 cfs @  | 12.11 hrs, \ | Volume= | = 0.0        | 22 af    |            |              |

Routing by Dyn-Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Peak Elev= 47.10' @ 12.11 hrs Surf.Area= 0.003 ac Storage= 0.018 af

Plug-Flow detention time= 228.0 min calculated for 0.022 af (56% of inflow) Center-of-Mass det. time= 113.8 min ( 869.9 - 756.1 )

| Volume | Invert  | Avail.Storage                   | Storage Description                                                                                                                                         |
|--------|---------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | 40.17'  | 0.028 af                        | 7.00'W x 16.50'L x 10.66'H Prismatoid                                                                                                                       |
| Device | Routing | Invert Ou                       | tlet Devices                                                                                                                                                |
| #1     | Primary | 46.75' <b>8.0</b><br>Inle<br>n= | " Round 8"CPP L= 10.8' Ke= 0.200<br>et / Outlet Invert= 46.75' / 46.25' S= 0.0463 '/' Cc= 0.900<br>0.009 Corrugated PE, smooth interior, Flow Area= 0.35 sf |

Primary OutFlow Max=0.46 cfs @ 12.11 hrs HW=47.10' TW=42.23' (Dynamic Tailwater) **1=8''CPP** (Inlet Controls 0.46 cfs @ 2.50 fps)

# Pond TNK: 8000gal. TANK



# Summary for Subcatchment AD1: Area Drain-1

Runoff = 0.00 cfs @ 12.11 hrs, Volume= 0.000 af, Depth= 0.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 10-Year Rainfall=4.50"

|        | Area (sf)   | CN [                | Description     |             |                        |
|--------|-------------|---------------------|-----------------|-------------|------------------------|
| *      | 14          | 98 F                | Ret. Wall       |             |                        |
|        | 48          | 39 >                | >75% Gras       | s cover, Go | bod, HSG A             |
|        | 62          | 52 \                | Neighted A      | verage      |                        |
|        | 48          |                     | 77.42% Pei      | rvious Area | l                      |
|        | 14          | 2                   | 22.58% Imp      | pervious Ar | ea                     |
|        | Tc Length   | Slope               | Velocity        | Capacity    | Description            |
| (r     | nin) (feet) | (ft/ft)             | (ft/sec)        | (cfs)       |                        |
|        | 5.0         |                     |                 |             | Direct Entry, Minimum  |
|        |             |                     | Su              | bcatchme    | ent AD1: Area Drain-1  |
|        |             |                     |                 | Hydro       | ograph                 |
|        |             |                     |                 |             |                        |
|        | 0.001       |                     |                 | 0.00 cfs    |                        |
|        | 0.001       |                     |                 |             | Type III 24-hr         |
|        | 0.001       |                     |                 |             | 10-Year Rainfall=4.50" |
|        | 0.001       |                     |                 |             | Runoff Area=62 sf      |
|        | 0.000       | <br>     <br>   + - | <br>       <br> |             | Bunoff Volume-0.000 st |
| ()     | 0.000       |                     |                 |             |                        |
| v (cf  | 0.000       |                     |                 |             | Runoff Deptn=0.59      |
| Ц<br>Ц | 0.000       |                     |                 |             | Tc=5.0 min             |
|        | 0.000       |                     |                 |             | <b>CN=52</b>           |
|        | 0.000       |                     |                 |             |                        |
|        | 0.000       |                     |                 |             |                        |
|        | 0           |                     |                 |             |                        |
|        |             | + -<br>       <br>  |                 |             |                        |
|        |             |                     |                 |             |                        |

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

0.000-

# Summary for Subcatchment AD2: Area Drain-2

Runoff = 0.00 cfs @ 12.13 hrs, Volume= 0.000 af, Depth= 0.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 10-Year Rainfall=4.50"

|   | Area (sf)                 | CN             | Description            |                   |               |                     |        |
|---|---------------------------|----------------|------------------------|-------------------|---------------|---------------------|--------|
| * | 36                        | 98             | Ret. Wall              |                   |               |                     |        |
|   | 187                       | 39             | >75% Gras              | s cover, Go       | ood, HSG A    |                     |        |
|   | 223                       | 49             | Weighted A             | verage            |               |                     |        |
|   | 187                       |                | 83.86% Per             | rvious Area       |               |                     |        |
|   | 36                        |                | 16.14% imp             | Dervious Ar       | ea            |                     |        |
|   | Tc Length<br>(min) (feet) | Slop<br>(ft/fl | e Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description   |                     |        |
|   | 5.0                       |                |                        | · · · · ·         | Direct Entry, | Minimum             |        |
|   |                           |                | Su                     | bcatchme          | nt ΔD2· Δre   | oa Drain-2          |        |
|   |                           |                | Cu                     | Hydro             |               |                     |        |
|   |                           |                |                        |                   |               |                     |        |
|   | 0.001                     |                |                        |                   |               |                     | Runoff |
|   | 0.001                     |                |                        |                   |               | Type III 24-hr      |        |
|   | 0.001                     |                |                        |                   |               | Year Bainfall=4.50" |        |
|   | 0.001                     |                |                        |                   |               | Runoff Area-223 ef  |        |
|   | 0.001                     |                |                        |                   |               |                     |        |
|   | 0.001                     |                | ·                      |                   | Runo          | off volume=0.000 af |        |
|   | (ct) 0.001                |                |                        |                   |               | Runoff Depth=0.46"  |        |
|   | <b>OLOO1</b>              |                |                        |                   |               | Tc=5.0 min          |        |
|   | 0.000                     |                |                        |                   |               | <b>CN=49</b>        |        |
|   | 0.000                     | <br>     <br>  |                        |                   |               |                     |        |
|   | 0.000                     |                |                        |                   |               |                     |        |

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

0.001 0.001 0.000 0.000 0.000 0.000 0.000

#### Summary for Subcatchment AD3: Area Drain-3

Runoff = 0.00 cfs @ 12.13 hrs, Volume= 0.000 af, Depth= 0.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 10-Year Rainfall=4.50"

|           | Area (sf)                      | CN                    | Description              |                   |                                                                                                 |         |                 |         |        |
|-----------|--------------------------------|-----------------------|--------------------------|-------------------|-------------------------------------------------------------------------------------------------|---------|-----------------|---------|--------|
| *         | 67                             | 98                    | Ret. Wall                |                   |                                                                                                 |         |                 |         |        |
|           | 311                            | <b>39</b> :           | >75% Gras                | s cover, Go       | ood, HSG A                                                                                      |         |                 |         |        |
|           | 378                            | 49                    | Neighted A               | verage            |                                                                                                 |         |                 |         |        |
|           | 311                            | ł                     | 32.28% Per               | rvious Area       |                                                                                                 |         |                 |         |        |
|           | 67                             |                       | 17.72% Imp               | pervious Ar       | ea                                                                                              |         |                 |         |        |
| (n        | Tc Length<br>nin) (feet)       | Slope<br>(ft/ft)      | Velocity<br>(ft/sec)     | Capacity<br>(cfs) | Description                                                                                     |         |                 |         |        |
|           | 5.0                            |                       |                          |                   | Direct Entry,                                                                                   | Minimum |                 |         |        |
|           | Subcatchment AD3: Area Drain-3 |                       |                          |                   |                                                                                                 |         |                 |         |        |
|           |                                |                       |                          |                   |                                                                                                 |         |                 |         |        |
|           | 0.002                          |                       | + - + -                  |                   |                                                                                                 |         |                 |         | Runoff |
|           |                                |                       |                          |                   | i i iii<br>!                                                                                    |         | <u> Tvne II</u> | 24-hr   |        |
|           | 0.002                          |                       |                          |                   |                                                                                                 |         |                 |         |        |
|           | 0.002                          | + -                   | ++-                      |                   |                                                                                                 | Year R  | aintall         | =4.50   |        |
|           |                                | ; ; ; ;- ·            | ;; ;; - ; - ; -          |                   | <u> </u> <u> </u> - <u>+</u> - <u>+</u> <u> </u><br>  <u> </u> - <u>+</u> - <u>+</u> - <u>-</u> | Runoff  | Area=           | 378 sf  |        |
|           | 0.002                          | + -                   |                          |                   | Bunc                                                                                            | ff Volu | imo-0           | 000 af  |        |
| <b>((</b> |                                | i i i- :<br>! L _ L . | iiii -<br>- J! L _ L _ L |                   | ; ; ; <b>I-1;U1</b> ;I <b>U</b>                                                                 |         |                 |         |        |
| (cfs      | 0.001                          |                       | + - + -                  |                   | + - +                                                                                           | Runoff  | Depth           | =0.46'' |        |
| No        | 0.001                          |                       |                          |                   |                                                                                                 | · +     | Tc=5            | 0 min   |        |
| ш         | 0.001                          |                       |                          |                   |                                                                                                 |         |                 |         |        |
|           | 0.001                          |                       |                          |                   |                                                                                                 |         |                 | ∪N=49   |        |

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

#### Summary for Subcatchment E1: Adams Street (Northeast)

Runoff = 0.63 cfs @ 12.07 hrs, Volume= 0.048 af, Depth= 4.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 10-Year Rainfall=4.50"

|      | Area (sf) | CN    | Description        |                                    |                       |  |  |  |
|------|-----------|-------|--------------------|------------------------------------|-----------------------|--|--|--|
| *    | 581       | 98    | Ex. Concret        | Ex. Concrete Garage Roof (Portion) |                       |  |  |  |
| *    | 2,760     | 98    | Ex. Bldg. R        | Ex. Bldg. Roof                     |                       |  |  |  |
| *    | 1,976     | 98    | Paved Drive        | eway (Porti                        | ion)                  |  |  |  |
| *    | 571       | 98    | Walks              | Walks                              |                       |  |  |  |
| *    | 71        | 98    | Conc. pads         |                                    |                       |  |  |  |
| *    | 22        | 98    | Ret. Wall          |                                    |                       |  |  |  |
|      | 115       | 39    | >75% Gras          | >75% Grass cover, Good, HSG A      |                       |  |  |  |
|      | 6,096     | 97    | 7 Weighted Average |                                    |                       |  |  |  |
|      | 115       |       | 1.89% Perv         | ious Area                          |                       |  |  |  |
|      | 5,981     |       | 98.11% Imp         | pervious Are                       | ea                    |  |  |  |
|      |           |       |                    |                                    |                       |  |  |  |
| Т    | c Length  | Slop  | e Velocity         | Capacity                           | Description           |  |  |  |
| (mir | n) (feet) | (ft/f | t) (ft/sec)        | (cfs)                              |                       |  |  |  |
| 5.   | 0         |       |                    |                                    | Direct Entry, Minimum |  |  |  |
|      |           |       |                    |                                    |                       |  |  |  |

# Subcatchment E1: Adams Street (Northeast)


#### Summary for Subcatchment E2: Northwest Abutter

Runoff = 0.77 cfs @ 12.07 hrs, Volume= 0.053 af, Depth= 2.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 10-Year Rainfall=4.50"

|     | Area (sf | ) CN   | D                   | escription                    |              |                 |         |  |
|-----|----------|--------|---------------------|-------------------------------|--------------|-----------------|---------|--|
| *   | 1,717    | 7 98   | E                   | x. Concret                    | te Garage F  | Roof (Portion)  |         |  |
| *   | 187      | 7 98   | E                   | x. Wood C                     | arage Roo    | of (Portion)    |         |  |
| *   | 5,67     | 1 98   | Р                   | aved Drive                    | eway (Portio | on)             |         |  |
| *   | 107      | 7 98   | С                   | onc./brick                    | pads         |                 |         |  |
| *   | 48       | 3 98   | R                   | let. Wall                     |              |                 |         |  |
|     | 3,129    | 9 39   | >                   | >75% Grass cover, Good, HSG A |              |                 |         |  |
|     | 10,859   | 9 81   | 81 Weighted Average |                               |              |                 |         |  |
|     | 3,129    | 9      | 2                   | 8.81% Per                     | vious Area   |                 |         |  |
|     | 7,730    | )      | 7                   | 1.19% Imp                     | pervious Are | ea              |         |  |
|     |          |        |                     |                               |              |                 |         |  |
| ٦   | Fc Leng  | th Slo | pe                  | Velocity                      | Capacity     | Description     |         |  |
| (mi | n) (fee  | et) (f | t/ft)               | (ft/sec)                      | (cfs)        |                 |         |  |
| 5   | .0       |        |                     |                               |              | Direct Entry, M | Minimum |  |





#### Summary for Subcatchment E3: Southwest Abutter

Runoff = 0.17 cfs @ 12.08 hrs, Volume= 0.012 af, Depth= 1.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 10-Year Rainfall=4.50"

|     | Area (sf) | CN    | Description |                |                       |  |  |  |
|-----|-----------|-------|-------------|----------------|-----------------------|--|--|--|
| *   | 887       | 98    | Ex. House   | Ex. House Roof |                       |  |  |  |
| *   | 63        | 98    | Ex. Wood G  | Garage Roo     | of (Portion)          |  |  |  |
| *   | 621       | 98    | Paved Drive | eway           |                       |  |  |  |
| *   | 354       | 98    | Landing/Ste | eps/Walks      |                       |  |  |  |
| *   | 63        | 98    | Ret. Wall   |                |                       |  |  |  |
| *   | 34        | 98    | Bulkhead    | Bulkhead       |                       |  |  |  |
|     | 2,135     | 39    | >75% Gras   | s cover, Go    | bod, HSG A            |  |  |  |
|     | 4,157     | 68    | Weighted A  | verage         |                       |  |  |  |
|     | 2,135     |       | 51.36% Per  | vious Area     | L                     |  |  |  |
|     | 2,022     |       | 48.64% Imp  | pervious Are   | ea                    |  |  |  |
|     |           |       |             |                |                       |  |  |  |
| ٦   | Fc Length | Slop  | e Velocity  | Capacity       | Description           |  |  |  |
| (mi | n) (feet) | (ft/1 | t) (ft/sec) | (cfs)          |                       |  |  |  |
| 5   | .0        |       |             |                | Direct Entry, Minimum |  |  |  |

## Subcatchment E3: Southwest Abutter



#### Summary for Subcatchment P1: Adams Street (Northeast)

Runoff = 0.01 cfs @ 12.11 hrs, Volume= 0.001 af, Depth= 0.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 10-Year Rainfall=4.50"

|             | Area (sf)            | CN            | Description               |                   |                       |
|-------------|----------------------|---------------|---------------------------|-------------------|-----------------------|
| *           | 154                  | 98            | Walks/Con                 | c. Pads           |                       |
| *           | 59                   | 98            | Ret. Wall                 |                   |                       |
|             | 704                  | 39            | >75% Gras                 | s cover, Go       | ood, HSG A            |
|             | 917                  | 53            | Weighted A                | verage            |                       |
|             | 704                  |               | 76.77% Pe                 | rvious Area       | 1                     |
|             | 213                  |               | 23.23% Imp                | pervious Ar       | rea                   |
| To<br>(min) | c Length<br>) (feet) | Slop<br>(ft/f | e Velocity<br>t) (ft/sec) | Capacity<br>(cfs) | Description           |
| 5.0         | )                    |               |                           |                   | Direct Entry, Minimum |

## Subcatchment P1: Adams Street (Northeast)





## Summary for Subcatchment PD1: Driveway/Parking-1

Runoff = 0.58 cfs @ 12.07 hrs, Volume= 0.040 af, Depth= 3.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 10-Year Rainfall=4.50"

| Area (sf) | CN                                                                                                       | Description                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                         |  |  |
|-----------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 5,232     | 98                                                                                                       | Driveway/P                                                                                                                                                                                                  | arking Lot                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                         |  |  |
| 22        | 98                                                                                                       | Curbing                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                         |  |  |
| 168       | 98                                                                                                       | Ret. Walls                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                         |  |  |
| 50        | 98                                                                                                       | Walks                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                         |  |  |
| 1,148     | 39                                                                                                       | >75% Gras                                                                                                                                                                                                   | s cover, Go                                                                                                                                                                                                                                                                                                                                                               | ood, HSG A                                                                                                                                                                                                                                                              |  |  |
| 6,620     | 88                                                                                                       | Weighted A                                                                                                                                                                                                  | Weighted Average                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                         |  |  |
| 1,148     |                                                                                                          | 17.34% Pe                                                                                                                                                                                                   | rvious Area                                                                                                                                                                                                                                                                                                                                                               | a                                                                                                                                                                                                                                                                       |  |  |
| 5,472     |                                                                                                          | 82.66% Imp                                                                                                                                                                                                  | pervious Ar                                                                                                                                                                                                                                                                                                                                                               | rea                                                                                                                                                                                                                                                                     |  |  |
|           |                                                                                                          |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                         |  |  |
| Tc Lengtł | n Slop                                                                                                   | e Velocity                                                                                                                                                                                                  | Capacity                                                                                                                                                                                                                                                                                                                                                                  | Description                                                                                                                                                                                                                                                             |  |  |
| n) (feet  | ) (ft/f                                                                                                  | t) (ft/sec)                                                                                                                                                                                                 | (cfs)                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                         |  |  |
| 5.0       |                                                                                                          |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                           | Direct Entry, Minimum                                                                                                                                                                                                                                                   |  |  |
|           | Area (sf)<br>5,232<br>22<br>168<br>50<br>1,148<br>6,620<br>1,148<br>5,472<br>Fc Length<br>n) (feet<br>.0 | Area (sf)     CN       5,232     98       22     98       168     98       50     98       1,148     39       6,620     88       1,148     5,472       Tc     Length     Slop       n)     (feet)     (ft/f | Area (sf)     CN     Description       5,232     98     Driveway/P       22     98     Curbing       168     98     Ret. Walls       50     98     Walks       1,148     39     >75% Gras       6,620     88     Weighted A       1,148     17.34% Per       5,472     82.66% Imp       Tc     Length     Slope     Velocity       n)     (feet)     (ft/ft)     (ft/sec) | Area (sf)CNDescription $5,232$ 98Driveway/Parking Lot $22$ 98Curbing $168$ 98Ret. Walls $50$ 98Walks $1,148$ 39 $75\%$ Grass cover, G $6,620$ 88Weighted Average $1,148$ 17.34% Pervious Area $5,472$ 82.66% Impervious ATcLengthSlopeVelocityCapacityn)(feet)(ft/ft).0 |  |  |

#### Subcatchment PD1: Driveway/Parking-1



#### Summary for Subcatchment PD2: Driveway/Parking-2

Runoff = 0.37 cfs @ 12.07 hrs, Volume= 0.025 af, Depth= 2.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 10-Year Rainfall=4.50"

|      | Area (sf) | CN    | Description          |                               |                       |  |  |
|------|-----------|-------|----------------------|-------------------------------|-----------------------|--|--|
| *    | 3,066     | 98    | Driveway/P           | arking Lot                    |                       |  |  |
| *    | 82        | 98    | Curbing              | c                             |                       |  |  |
| *    | 417       | 98    | Walks                |                               |                       |  |  |
|      | 1,098     | 39    | >75% Gras            | •75% Grass cover, Good, HSG A |                       |  |  |
|      | 4,663     | 84    | Weighted Average     |                               |                       |  |  |
|      | 1,098     |       | 23.55% Pervious Area |                               |                       |  |  |
|      | 3,565     |       | 76.45% Imp           | pervious Ar                   | rea                   |  |  |
|      |           |       |                      |                               |                       |  |  |
| Т    | c Length  | Slop  | e Velocity           | Capacity                      | Description           |  |  |
| (mii | n) (feet) | (ft/f | i) (ft/sec)          | (cfs)                         |                       |  |  |
| 5    | .0        |       |                      |                               | Direct Entry, Minimum |  |  |

#### Subcatchment PD2: Driveway/Parking-2



#### Summary for Subcatchment PD3: Driveway/Parking-3

Runoff = 0.09 cfs @ 12.07 hrs, Volume= 0.006 af, Depth= 3.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 10-Year Rainfall=4.50"

|           | Area (sf)             | CN            | Description               |                   |                       |
|-----------|-----------------------|---------------|---------------------------|-------------------|-----------------------|
| *         | 831                   | 98            | Driveway                  |                   |                       |
| *         | 21                    | 98            | Curbing                   |                   |                       |
|           | 209                   | 39            | >75% Gras                 | s cover, Go       | bod, HSG A            |
|           | 1,061                 | 86            | Weighted A                | verage            |                       |
|           | 209                   |               | 19.70% Pei                | vious Area        |                       |
|           | 852                   |               | 80.30% Imp                | pervious Ar       | ea                    |
| ۲<br>miı) | c Length<br>n) (feet) | Slop<br>(ft/f | e Velocity<br>t) (ft/sec) | Capacity<br>(cfs) | Description           |
| 5         | .0                    |               |                           |                   | Direct Entry, Minimum |

## Subcatchment PD3: Driveway/Parking-3



#### Summary for Subcatchment PR1: Roof-1

Runoff = 0.25 cfs @ 12.07 hrs, Volume= 0.020 af, Depth= 4.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 10-Year Rainfall=4.50"



#### Summary for Subcatchment PR2: Roof-2

Runoff = 0.50 cfs @ 12.07 hrs, Volume= 0.039 af, Depth= 4.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 10-Year Rainfall=4.50"



## Summary for Pond CB1: Catch Basin-1

| Inflow Area | = | 0.152 ac, 8 | 32.66% Imperv | vious, Inflow D | epth = 3.20 | " for 10-` | Year event   |
|-------------|---|-------------|---------------|-----------------|-------------|------------|--------------|
| Inflow      | = | 0.58 cfs @  | 12.07 hrs, Vo | olume=          | 0.040 af    |            |              |
| Outflow     | = | 0.58 cfs @  | 12.07 hrs, Vo | olume=          | 0.040 af, A | tten= 0%,  | Lag= 0.0 min |
| Primary     | = | 0.58 cfs @  | 12.07 hrs, Vo | olume=          | 0.040 af    |            |              |

Routing by Dyn-Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Peak Elev= 47.10' @ 12.07 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                                |
|--------|---------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 46.70' | <b>8.0'' Round 8''CCP</b> L= 13.7' Ke= 0.200<br>Inlet / Outlet Invert= 46.70' / 46.25' S= 0.0328 '/' Cc= 0.900<br>n= 0.009 Corrugated PE, smooth interior, Flow Area= 0.35 sf |

Primary OutFlow Max=0.58 cfs @ 12.07 hrs HW=47.10' TW=43.04' (Dynamic Tailwater) **1=8''CCP** (Inlet Controls 0.58 cfs @ 2.68 fps)



## Pond CB1: Catch Basin-1

## Summary for Pond CB2: Catch Basin-2

| Inflow Area | l = | 0.107 ac, 7 | 6.45% Imper  | vious, Inflow I | Depth = 2 | 2.82" for <sup>-</sup> | 10-Year event   |
|-------------|-----|-------------|--------------|-----------------|-----------|------------------------|-----------------|
| Inflow      | =   | 0.37 cfs @  | 12.07 hrs, V | 'olume=         | 0.025 a   | f                      |                 |
| Outflow     | =   | 0.37 cfs @  | 12.07 hrs, V | 'olume=         | 0.025 a   | f, Atten= 0°           | %, Lag= 0.0 min |
| Primary     | =   | 0.37 cfs @  | 12.07 hrs, V | 'olume=         | 0.025 a   | f                      |                 |

Routing by Dyn-Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Peak Elev= 47.00' @ 12.07 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                       |
|--------|---------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 46.70' | 8.0" Round 8"CCP L= 22.5' Ke= 0.200<br>Inlet / Outlet Invert= 46.70' / 46.25' S= 0.0200 '/' Cc= 0.900<br>n= 0.009 Corrugated PE, smooth interior, Flow Area= 0.35 sf |

Primary OutFlow Max=0.36 cfs @ 12.07 hrs HW=47.00' TW=42.83' (Dynamic Tailwater) 1=8"CCP (Inlet Controls 0.36 cfs @ 2.35 fps)



## Pond CB2: Catch Basin-2

## Summary for Pond CB3: Catch Basin-3

| Inflow Area | = | 0.024 ac, 8 | 0.30% Imper  | rvious, Inflow | Depth = 3 | 3.00" for  | 10-Year event    |
|-------------|---|-------------|--------------|----------------|-----------|------------|------------------|
| Inflow      | = | 0.09 cfs @  | 12.07 hrs, \ | Volume=        | 0.006 a   | af         |                  |
| Outflow     | = | 0.09 cfs @  | 12.07 hrs, \ | Volume=        | 0.006 a   | af, Atten= | 0%, Lag= 0.0 min |
| Primary     | = | 0.09 cfs @  | 12.07 hrs, \ | Volume=        | 0.006 a   | af         |                  |

Routing by Dyn-Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Peak Elev= 47.64' @ 12.07 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                        |
|--------|---------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 47.50' | 8.0" Round 8"CCP L= 125.8' Ke= 0.200<br>Inlet / Outlet Invert= 47.50' / 46.25' S= 0.0099 '/' Cc= 0.900<br>n= 0.009 Corrugated PE, smooth interior, Flow Area= 0.35 sf |

Primary OutFlow Max=0.09 cfs @ 12.07 hrs HW=47.64' TW=42.82' (Dynamic Tailwater) 1=8"CCP (Inlet Controls 0.09 cfs @ 1.61 fps)



## Pond CB3: Catch Basin-3

## Summary for Pond INF-1: Inf. System #1 Galleys

| Inflow Area = | 0.331 ac, 88.57% Impervious, In | flow Depth = 2.98" for 10-Year event |
|---------------|---------------------------------|--------------------------------------|
| Inflow =      | 1.32 cfs @ 12.08 hrs, Volume=   | 0.082 af                             |
| Outflow =     | 0.21 cfs @ 11.82 hrs, Volume=   | 0.082 af, Atten= 84%, Lag= 0.0 min   |
| Discarded =   | 0.21 cfs @ 11.82 hrs, Volume=   | 0.082 af                             |

Routing by Dyn-Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Peak Elev= 43.81' @ 12.56 hrs Surf.Area= 0.029 ac Storage= 0.026 af

Plug-Flow detention time= 36.7 min calculated for 0.082 af (100% of inflow) Center-of-Mass det. time= 36.7 min (855.6 - 818.9)

| Volume | Invert | Avail.Storage | Storage Description                                           |
|--------|--------|---------------|---------------------------------------------------------------|
| #1A    | 42.00' | 0.026 af      | 26.50'W x 48.00'L x 5.25'H Field A                            |
|        |        |               | 0.153 af Overall - 0.079 af Embedded = 0.075 af x 35.0% Voids |
| #2A    | 43.00' | 0.059 af      | Concrete Galley 4x4x4.25 x 55 Inside #1                       |
|        |        |               | Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf        |
|        |        |               | Outside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf       |
|        |        |               | 5 Rows of 11 Chambers                                         |
|        |        | 0.085 af      | Total Available Storage                                       |

Storage Group A created with Chamber Wizard

| Device  | Routing    | Invert       | Outlet Devices                             |                 |
|---------|------------|--------------|--------------------------------------------|-----------------|
| #1      | Discarded  | 42.00'       | 7.000 in/hr Exfiltration over Surface area | Phase-In= 0.01' |
| Discard | ed OutFlow | Max=0.21 cfs | s@11.82 hrs HW=42.06' (Free Discharge)     |                 |

**1=Exfiltration** (Exfiltration Controls 0.21 cfs)

## Pond INF-1: Inf. System #1 Galleys - Chamber Wizard Field A

Chamber Model = Concrete Galley 4x4x4.25 (Concrete Galley, Shea LE-EGH, LE-CGH or equivalent) Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf Outside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf

11 Chambers/Row x 4.00' Long = 44.00' Row Length +24.0" End Stone x 2 = 48.00' Base Length 5 Rows x 54.0" Wide + 24.0" Side Stone x 2 = 26.50' Base Width 12.0" Base + 51.0" Chamber Height = 5.25' Field Height

55 Chambers x 46.4 cf = 2,550.9 cf Chamber Storage 55 Chambers x 62.3 cf = 3,428.2 cf Displacement

6,678.0 cf Field - 3,428.2 cf Chambers = 3,249.8 cf Stone x 35.0% Voids = 1,137.4 cf Stone Storage

Chamber Storage + Stone Storage = 3,688.4 cf = 0.085 afOverall Storage Efficiency = 55.2%Overall System Size =  $48.00' \times 26.50' \times 5.25'$ 

55 Chambers 247.3 cy Field 120.4 cy Stone







# Pond INF-1: Inf. System #1 Galleys

## Summary for Pond INF-2: Inf. System #2 Galleys

| Inflow Area = | = | 0.133 ac, 7 | 76.58% Impe | ervious, | Inflow Depth = | 2.83  | " for 10-Y | ear event    |
|---------------|---|-------------|-------------|----------|----------------|-------|------------|--------------|
| Inflow =      |   | 0.45 cfs @  | 12.07 hrs,  | Volume   | = 0.031        | af    |            |              |
| Outflow =     |   | 0.08 cfs @  | 11.82 hrs,  | Volume   | = 0.031        | af, A | tten= 81%, | Lag= 0.0 min |
| Discarded =   |   | 0.08 cfs @  | 11.82 hrs,  | Volume   | = 0.031        | af    |            |              |

Routing by Dyn-Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Peak Elev= 43.54' @ 12.52 hrs Surf.Area= 0.012 ac Storage= 0.008 af

Plug-Flow detention time= 23.9 min calculated for 0.031 af (100% of inflow) Center-of-Mass det. time= 23.9 min (836.8 - 812.9)

| Volume | Invert | Avail.Storage | Storage Description                                           |  |
|--------|--------|---------------|---------------------------------------------------------------|--|
| #1A    | 42.00' | 0.013 af      | 13.00'W x 40.00'L x 5.25'H Field A                            |  |
|        |        |               | 0.063 af Overall - 0.026 af Embedded = 0.037 af x 35.0% Voids |  |
| #2A    | 43.00' | 0.019 af      | Concrete Galley 4x4x4.25 x 18 Inside #1                       |  |
|        |        |               | Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf        |  |
|        |        |               | Outside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf       |  |
|        |        |               | 2 Rows of 9 Chambers                                          |  |
|        |        | 0.032 af      | Total Available Storage                                       |  |

Storage Group A created with Chamber Wizard

| Device  | Routing    | Invert       | Outlet Devices                             |                 |
|---------|------------|--------------|--------------------------------------------|-----------------|
| #1      | Discarded  | 42.00'       | 7.000 in/hr Exfiltration over Surface area | Phase-In= 0.01' |
| Discard | ed OutFlow | Max=0.08 cfs | s @ 11.82 hrs HW=42.06' (Free Discharge)   |                 |

**1=Exfiltration** (Exfiltration Controls 0.08 cfs)

## Pond INF-2: Inf. System #2 Galleys - Chamber Wizard Field A

Chamber Model = Concrete Galley 4x4x4.25 (Concrete Galley, Shea LE-EGH, LE-CGH or equivalent) Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf Outside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf

9 Chambers/Row x 4.00' Long = 36.00' Row Length +24.0" End Stone x 2 = 40.00' Base Length 2 Rows x 54.0" Wide + 24.0" Side Stone x 2 = 13.00' Base Width 12.0" Base + 51.0" Chamber Height = 5.25' Field Height

18 Chambers x 46.4 cf = 834.9 cf Chamber Storage 18 Chambers x 62.3 cf = 1,122.0 cf Displacement

2,730.0 cf Field - 1,122.0 cf Chambers = 1,608.0 cf Stone x 35.0% Voids = 562.8 cf Stone Storage

Chamber Storage + Stone Storage = 1,397.7 cf = 0.032 afOverall Storage Efficiency = 51.2%Overall System Size =  $40.00' \times 13.00' \times 5.25'$ 

18 Chambers 101.1 cy Field 59.6 cy Stone







# Pond INF-2: Inf. System #2 Galleys

## Summary for Pond TNK: 8000gal. TANK

| Inflow Area | = | 0.165 ac,10 | 0.00% Impe | rvious, I | nflow Dep | th = | 4.26"  | for    | 10-Ye | ear eve  | ent   |
|-------------|---|-------------|------------|-----------|-----------|------|--------|--------|-------|----------|-------|
| Inflow      | = | 0.75 cfs @  | 12.07 hrs, | Volume=   | : 0       | .059 | af     |        |       |          |       |
| Outflow     | = | 0.74 cfs @  | 12.08 hrs, | Volume=   | : 0       | .041 | af, At | ten= 1 | %, L  | .ag= 0.1 | 7 min |
| Primary     | = | 0.74 cfs @  | 12.08 hrs, | Volume=   | . 0       | .041 | af     |        |       |          |       |

Routing by Dyn-Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Peak Elev= 47.21' @ 12.08 hrs Surf.Area= 0.003 ac Storage= 0.019 af

Plug-Flow detention time= 180.7 min calculated for 0.041 af (70% of inflow) Center-of-Mass det. time= 86.3 min (835.2 - 748.9)

| Volume | Invert  | Avail.Storage                   | Storage Description                                                                                                                                         |
|--------|---------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | 40.17'  | 0.028 af                        | 7.00'W x 16.50'L x 10.66'H Prismatoid                                                                                                                       |
| Device | Routing | Invert Ou                       | tlet Devices                                                                                                                                                |
| #1     | Primary | 46.75' <b>8.0</b><br>Inle<br>n= | " Round 8"CPP L= 10.8' Ke= 0.200<br>et / Outlet Invert= 46.75' / 46.25' S= 0.0463 '/' Cc= 0.900<br>0.009 Corrugated PE, smooth interior, Flow Area= 0.35 sf |

Primary OutFlow Max=0.74 cfs @ 12.08 hrs HW=47.21' TW=43.09' (Dynamic Tailwater) **1=8''CPP** (Inlet Controls 0.74 cfs @ 2.88 fps)

## Pond TNK: 8000gal. TANK



#### Summary for Subcatchment AD1: Area Drain-1

Runoff = 0.00 cfs @ 12.08 hrs, Volume= 0.000 af, Depth= 2.97"

0

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 100-Year (Newton) Rainfall=8.78"

|   | Area (sf)                 | CN                                                          | Description                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          |        |
|---|---------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| * | 14                        | 98                                                          | Ret. Wall                                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          |        |
|   | 48                        | 39 :                                                        | >75% Gras                                                                  | s cover, Go       | ood, HSG A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                          |        |
|   | 62                        | 52                                                          | Weighted A                                                                 | verage            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          |        |
|   | 48                        |                                                             | 77.42% Per                                                                 | vious Area        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          |        |
|   | 14                        | 2                                                           | 22.58% imp                                                                 | pervious Ar       | ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                          |        |
| ( | Tc Length<br>(min) (feet) | Slope<br>(ft/ft)                                            | Velocity<br>(ft/sec)                                                       | Capacity<br>(cfs) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                          |        |
|   | 5.0                       |                                                             |                                                                            |                   | Direct Entry,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Minimum                                                                                                                                                                  |        |
|   |                           |                                                             |                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          |        |
|   |                           |                                                             | Sul                                                                        | bcatchme          | ent AD1: Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a Drain-1                                                                                                                                                                |        |
|   |                           |                                                             |                                                                            | Hydro             | graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                          |        |
|   | 0.005                     |                                                             |                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ↓····· ↓···· ↓···· ↓···· ↓···· ↓····   ↓ ↓ ↓···· ↓···· ↓···· ↓····   ↓ ↓···· ↓···· ↓···· ↓···· ↓····   ↓ ↓···· ↓···· ↓···· ↓···· ↓····   ↓ ↓···· ↓···· ↓···· ↓···· ↓···· | Runoff |
|   | 0.005                     |                                                             |                                                                            | 0.00 cfs          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Type III 24-hr                                                                                                                                                           | _      |
|   | 0.004                     | + -                                                         | +-+-+-                                                                     |                   | 100-Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ear (Newton) Rainfall=8.78"                                                                                                                                              | -      |
|   |                           | $-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$ | $-\frac{1}{1}-\frac{1}{1}-\frac{1}{1}-\frac{1}{1}-\frac{1}{1}-\frac{1}{1}$ |                   | $-\frac{1}{1}$ |                                                                                                                                                                          | -      |
|   |                           |                                                             |                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Runoff Volume=0.000 af                                                                                                                                                   | _      |
|   | 0.003                     |                                                             |                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Runoff Depth=2.97"                                                                                                                                                       |        |
|   | <b>(j</b> 0.003           |                                                             |                                                                            |                   | $-\frac{1}{1}$ | CN=52                                                                                                                                                                    | -      |
| i |                           |                                                             | +++++++                                                                    |                   | + - + <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Image:                                                                                                                                                                   | -      |
|   | 0.002                     |                                                             |                                                                            |                   | ' ' ' ' ' ' ' ' '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     | -      |
|   | 0.001                     |                                                             |                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          | -      |
|   | 0.001                     |                                                             |                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          |        |
|   | 0.000                     |                                                             |                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          | _      |

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

#### Summary for Subcatchment AD2: Area Drain-2

Runoff = 0.02 cfs @ 12.08 hrs, Volume= 0.001 af, Depth= 2.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 100-Year (Newton) Rainfall=8.78"

|      | Area (sf) | CN    | Description |              |                       |
|------|-----------|-------|-------------|--------------|-----------------------|
| *    | 36        | 98    | Ret. Wall   |              |                       |
|      | 187       | 39    | >75% Gras   | s cover, Go  | bod, HSG A            |
|      | 223       | 49    | Weighted A  | verage       |                       |
|      | 187       |       | 83.86% Per  | vious Area   | L                     |
|      | 36        |       | 16.14% lmp  | pervious Are | ea                    |
|      |           |       |             | <b>.</b> .   |                       |
| Ţ    | c Length  | Slop  | e Velocity  | Capacity     | Description           |
| (mir | n) (feet) | (ft/f | t) (ft/sec) | (cfs)        |                       |
| 5.   | 0         |       |             |              | Direct Entry, Minimum |
|      |           |       | _           |              |                       |

#### Subcatchment AD2: Area Drain-2



#### Summary for Subcatchment AD3: Area Drain-3

Runoff = 0.03 cfs @ 12.08 hrs, Volume= 0.002 af, Depth= 2.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 100-Year (Newton) Rainfall=8.78"

|    | A    | rea (sf) | CN    | Description      |                        |                       |  |  |  |  |
|----|------|----------|-------|------------------|------------------------|-----------------------|--|--|--|--|
| *  |      | 67       | 98    | Ret. Wall        |                        |                       |  |  |  |  |
|    |      | 311      | 39    | >75% Gras        | s cover, Go            | bod, HSG A            |  |  |  |  |
|    |      | 378      | 49    | Weighted Average |                        |                       |  |  |  |  |
|    |      | 311      |       | 82.28% Per       | vious Area             |                       |  |  |  |  |
|    |      | 67       |       | 17.72% Imp       | 17.72% Impervious Area |                       |  |  |  |  |
|    |      |          |       |                  |                        |                       |  |  |  |  |
|    | Тс   | Length   | Slop  | e Velocity       | Capacity               | Description           |  |  |  |  |
| () | min) | (feet)   | (ft/f | t) (ft/sec)      | (cfs)                  |                       |  |  |  |  |
|    | 5.0  |          |       |                  |                        | Direct Entry, Minimum |  |  |  |  |
|    |      |          |       |                  |                        |                       |  |  |  |  |
|    |      |          |       |                  |                        |                       |  |  |  |  |

#### Subcatchment AD3: Area Drain-3



#### Summary for Subcatchment E1: Adams Street (Northeast)

Runoff = 1.25 cfs @ 12.07 hrs, Volume= 0.098 af, Depth= 8.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 100-Year (Newton) Rainfall=8.78"

| 5.   | 0         |       | · · · · ·   |              | Direct Entry, Minimum |  |
|------|-----------|-------|-------------|--------------|-----------------------|--|
| (mir | n) (feet) | (ft/f | t) (ft/sec) | (cfs)        | -                     |  |
| Т    | c Length  | Slop  | e Velocity  | Capacity     | Description           |  |
|      | 5,981     |       | 98.11% Imp  | pervious Are | ea                    |  |
|      | 115       |       | 1.89% Perv  | rious Area   |                       |  |
|      | 6,096     | 97    | Weighted A  | verage       |                       |  |
|      | 115       | 39    | >75% Gras   | s cover, Go  | ood, HSG A            |  |
| *    | 22        | 98    | Ret. Wall   |              |                       |  |
| *    | 71        | 98    | Conc. pads  |              |                       |  |
| *    | 571       | 98    | Walks       |              |                       |  |
| *    | 1,976     | 98    | Paved Drive | eway (Portio | on)                   |  |
| *    | 2,760     | 98    | Ex. Bldg. R | oof          |                       |  |
| *    | 581       | 98    | Ex. Concret | te Garage F  | Roof (Portion)        |  |
|      | Area (sf) | CN    | Description |              |                       |  |

## Subcatchment E1: Adams Street (Northeast)



### Summary for Subcatchment E2: Northwest Abutter

Runoff = 1.92 cfs @ 12.07 hrs, Volume= 0.135 af, Depth= 6.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 100-Year (Newton) Rainfall=8.78"

|      | Area (sf | ) CN    | Descriptior   | 1            |                       |  |
|------|----------|---------|---------------|--------------|-----------------------|--|
| *    | 1,71     | 7 98    | Ex. Concre    | te Garage F  | Roof (Portion)        |  |
| *    | 18       | 7 98    | Ex. Wood      | Garage Řoo   | f (Portion)           |  |
| *    | 5,67     | 1 98    | Paved Driv    | eway (Porti  | on)                   |  |
| *    | 10       | 7 98    | Conc./brick   | pads         |                       |  |
| *    | 48       | 8 98    | Ret. Wall     | •            |                       |  |
|      | 3,129    | 9 39    | >75% Gras     | s cover, Go  | ood, HSG A            |  |
|      | 10,859   | 9 81    | Weighted A    | Average      |                       |  |
|      | 3,129    | 9       | 28.81% Pe     | rvious Area  |                       |  |
|      | 7,730    | C       | 71.19% lm     | pervious Are | ea                    |  |
|      |          |         |               |              |                       |  |
| Г    | lc Leng  | th Slo  | pe Velocity   | Capacity     | Description           |  |
| (mii | n) (fee  | et) (ft | /ft) (ft/sec) | (cfs)        |                       |  |
| 5    | .0       |         |               |              | Direct Entry, Minimum |  |





#### Summary for Subcatchment E3: Southwest Abutter

Runoff = 0.57 cfs @ 12.07 hrs, Volume= 0.039 af, Depth= 4.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 100-Year (Newton) Rainfall=8.78"

|      | Area (sf) | CN    | Description |              |                       |  |
|------|-----------|-------|-------------|--------------|-----------------------|--|
| *    | 887       | 98    | Ex. House I | Roof         |                       |  |
| *    | 63        | 98    | Ex. Wood C  | arage Roo    | of (Portion)          |  |
| *    | 621       | 98    | Paved Drive | eway         |                       |  |
| *    | 354       | 98    | Landing/Ste | eps/Walks    |                       |  |
| *    | 63        | 98    | Ret. Wall   |              |                       |  |
| *    | 34        | 98    | Bulkhead    |              |                       |  |
|      | 2,135     | 39    | >75% Gras   | s cover, Go  | ood, HSG A            |  |
|      | 4,157     | 68    | Weighted A  | verage       |                       |  |
|      | 2,135     |       | 51.36% Per  | vious Area   |                       |  |
|      | 2,022     |       | 48.64% Imp  | pervious Are | ea                    |  |
|      |           |       |             |              |                       |  |
| Т    | c Length  | Slop  | e Velocity  | Capacity     | Description           |  |
| (mir | ı) (feet) | (ft/f | t) (ft/sec) | (cfs)        |                       |  |
| 5.   | 0         |       |             |              | Direct Entry, Minimum |  |

## Subcatchment E3: Southwest Abutter



#### Summary for Subcatchment P1: Adams Street (Northeast)

Runoff = 0.08 cfs @ 12.08 hrs, Volume= 0.005 af, Depth= 3.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 100-Year (Newton) Rainfall=8.78"

|            | Area (sf)            | CN            | Description               |                              |                       |  |  |  |  |
|------------|----------------------|---------------|---------------------------|------------------------------|-----------------------|--|--|--|--|
| *          | 154                  | 98            | Walks/Con                 | c. Pads                      |                       |  |  |  |  |
| *          | 59                   | 98            | Ret. Wall                 |                              |                       |  |  |  |  |
|            | 704                  | 39            | >75% Gras                 | 75% Grass cover, Good, HSG A |                       |  |  |  |  |
|            | 917                  | 53            |                           |                              |                       |  |  |  |  |
|            | 704                  |               | 76.77% Pe                 | vious Area                   | 1                     |  |  |  |  |
|            | 213                  |               | 23.23% Imp                | pervious Ar                  | rea                   |  |  |  |  |
| To<br>(min | c Length<br>) (feet) | Slop<br>(ft/f | e Velocity<br>t) (ft/sec) | Capacity<br>(cfs)            | Description           |  |  |  |  |
| 5.0        | )                    |               |                           |                              | Direct Entry, Minimum |  |  |  |  |

## Subcatchment P1: Adams Street (Northeast)



#### Summary for Subcatchment PD1: Driveway/Parking-1

Runoff = 1.27 cfs @ 12.07 hrs, Volume= 0.093 af, Depth= 7.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 100-Year (Newton) Rainfall=8.78"

|            | Area (sf)    | CN    | Description |              |                       |
|------------|--------------|-------|-------------|--------------|-----------------------|
| *          | 5,232        | 98    | Driveway/P  | arking Lot   |                       |
| *          | 22           | 98    | Curbing     | C            |                       |
| *          | 168          | 98    | Ret. Walls  |              |                       |
| *          | 50           | 98    | Walks       |              |                       |
|            | 1,148        | 39    | >75% Gras   | s cover, Go  | ood, HSG A            |
|            | 6,620        | 88    | Weighted A  | verage       |                       |
|            | 1,148        |       | 17.34% Pe   | rvious Area  | 1                     |
|            | 5,472        |       | 82.66% Im   | pervious Are | rea l                 |
| _          | <del>.</del> | 01    |             | <b>o</b> ''  |                       |
| <i>,</i> . | Ic Length    | Slop  | e Velocity  | Capacity     | Description           |
| (mi        | n) (feet)    | (ft/f | t) (ft/sec) | (CfS)        |                       |
| 5          | .0           |       |             |              | Direct Entry, Minimum |
|            |              |       |             |              |                       |

#### Subcatchment PD1: Driveway/Parking-1



#### Summary for Subcatchment PD2: Driveway/Parking-2

Runoff = 0.86 cfs @ 12.07 hrs, Volume= 0.061 af, Depth= 6.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 100-Year (Newton) Rainfall=8.78"

| *   | 3 066      | 98     | Driveway/Parking Lot          |             |                       |  |  |  |  |
|-----|------------|--------|-------------------------------|-------------|-----------------------|--|--|--|--|
| *   | 82         | 98     | Curbing                       |             |                       |  |  |  |  |
| *   | 417        | 98     | Walks                         | Walks       |                       |  |  |  |  |
|     | 1,098      | 39     | >75% Grass cover, Good, HSG A |             |                       |  |  |  |  |
|     | 4,663      | 84     | Weighted A                    | verage      |                       |  |  |  |  |
|     | 1,098      |        | 23.55% Pervious Area          |             |                       |  |  |  |  |
|     | 3,565      |        | 76.45% Imp                    | pervious Ar | rea                   |  |  |  |  |
| -   | Tc Length  | Slope  | e Velocity                    | Canacity    | Description           |  |  |  |  |
| (mi | in) (feet) | (ft/ft | ) (ft/sec)                    | (cfs)       | Decemption            |  |  |  |  |
| 5   | 5.0        |        |                               |             | Direct Entry, Minimum |  |  |  |  |

#### Subcatchment PD2: Driveway/Parking-2



#### Summary for Subcatchment PD3: Driveway/Parking-3

Runoff = 0.20 cfs @ 12.07 hrs, Volume= 0.014 af, Depth= 7.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 100-Year (Newton) Rainfall=8.78"

|             | Area (sf)            | CN            | Description                            |                                      |                       |
|-------------|----------------------|---------------|----------------------------------------|--------------------------------------|-----------------------|
| *           | 831                  | 98            | Driveway                               |                                      |                       |
| *           | 21                   | 98            | Curbing                                |                                      |                       |
|             | 209                  | 39            | >75% Gras                              | s cover, Go                          | bod, HSG A            |
|             | 1,061<br>209<br>852  | 86            | Weighted A<br>19.70% Pei<br>80.30% Imp | verage<br>vious Area<br>pervious Are | ea                    |
| To<br>(min) | c Length<br>) (feet) | Slop<br>(ft/f | e Velocity<br>t) (ft/sec)              | Capacity<br>(cfs)                    | Description           |
| 5.0         | )                    |               |                                        |                                      | Direct Entry, Minimum |

## Subcatchment PD3: Driveway/Parking-3



### Summary for Subcatchment PR1: Roof-1

Runoff = 0.49 cfs @ 12.07 hrs, Volume= 0.039 af, Depth= 8.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 100-Year (Newton) Rainfall=8.78"



### Summary for Subcatchment PR2: Roof-2

Runoff = 0.98 cfs @ 12.07 hrs, Volume= 0.078 af, Depth= 8.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Type III 24-hr 100-Year (Newton) Rainfall=8.78"



## Summary for Pond CB1: Catch Basin-1

| Inflow  | Area = | 0.152 ac, 82.66% Impervious, Inflow | Depth = 7.33" for 100-Year (Newton) even | ۱t |
|---------|--------|-------------------------------------|------------------------------------------|----|
| Inflow  | =      | 1.27 cfs @ 12.07 hrs, Volume=       | 0.093 af                                 |    |
| Outflow | N =    | 1.27 cfs @ 12.07 hrs, Volume=       | 0.093 af, Atten= 0%, Lag= 0.0 min        |    |
| Primar  | у =    | 1.27 cfs @ 12.07 hrs, Volume=       | 0.093 af                                 |    |

Routing by Dyn-Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Peak Elev= 47.40' @ 12.07 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                              |
|--------|---------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 46.70' | <b>8.0" Round 8"CCP</b> L= 13.7' Ke= 0.200<br>Inlet / Outlet Invert= 46.70' / 46.25' S= 0.0328 '/' Cc= 0.900<br>n= 0.009 Corrugated PE, smooth interior, Flow Area= 0.35 sf |

Primary OutFlow Max=1.27 cfs @ 12.07 hrs HW=47.40' TW=44.32' (Dynamic Tailwater) **1=8''CCP** (Inlet Controls 1.27 cfs @ 3.65 fps)



## Pond CB1: Catch Basin-1

## Summary for Pond CB2: Catch Basin-2

| Inflow Area | a = | 0.107 ac, 7 | 6.45% Impervious | , Inflow Depth = | 6.85" fo   | r 100-Year (Newton) event |
|-------------|-----|-------------|------------------|------------------|------------|---------------------------|
| Inflow      | =   | 0.86 cfs @  | 12.07 hrs, Volum | e= 0.061         | af         |                           |
| Outflow     | =   | 0.86 cfs @  | 12.07 hrs, Volum | e= 0.061         | af, Atten= | 0%, Lag= 0.0 min          |
| Primary     | =   | 0.86 cfs @  | 12.07 hrs, Volum | e= 0.061         | af         |                           |

Routing by Dyn-Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Peak Elev= 47.20' @ 12.07 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                                |
|--------|---------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 46.70' | <b>8.0'' Round 8''CCP</b> L= 22.5' Ke= 0.200<br>Inlet / Outlet Invert= 46.70' / 46.25' S= 0.0200 '/' Cc= 0.900<br>n= 0.009 Corrugated PE, smooth interior, Flow Area= 0.35 sf |

Primary OutFlow Max=0.86 cfs @ 12.07 hrs HW=47.20' TW=44.26' (Dynamic Tailwater) **1=8''CCP** (Inlet Controls 0.86 cfs @ 3.02 fps)



## Pond CB2: Catch Basin-2

## Summary for Pond CB3: Catch Basin-3

| Inflow Area = | = | 0.024 ac, 8 | 80.30% Impervious, | Inflow Depth = | 7.09" f   | or 100-Yea | ar (Newton) event |
|---------------|---|-------------|--------------------|----------------|-----------|------------|-------------------|
| Inflow =      | - | 0.20 cfs @  | 12.07 hrs, Volume  | = 0.014        | af        |            |                   |
| Outflow =     | : | 0.20 cfs @  | 12.07 hrs, Volume  | = 0.014        | af, Atten | = 0%, Lag= | = 0.0 min         |
| Primary =     |   | 0.20 cfs @  | 12.07 hrs, Volume  | = 0.014        | af        |            |                   |

Routing by Dyn-Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Peak Elev= 47.72' @ 12.07 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                        |
|--------|---------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 47.50' | 8.0" Round 8"CCP L= 125.8' Ke= 0.200<br>Inlet / Outlet Invert= 47.50' / 46.25' S= 0.0099 '/' Cc= 0.900<br>n= 0.009 Corrugated PE, smooth interior, Flow Area= 0.35 sf |

Primary OutFlow Max=0.20 cfs @ 12.07 hrs HW=47.72' TW=44.25' (Dynamic Tailwater) 1=8"CCP (Inlet Controls 0.20 cfs @ 1.99 fps)

#### **Hydrograph** 47.71 Elevation -47.7 Inflow 47.69 Primary Inflow Area=0.024 ac 0.22 0.20 47.68 0.21 0.20 cfs 47.67 Peak Elev=47.72' 0.2 47.66 0.19 47.65 8.0" 0.18-47.64 0.17 47.64 47.63 47.62 47.61 47.6 47.6 47.59 **Elevation** 0.16 Round Culvert 0.15 0.14 n=0.009 0.13 (s) 0.13 0.12 L=125.8 47.58 0.11 Flow 47.57 0.1 S=0.0099 '/ 47.56 0.09 0.08 47.55 -47.54 0.07 47.53 0.06 0.05 47.52 0.04 47.51 0.03 47.5 0.02 0.01 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

## Pond CB3: Catch Basin-3

## Summary for Pond INF-1: Inf. System #1 Galleys

| Inflow Area = | 0.331 ac, 88.57% Impervious, Inflov | w Depth = 7.10" for 100-Year (Newton) event |
|---------------|-------------------------------------|---------------------------------------------|
| Inflow =      | 2.73 cfs @ 12.08 hrs, Volume=       | 0.196 af                                    |
| Outflow =     | 0.21 cfs @ 11.38 hrs, Volume=       | 0.196 af, Atten= 92%, Lag= 0.0 min          |
| Discarded =   | 0.21 cfs @ 11.38 hrs, Volume=       | 0.196 af                                    |

Routing by Dyn-Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Peak Elev= 46.57' @ 13.11 hrs Surf.Area= 0.029 ac Storage= 0.079 af

Plug-Flow detention time= 134.9 min calculated for 0.196 af (100% of inflow) Center-of-Mass det. time= 134.9 min (925.8 - 790.9)

| Volume | Invert | Avail.Storage | Storage Description                                           |
|--------|--------|---------------|---------------------------------------------------------------|
| #1A    | 42.00' | 0.026 af      | 26.50'W x 48.00'L x 5.25'H Field A                            |
|        |        |               | 0.153 af Overall - 0.079 af Embedded = 0.075 af x 35.0% Voids |
| #2A    | 43.00' | 0.059 af      | Concrete Galley 4x4x4.25 x 55 Inside #1                       |
|        |        |               | Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf        |
|        |        |               | Outside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf       |
|        |        |               | 5 Rows of 11 Chambers                                         |
|        |        | 0.085 af      | Total Available Storage                                       |

Storage Group A created with Chamber Wizard

| Device                                                                       | Routing   | Invert | Outlet Devices                             |                 |  |  |
|------------------------------------------------------------------------------|-----------|--------|--------------------------------------------|-----------------|--|--|
| #1                                                                           | Discarded | 42.00' | 7.000 in/hr Exfiltration over Surface area | Phase-In= 0.01' |  |  |
| <b>Discarded OutFlow</b> Max=0.21 cfs @ 11.38 hrs HW=42.06' (Free Discharge) |           |        |                                            |                 |  |  |

**1=Exfiltration** (Exfiltration Controls 0.21 cfs)

## Pond INF-1: Inf. System #1 Galleys - Chamber Wizard Field A

Chamber Model = Concrete Galley 4x4x4.25 (Concrete Galley, Shea LE-EGH, LE-CGH or equivalent) Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf Outside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf

11 Chambers/Row x 4.00' Long = 44.00' Row Length +24.0" End Stone x 2 = 48.00' Base Length 5 Rows x 54.0" Wide + 24.0" Side Stone x 2 = 26.50' Base Width 12.0" Base + 51.0" Chamber Height = 5.25' Field Height

55 Chambers x 46.4 cf = 2,550.9 cf Chamber Storage 55 Chambers x 62.3 cf = 3,428.2 cf Displacement

6,678.0 cf Field - 3,428.2 cf Chambers = 3,249.8 cf Stone x 35.0% Voids = 1,137.4 cf Stone Storage

Chamber Storage + Stone Storage = 3,688.4 cf = 0.085 afOverall Storage Efficiency = 55.2%Overall System Size =  $48.00' \times 26.50' \times 5.25'$ 

55 Chambers 247.3 cy Field 120.4 cy Stone







# Pond INF-1: Inf. System #1 Galleys
### Summary for Pond INF-2: Inf. System #2 Galleys

| Inflow Area = | 0.133 ac, 76.58% Impervious, Inflow D | Depth = 6.85" for 100-Year (Newton) event |
|---------------|---------------------------------------|-------------------------------------------|
| Inflow =      | 1.06 cfs @ 12.07 hrs, Volume=         | 0.076 af                                  |
| Outflow =     | 0.08 cfs @ 11.52 hrs, Volume=         | 0.076 af, Atten= 92%, Lag= 0.0 min        |
| Discarded =   | 0.08 cfs @ 11.52 hrs, Volume=         | 0.076 af                                  |

Routing by Dyn-Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Peak Elev= 46.46' @ 13.05 hrs Surf.Area= 0.012 ac Storage= 0.029 af

Plug-Flow detention time= 117.0 min calculated for 0.076 af (100% of inflow) Center-of-Mass det. time= 116.9 min (905.2 - 788.3)

| Volume | Invert | Avail.Storage | Storage Description                                           |
|--------|--------|---------------|---------------------------------------------------------------|
| #1A    | 42.00' | 0.013 af      | 13.00'W x 40.00'L x 5.25'H Field A                            |
|        |        |               | 0.063 af Overall - 0.026 af Embedded = 0.037 af x 35.0% Voids |
| #2A    | 43.00' | 0.019 af      | Concrete Galley 4x4x4.25 x 18 Inside #1                       |
|        |        |               | Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf        |
|        |        |               | Outside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf       |
|        |        |               | 2 Rows of 9 Chambers                                          |
|        |        | 0.032 af      | Total Available Storage                                       |

Storage Group A created with Chamber Wizard

| Device  | Routing    | Invert       | Outlet Devices                             |                 |
|---------|------------|--------------|--------------------------------------------|-----------------|
| #1      | Discarded  | 42.00'       | 7.000 in/hr Exfiltration over Surface area | Phase-In= 0.01' |
| Discard | ed OutFlow | Max=0.08 cfs | s@11.52 hrs HW=42.05' (Free Discharge)     |                 |

**1=Exfiltration** (Exfiltration Controls 0.08 cfs)

### Pond INF-2: Inf. System #2 Galleys - Chamber Wizard Field A

Chamber Model = Concrete Galley 4x4x4.25 (Concrete Galley, Shea LE-EGH, LE-CGH or equivalent) Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf Outside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf

9 Chambers/Row x 4.00' Long = 36.00' Row Length +24.0" End Stone x 2 = 40.00' Base Length 2 Rows x 54.0" Wide + 24.0" Side Stone x 2 = 13.00' Base Width 12.0" Base + 51.0" Chamber Height = 5.25' Field Height

18 Chambers x 46.4 cf = 834.9 cf Chamber Storage 18 Chambers x 62.3 cf = 1,122.0 cf Displacement

2,730.0 cf Field - 1,122.0 cf Chambers = 1,608.0 cf Stone x 35.0% Voids = 562.8 cf Stone Storage

Chamber Storage + Stone Storage = 1,397.7 cf = 0.032 afOverall Storage Efficiency = 51.2%Overall System Size =  $40.00' \times 13.00' \times 5.25'$ 

18 Chambers 101.1 cy Field 59.6 cy Stone







# Pond INF-2: Inf. System #2 Galleys

## Summary for Pond TNK: 8000gal. TANK

| Inflow A | Area = | 0.165 ac,1 | 00.00% Impervious | , Inflow Depth = | 8.54" for 1   | 00-Year (Newton) event |
|----------|--------|------------|-------------------|------------------|---------------|------------------------|
| Inflow   | =      | 1.47 cfs @ | 12.07 hrs, Volum  | ie= 0.117 a      | af            |                        |
| Outflow  |        | 1.43 cfs @ | 12.09 hrs, Volum  | ie= 0.100 a      | af, Atten= 3% | 6, Lag= 1.1 min        |
| Primary  | / =    | 1.43 cfs @ | 12.09 hrs, Volum  | ie= 0.100 a      | af            |                        |

Routing by Dyn-Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.010 hrs Peak Elev= 47.55' @ 12.09 hrs Surf.Area= 0.003 ac Storage= 0.020 af

Plug-Flow detention time= 126.8 min calculated for 0.100 af (85% of inflow) Center-of-Mass det. time= 61.2 min (800.4 - 739.2)

| Volume | Invert  | Avail.Storage                   | Storage Description                                                                                                                                                |
|--------|---------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | 40.17'  | 0.028 af                        | 7.00'W x 16.50'L x 10.66'H Prismatoid                                                                                                                              |
| Device | Routing | Invert Ou                       | tlet Devices                                                                                                                                                       |
| #1     | Primary | 46.75' <b>8.0</b><br>Inle<br>n= | <b>" Round 8"CPP</b> L= 10.8' Ke= 0.200<br>et / Outlet Invert= 46.75' / 46.25' S= 0.0463 '/' Cc= 0.900<br>0.009 Corrugated PE, smooth interior, Flow Area= 0.35 sf |

**Primary OutFlow** Max=1.43 cfs @ 12.09 hrs HW=47.55' TW=44.50' (Dynamic Tailwater) **1=8"CPP** (Inlet Controls 1.43 cfs @ 4.09 fps)

#### Pond TNK: 8000gal. TANK

