
Appendix

□ Traffic Volume Data
 □ Seasonal Adjustment Calculations
 □ Speed Data
 □ Intersection Crash Data
 □ Public Transportation Information
 □ Sight Line Analysis
 □ Kendrick Street Interchange
 □ Background Growth
 □ Trip Generation Data
 □ Trip Distribution Calculations
 □ Nahanton at Wells Calibration

□ Capacity Analyses

MDM TRANSPORTATION CONSULTANTS, INC. 28 Lord Road, Suite 280

Wells Avenue Between Nahanton Street and #1 Wells Avenue Newton, MA 28 Lord Road, Suite 280 Marlborough, MA www.mdmtrans.com

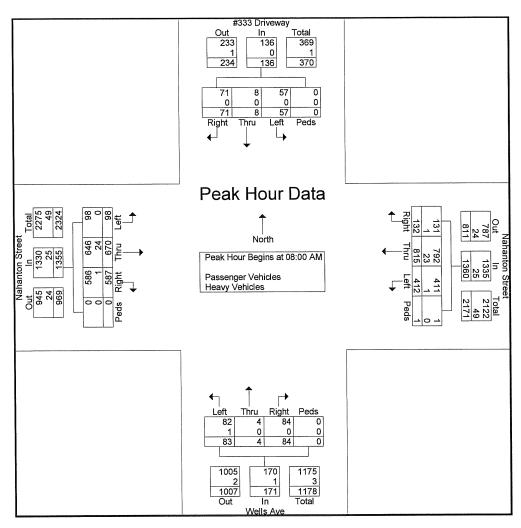
Site Code: 00000770

Start	29-May-14		bound		Totals		bound		Totals		ed Totals
Time	Thu	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoor
12:00		3	122			0	87				
12:15		2	107			0	77				
12:30		1	91			1	94				
12:45		1	102	7	422	0	103	1	361	8	78
01:00		0	91			3	109				
01:15		1	64			0	101				
01:30		1	53			0	87				
01:45		0	63	2	271	1	81	4	378	6	64
02:00		1	96			1	87				
02:15		0	86			1	76				
02:30		1	94			2	69				
02:45		1	76	3	352	1	67	5	299	8	65
03:00		2	109			3 2	76				
03:15		0	115			2	109				
03:30		1	143			2	114				
03:45		0	139	3	506	4	113	11	412	14	91
04:00		0	146			3	79				
04:15		2	150			8	81				
04:30		0	193			10	60				
04:45		2	187	4	676	15	117	36	337	40	101
05:00		4	259			11	89				
05:15		0	239			11	74				
05:30		1	226			20	82				
05:45		3	239	8	963	30	84	72	329	80	129
06:00		7	236			31	112				
06:15		6	200			39	93				
06:30		10	161			55	71				
06:45		10	141	33	738	84	51	209	327	242	106
07:00		24	120		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	90	66				
07:15		18	99			115	42				
07:30		36	66			162	53				
07:45		70	99	148	384	222	79	589	240	737	62
08:00		57	102			213	56				
08:15		44	80			250	47				
08:30		38	73			234	47				
08:45		31	70	170	325	268	30	965	180	1135	50
09:00		40	47			262	32				
09:15		54	63			192	16				
09:30		65	35			141	7				
09:45		45	34	204	179	136	11	731	66	935	24
10:00		53	61			92	10				
10:15		52	34			93	6				
10:30		57	18			79	2				
10:45		74	21	236	134	80	_ 13	344	31	580	16
11:00		75	19			66	3	T. 7. 5.			
11:15		65	11			62	1				
11:30		106	5			69	1				
11:45		122	Ö	368	35	75	1	272	6	640	
Total		1186	4985			3239	2966		<u>9</u>	4425	795
Percent		19.2%	80.8%			52.2%	47.8%			35.8%	64.2
Combined											
Total		6	171			62	205			12	2376

Page 1

28 Lord Road, Suite 280 Marlborough, MA

N: #333 Driveway S: Wells ave


E/W: Nahanton Street

Newton, MA

File Name: Nahanton Street @ Wells Avenue AM

Site Code : 00770004 Start Date : 5/29/2014

			3 Drive	-					Street			-	Vells A						Street		
		Fr	om No	orth			F	rom E	ast			Fr	om Sc	outh			⊢r	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysi	s From	า 07:00	O AM to	08:45	AM -	Peak 1	1 of 1													
Peak Hour fe	or Enti	re Inte	rsectio	n Begi	ins at 0	8:00 A	M													i	
08:00 AM	19	0	16	0	35	45	194	89	0	328	29	4	28	0	61	141	205	22	0	368	792
08:15 AM	18	2	18	0	38	30	205	102	0	337	19	0	20	0	39	143	158	27	0	328	742
08:30 AM	19	1	13	0	33	25	214	100	0	339	17	0	20	0	37	146	155	24	0	325	734
08:45 AM	15	5	10	0	30	32	202	121	1	356	19	0	15	0	34	157	152	25	0	334	754
Total Volume	71	8	57	0	136	132	815	412	1	1360	84	4	83	0	171	587	670	98	0	1355	3022
% App. Total	52.2	5.9	41.9	0		9.7	59.9	30.3	0.1		49.1	2.3	48.5	0		43.3	49.4	7.2	0		
PHF	.934	.400	.792	.000	.895	.733	.952	.851	.250	.955	.724	.250	.741	.000	.701	.935	.817	.907	.000	.921	.954
Passenger Vehicles																					
% Passenger Vehicles	100	100	100	0	100	99.2	97.2	99.8	100	98.2	100	100	98.8	0	99.4	99.8	96.4	100	0	98.2	98.3
Heavy Vehicles																		_	_		
% Heavy Vehicles	0	0	0	0	0	0.8	2.8	0.2	0	1.8	0	0	1.2	0	0.6	0.2	3.6	0	0	1.8	1.7

28 Lord Road, Suite 280 Marlborough, MA

N: #333 Driveway File Name: Nahanton Street @ Wells Avenue AM

S: Wells ave Site Code : 00770004 E/W: Nahanton Street Start Date : 5/29/2014

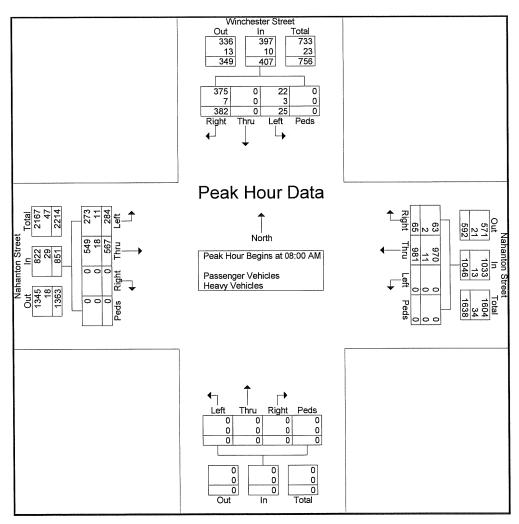
Newton, MA Page No : 1

Groups Printed- Passenger Vehicles - Heavy Vehicles

		#33	3 Driv	eway			Naha	anton :	Street			V	Vells A	ve			Naha	anton	Street		
			om N					rom E				Fr	om So	outh			Fr	om W	'est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	6	0	5	0	11	13	93	34	2	142	14	0	10	0	24	58	144	8	0	210	387
07:15 AM	4	0	7	0	11	16	130	35	0	181	7	0	10	0	17	87	194	6	0	287	496
07:30 AM	6	1	8	0	15	18	210	71	0	299	18	1	19	0	38	92	209	9	0	310	662
07:45 AM	8	0	8	0	16	26	182	96	1	305	52	2	15	0	69	145	200	16	0	361	751
Total	24	1	28	0	53	73	615	236	3	927	91	3	54	0	148	382	747	39	0	1168	2296
08:00 AM	19	0	16	0	35	45	194	89	0	328	29	4	28	0	61	141	205	22	0	368	792
08:15 AM	18	2	18	0	38	30	205	102	0	337	19	0	20	0	39	143	158	27	0	328	742
08:30 AM	19	1	13	0	33	25	214	100	0	339	17	0	20	0	37	146	155	24	0	325	734
08:45 AM	15	5	10	0	30	32	202	121	1	356	19	0	15	0	34	157	152	25	0	334	754
Total	71	8	57	0	136	132	815	412	1	1360	84	4	83	0	171	587	670	98	0	1355	3022
						•															
Grand Total	95	9	85	0	189	205	1430	648	4	2287	175	7	137	0	319	969	1417	137	0	2523	5318
Apprch %	50.3	4.8	45	0		9	62.5	28.3	0.2		54.9	2.2	42.9	0		38.4	56.2	5.4	0		
Total %	1.8	0.2	1.6	0	3.6	3.9	26.9	12.2	0.1	43	3.3	0.1	2.6	0	6	18.2	26.6	2.6	0	47.4	
Passenger Vehicles							1391										1371				
% Passenger Vehicles	98.9	100	98.8	0	98.9	98.5	97.3	99.1	100	97.9	97.1	100	97.8	0	97.5	99.8	96.8	100	0	98.1	98
Heavy Vehicles																					
% Heavy Vehicles	1.1	0	1.2	0	1.1	1.5	2.7	0.9	0	2.1	2.9	0	2.2	0	2.5	0.2	3.2	0	0	1.9	2

MDM Transportation Consultants, Inc. 28 Lord Road, Suite 280

Marlborough, MA


N: Winchester Street E/W: Nahanton Street

Newton, MA

File Name: Winchester St @ Nahanton St AM

Site Code : 07700001 Start Date : 6/3/2014

				Street					Street				om Sc	th				anton om W	Street		
		Fr	om No	ortn				om E	ası			Г		uun			FI		651		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysi	s From	า 08:00	O AM to	08:45	AM - 1	Peak 1	of 1													
Peak Hour fo	or Enti	re Inte	rsectio	n Begi	ins at 0	8:00 A	.M														
08:00 AM	84	0	3	0	87	14	239	0	0	253	0	0	0	0	0	0	160	89	0	249	589
08:15 AM	93	0	6	0	99	19	252	0	0	271	0	0	0	0	0	0	150	55	0	205	575
08:30 AM	92	0	10	0	102	15	248	0	0	263	0	0	0	0	0	0	137	56	0	193	558
08:45 AM	113	0	6	0	119	17	242	0	0	259	0	0	0	0	0	0	120	84	0	204	582
Total Volume	382	0	25	0	407	65	981	0	0	1046	0	0	0	0	0	0	567	284	0	851	2304
% App. Total	93.9	0	6.1	0		6.2	93.8	0	0		0	0	0	0		0	66.6	33.4	0		
PHF	.845	.000	.625	.000	.855	.855	.973	.000	.000	.965	.000	.000	.000	.000	.000	.000	.886	.798	.000	.854	.978
Passenger Vehicles																					
% Passenger Vehicles	98.2	0	88.0	0	97.5	96.9	98.9	0	0	98.8	0	0	0	0	0	0	96.8	96.1	0	96.6	97.7
Heavy Vehicles														_	_				_		
% Heavy Vehicles	1.8	0	12.0	0	2.5	3.1	1.1	0	0	1.2	0	0	0	0	0	0	3.2	3.9	0	3.4	2.3

MDM Transportation Consultants, Inc. 28 Lord Road, Suite 280 Marlborough, MA

N: Winchester Street E/W: Nahanton Street

Newton, MA

File Name: Winchester St @ Nahanton St AM

Site Code : 07700001 Start Date : 6/3/2014

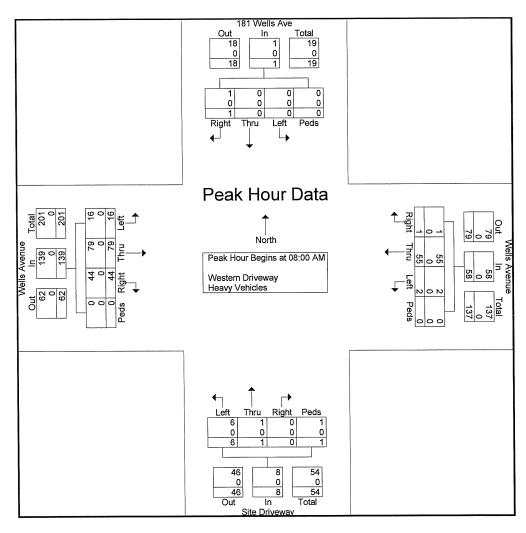
Page No : 1

Groups Printed- Passenger Vehicles - Heavy Vehicles

				Street	t		Naha	anton	Street								Nah	anton	Street		
		Fr	om No	orth			F	rom E	ast			Fr	om Sc	outh			Fi	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	30	0	2	0	32	7	114	0	0	121	0	0	0	0	0	0	133	37	0	170	323
07:15 AM	44	0	3	1	48	7	149	0	0	156	0	0	0	0	0	0	156	51	2	209	413
07:30 AM	61	0	2	0	63	18	170	0	0	188	0	0	0	0	0	0	176	55	0	231	482
07:45 AM	93	0	8	0	101	13	241	0	0	254	0	0	0	0	0	0	180	63	0	243	598
Total	228	0	15	1	244	45	674	0	0	719	0	0	0	0	0	0	645	206	2	853	1816
															,						
08:00 AM	84	0	3	0	87	14	239	0	0	253	0	0	0	0	0	0	160	89	0	249	589
08:15 AM	93	0	6	0	99	19	252	0	0	271	0	0	0	0	0	0	150	55	0	205	575
08:30 AM	92	0	10	0	102	15	248	0	0	263	0	0	0	0	0	0	137	56	0	193	558
08:45 AM	113	0	6	0	119	17	242	0	0	259	0	0	0	0	0	0	120	84	0	204	582
Total	382	0	25	0	407	65	981	0	0	1046	0	0	0	0	0	0	567	284	0	851	2304
															,						
Grand Total	610	0	40	1	651	110	1655	0	0	1765	0	0	0	0	0	0	1212	490	2	1704	4120
Apprch %	93.7	0	6.1	0.2		6.2	93.8	0	0		0	0	0	0		0	71.1	28.8	0.1		
Total %	14.8	0	1	0	15.8	2.7	40.2	0	0	42.8	0	0	0	0	0	0	29.4	11.9	0	41.4	
Passenger Vehicles							1636										1156				
% Passenger Vehicles	97.9	0	90	100	97.4	95.5	98.9	0	0	98.6	0	0	0	0	0	0	95.4	96.9	100	95.8	97.3
Heavy Vehicles																					
% Heavy Vehicles	2.1	0	10	0	2.6	4.5	1.1	0	0	1.4	0	0	0	0	0	0	4.6	3.1	0	4.2	2.7

MDM Transportation Consultants, Inc. 28 Lord Road, Suite 280

Marlborough, MA


N/S: Site Driveway E/W: Wells Avenue

Newton, MA

File Name: 840 West Driveway at Wells 7-9 AM Wed

Site Code: 840 Start Date : 7/1/2015

		181	Wells	Ave				Is Ave					Drive	•				lls Ave			
		Fre	om No	rth			Fr	om E	ast			Fre	om So	uth			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Ai	nalysis	From 0	7:00 A	M to 0	8:45 AN	/I - Pea	k 1 of 1														
Peak Hour fo	r Entire	Inters	ection	Begins	at 08:0	0 AM															
08:00 AM	1	0	0	0	1	0	12	0	0	12	0	0	1	1	2	10	9	3	0	22	37
08:15 AM	0	0	0	0	0	1	11	1	0	13	0	0	1	0	1	9	15	6	0	30	44
08:30 AM	0	0	0	0	0	0	16	1	0	17	0	1	3	0	4	15	23	3	0	41	62
08:45 AM	0	0	0	0	0	0	16	0	0	16	0	0	1	0	1	10	32	4	0	46	63
Total Volume	1	0	0	0	1	1	55	2	0	58	0	1	6	1	8	44	79	16	0	139	206
% App. Total	100	0	0	0		1.7	94.8	3.4	0		0	12.5	75	12.5		31.7	56.8	11.5	0		
PHF	.250	.000	.000	.000	.250	.250	.859	.500	.000	.853	.000	.250	.500	.250	.500	.733	.617	.667	.000	.755	.817
Western Driveway																			_	400	400
% Western Driveway	100	0	0	0	100	100	100	100	0	100	0	100	100	100	100	100	100		0	100	100
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

28 Lord Road, Suite 280 Marlborough, MA

N/S: Site Driveway

E/W: Wells Avenue Newton, MA

File Name: 840 West Driveway at Wells 7-9 AM Wed

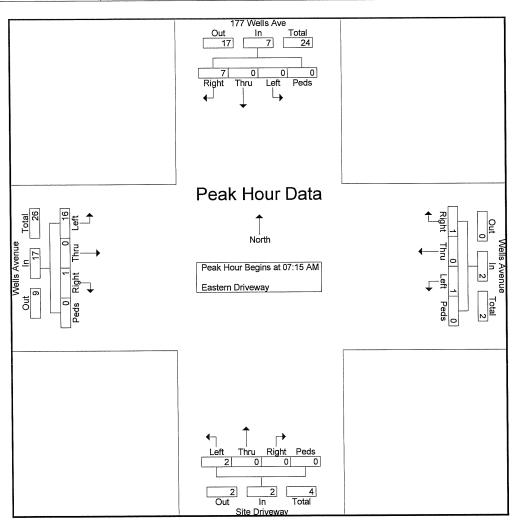
Site Code: 840 Start Date: 7/1/2015

Page No : 1

Groups Printed- Western Driveway - Heavy Vehicles

		181	Wells	Ave			We	lls Ave	enue			Site	Drive	eway			We	lls Ave	enue		
		Fr	om No	orth			Fi	rom E	ast			Fre	om Sc	uth			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	int. Total
07:00 AM	0	0	0	0	0	1	8	0	0	9	0	0	0	1	1	4	12	2	0	18	28
07:15 AM	0	0	0	0	0	0	3	0	0	3	0	0	1	0	1	5	13	10	0	28	32
07:30 AM	1	0	0	0	1	0	8	0	0	8	1	0	0	0	1	1	18	5	0	24	34
07:45 AM	0	0	0	0	0	0	6	0	0	6	0	0	2	0	2	6	19	2	0	27	35_
Total	1	0	0	0	1	1	25	0	0	26	1	0	3	1	5	16	62	19	0	97	129
08:00 AM	1	0	0	0	1	0	12	0	0	12	0	0	1	1	2	10	9	3	0	22	37
08:15 AM	0	0	0	0	0	1	11	1	0	13	0	0	1	0	1	9	15	6	0	30	44
08:30 AM	0	0	0	0	0	0	16	1	0	17	0	1	3	0	4	15	23	3	0	41	62
08:45 AM	0	0	0	0	0	0	16	0	0	16	0	0	1_	0	1	10	32	4	0	46	63
Total	1	0	0	0	1	1	55	2	0	58	0	1	6	1	8	44	79	16	0	139	206
Grand Total	2	0	0	0	2	2	80	2	0	84	1	1	9	2	13	60	141	35	0	236	335
Apprch %	100	0	0	0		2.4	95.2	2.4	0		7.7	7.7	69.2	15.4		25.4	59.7	14.8	0		
Total %	0.6	0	0	0	0.6	0.6	23.9	0.6	0	25.1	0.3	0.3	2.7	0.6	3.9	17.9	42.1	10.4	0	70.4	
Western Driveway	2	0	0	0	2	2	80	2	0	84	0	1	9	2	12	59	140	35	0	234	332
% Western Driveway	100	0	0	0	100	100	100	100	0	100	0	100	100	100	92.3	98.3	99.3	100	0	99.2	99.1
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	0	0	2	3
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	100	0	0	0	7.7	1.7	0.7	0	0	0.8	0.9

MDM Transportation Consultants, Inc. 28 Lord Road, Suite 280 Marlborough, MA


N/S: Site Driveway E/W: Wells Avenue

Newton, MA

File Name: 840 East Driveway at Wells 7-9 AM Wed

Site Code: 840 Start Date : 7/1/2015

			Wells om No					lls Ave					Drive					lls Avo			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A							k 1 of	1													
Peak Hour fo	r Entire	Inters	ection	Begins	s at 07:1	5 AM															
07:15 AM	0	0	0	0	0	1	0	1	0	2	0	0	1	0	1	0	0	6	0	6	9
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	4	4
07:45 AM	7	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	8
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	5	0	6	7
Total Volume	7	0	0	0	7	1	0	1	0	2	0	0	2	0	2	1	0	16	0	17	28
% App. Total	100	0	0	0		50	0	50	0		0	0	100	0		5.9	0	94.1	0		
PHF	.250	.000	.000	.000	.250	.250	.000	.250	.000	.250	.000	.000	.500	.000	.500	.250	.000	.667	.000	.708	.778

MDM Transportation Consultants, Inc. 28 Lord Road, Suite 280 Marlborough, MA

N/S: Site Driveway

E/W: Wells Avenue

Newton, MA

File Name: 840 East Driveway at Wells 7-9 AM Wed

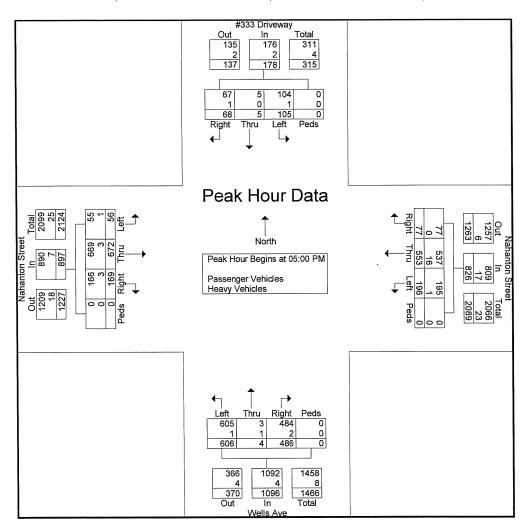
Site Code: 840 Start Date : 7/1/2015

Page No : 1

Groups Printed- Eastern Driveway

		177	Wells	Ave			We	ls Ave	enue			Site	Drive	eway			We	lls Av	enue		
		Fre	om No	orth			Fı	om E	ast			Fre	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	0	1	2
07:15 AM	0	0	0	0	0	1	0	1	0	2	0	0	1	0	1	0	0	6	0	6	9
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	4	4
07:45 AM	7	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	8
Total	7	0	0	0	7	1	0	1	0	2	0	0	2	0	2	0	0	12	0	12	23
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	5	0	6	7
08:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1
08:30 AM	3	0	0	0	3	0	0	1	0	1	0	0	0	0	0	1	0	2	0	3	7
08:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	5	0	7	7
Total	3	0	0	0	3	0	0	1	0	1	0	0	2	0	2	4	0	12	0	16	22
Grand Total	10	0	0	0	10	1	0	2	0	3	0	0	4	0	4	4	0	24	0	28	45
Apprch %	100	0	0	0		33.3	0	66.7	0		0	0	100	0		14.3	0	85.7	0		
Total %	22.2	0	0	0	22.2	2.2	0	4.4	0	6.7	0	0	8.9	0	8.9	8.9	0	53.3	0	62.2	

MDM Transportation Consultants, Inc. 28 Lord Road, Suite 280


Marlborough, MA

N: #333 Driveway File Name: Nahanton Street @ Wells Avenue PM

Site Code : 00770001 S: Wells Ave Start Date : 5/29/2014 E/W: Nahanton Street

Page No : 2 Newton, MA

			3 Drive	,				anton rom E				-	Vells A					anton om W	Street 'est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysi	s Fron	04:00	0 PM t	o 05:45	PM -	Peak 1	of 1													
Peak Hour fe	or Enti	re Inte	rsectio	on Beg	ins at 0	5:00 F	M														
05:00 PM	16	1	24	0	41	21	142	41	0	204	127	1	165	0	293	39	155	16	0	210	748
05:15 PM	20	0	22	0	42	20	133	51	0	204	128	3	166	0	297	38	159	16	0	213	756
05:30 PM	16	3	32	0	51	17	130	48	0	195	97	0	147	0	244	36	170	11	0	217	707
05:45 PM	16	1	27	0	44	19	148	56	0	223	134	0	128	0	262	56	188	13	0	257	786
Total Volume	68	5	105	0	178	77	553	196	0	826	486	4	606	0	1096	169	672	56	0	897	2997
% App. Total	38.2	2.8	59	0		9.3	66.9	23.7	0		44.3	0.4	55.3	0		18.8	74.9	6.2	0		
PHF	.850	.417	.820	.000	.873	.917	.934	.875	.000	.926	.907	.333	.913	.000	.923	.754	.894	.875	.000	.873	.953
Passenger Vehicles																					
% Passenger Vehicles	98.5	100	99.0	0	98.9	100	97.1	99.5	0	97.9	99.6	75.0	99.8	0	99.6	98.2	99.6	98.2	0	99.2	99.0
Heavy Vehicles																					
% Heavy Vehicles	1.5	0	1.0	0	1.1	0	2.9	0.5	0	2.1	0.4	25.0	0.2	0	0.4	1.8	0.4	1.8	0	8.0	1.0

MDM Transportation Consultants, Inc. 28 Lord Road, Suite 280

Marlborough, MA

N: #333 Driveway S: Wells Ave

E/W: Nahanton Street

Newton, MA

File Name: Nahanton Street @ Wells Avenue PM

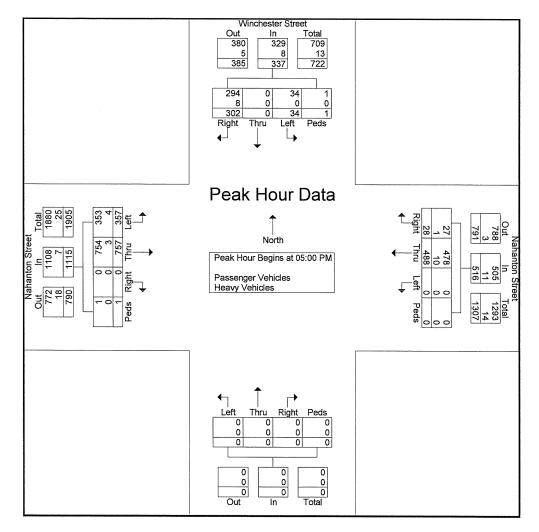
Site Code : 00770001 Start Date : 5/29/2014

Page No : 1

Groups Printed- Passenger Vehicles - Heavy Vehicles

		#33	3 Driv	eway			Naha	anton S	Street			٧	Vells A	lve			Naha	anton	Street		
		Fr	om No	orth			F	rom Ea	ast			Fr	om So	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	22	1	26	0	49	14	151	50	0	215	89	1	144	0	234	41	155	10	0	206	704
04:15 PM	24	1	25	0	50	17	161	33	0	211	52	1	97	0	150	34	132	3	1	170	581
04:30 PM	11	0	16	0	27	23	145	37	0	205	69	1	138	0	208	46	150	8	0	204	644
04:45 PM	15	1	20	0	36	25	151	56	0	232	79	1	129	1	210	77	146	7	0	230	708
Total	72	3	87	0	162	79	608	176	0	863	289	4	508	1	802	198	583	28	1	810	2637
05:00 PM	16	1	24	0	41	21	142	41	0	204	127	1	165	0	293	39	155	16	0	210	748
05:15 PM	20	0	22	0	42	20	133	51	0	204	128	3	166	0	297	38	159	16	0	213	756
05:30 PM	16	3	32	0	51	17	130	48	0	195	97	0	147	0	244	36	170	11	0	217	707
05:45 PM	16	1	27	0	44	19	148	56	0	223	134	0	128	0	262	56	188	13	0	257	786
Total	68	5	105	0	178	77	553	196	0	826	486	4	606	0	1096	169	672	56	0	897	2997
																					1
Grand Total	140	8	192	0	340	156	1161	372	0	1689	775	8	1114	1	1898	367	1255	84	1	1707	5634
Apprch %	41.2	2.4	56.5	0		9.2	68.7	22	0		40.8	0.4	58.7	0.1		21.5	73.5	4.9	0.1		
Total %	2.5	0.1	3.4	0	6	2.8	20.6	6.6	0	30	13.8	0.1	19.8	0	33.7	6.5	22.3	1.5	0	30.3	
Passenger Vehicles							1115						1111				1245				
% Passenger Vehicles	97.9	100	99	0	98.5	98.7	96	99.5	0	97	99.4	87.5	99.7	100	99.5	98.1	99.2	98.8	100	98.9	98.5
Heavy Vehicles																					
% Heavy Vehicles	2.1	0	1	0	1.5	1.3	4	0.5	0	3	0.6	12.5	0.3	0	0.5	1.9	0.8	1.2	0	1.1	1.5

28 Lord Road, Suite 280 Marlborough, MA


N: Winchester Street E/W: Nahanton Street

Newton, MA

File Name: Winchester St @ Nahanton St PM

Site Code : 07700001 Start Date : 6/3/2014

		Wincl	nester	Street			Naha	anton	Street								Nah	anton	Street	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		Fr	om No	orth			F	rom E	ast			Fr	om So	outh			Fr	rom W	/est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A								1 of 1										····			,
Peak Hour fo	or Enti	re Inte	rsectio	n Begi	ins at 0	5:00 F	M														
05:00 PM	70	0	9	1	80	6	107	0	0	113	0	0	0	0	0	0	175	93	0	268	461
05:15 PM	79	0	9	0	88	13	138	0	0	151	0	0	0	0	0	0	193	81	1	275	514
05:30 PM	82	0	9	0	91	6	131	0	0	137	0	0	0	0	0	0	182	91	0	273	501
05:45 PM	71	0	7	0	78	3	112	0	0	115	0	0	0	0	0	0	207	92	0	299	492
Total Volume	302	0	34	1	337	28	488	0	0	516	0	0	0	0	0	0	757	357	1	1115	1968
% App. Total	89.6	0	10.1	0.3		5.4	94.6	0	0		0	0	0	0		0	67.9	32	0.1		İ
PHF	.921	.000	.944	.250	.926	.538	.884	.000	.000	.854	.000	.000	.000	.000	.000	.000	.914	.960	.250	.932	.957
Passenger Vehicles																					
% Passenger Vehicles	97.4	0	100	100	97.6	96.4	98.0	0	0	97.9	0	0	0	0	0	0	99.6	98.9	100	99.4	98.7
Heavy Vehicles																					l
% Heavy Vehicles	2.6	0	0	0	2.4	3.6	2.0	0	0	2.1	0	0	0	0	0	0	0.4	1.1	0	0.6	1.3

28 Lord Road, Suite 280 Marlborough, MA

N: Winchester Street E/W: Nahanton Street

Newton, MA

File Name: Winchester St @ Nahanton St PM

Site Code : 07700001 Start Date : 6/3/2014

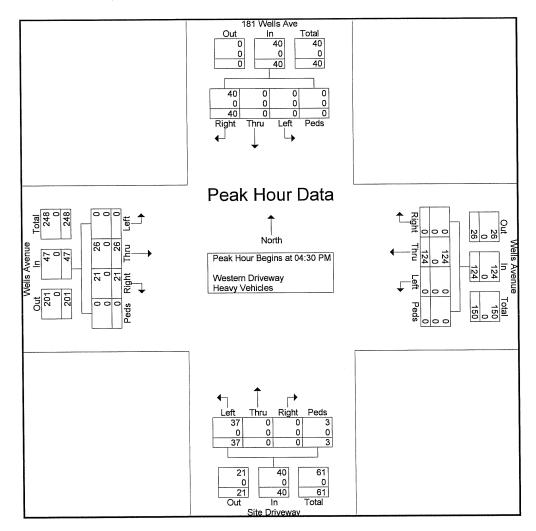
Page No : 1

Groups Printed- Passenger Vehicles - Heavy Vehicles

				Street	t		Naha	anton	Street								Nah	anton	Street		
		Fr	om No	orth			F	rom E	ast			Fr	om So	outh			Fı	rom W	est (
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	71	0	12	0	83	10	139	0	0	149	0	0	0	0	0	0	166	91	0	257	489
04:15 PM	76	0	11	4	91	10	160	0	0	170	0	0	0	0	0	0	137	66	0	203	464
04:30 PM	57	0	10	1	68	9	127	0	0	136	0	0	0	0	0	0	150	77	0	227	431
04:45 PM	78	0	12	0	90	10	139	0	1	150	0	0	0	0	0	0	159	62	0	221	461
Total	282	0	45	5	332	39	565	0	1	605	0	0	0	0	0	0	612	296	0	908	1845
05:00 PM	70	0	9	1	80	6	107	0	0	113	0	0	0	0	0	0	175	93	0	268	461
05:15 PM	79	0	9	0	88	13	138	0	0	151	0	0	0	0	0	0	193	81	1	275	514
05:30 PM	82	0	9	0	91	6	131	0	0	137	0	0	0	0	0	0	182	91	0	273	501
05:45 PM	71	0	7	0	78	3	112	0	0	115	0	0	0	0	0	0	207	92	0	299	492
Total	302	0	34	1	337	28	488	0	0	516	0	0	0	0	0	0	757	357	1	1115	1968
Grand Total	584	0	79	6	669	67	1053	0	1	1121	0	0	0	0	0	0	1369	653	1	2023	3813
Apprch %	87.3	0	11.8	0.9		6	93.9	0	0.1		0	0	0	0		0	67.7	32.3	0		
Total %	15.3	0	2.1	0.2	17.5	1.8	27.6	0	0	29.4	0	0	0	0	0	0	35.9	17.1	0	53.1	
Passenger Vehicles							1028										1363				
% Passenger Vehicles	97.6	0	97.5	100	97.6	95.5	97.6	0	100	97.5	0	0	0	0	0	0	99.6	98.8	100	99.3	98.5
Heavy Vehicles																					
% Heavy Vehicles	2.4	0	2.5	0	2.4	4.5	2.4	0	0	2.5	0	0	0	0	0	0	0.4	1.2	0	0.7	1.5

MDM Transportation Consultants, Inc. 28 Lord Road, Suite 280

Marlborough, MA


N/S: Site Driveway E/W: Wells Avenue

Newton, MA

File Name: 840 West Driveway at Wells 4-6 PM Wed

Site Code: 840 Start Date : 7/1/2015

			Wells om No					ls Ave					Drive	•				lls Av			
Start Time		Thru		Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Ar	nalysis	From C	04:00 P	M to 0	5:45 PN	/I - Pea	k 1 of 1	i													
Peak Hour fo	r Entire	Interse	ection I	Begins	at 04:3	0 PM										1		_	_	1	
04:30 PM	9	0	0	0	9	0	26	0	0	26	0	0	7	2	9	7	4	0	0	11	55
04:45 PM	9	0	0	0	9	0	24	0	0	24	0	0	4	0	4	7	2	0	0	9	46
05:00 PM	11	0	0	0	11	0	41	0	0	41	0	0	14	1	15	3	9	0	0	12	79
05:15 PM	11	0	0	0	11	0	33	0	0	33	0	0	12	0	12	4	11	0	0	15	71
Total Volume	40	0	0	0	40	0	124	0	0	124	0	0	37	3	40	21	26	0	0	47	251
% App. Total	100	0	0	0		0	100	0	0		0	0	92.5	7.5		44.7	55.3	0	0		
PHF	.909	.000	.000	.000	.909	.000	.756	.000	.000	.756	.000	.000	.661	.375	.667	.750	.591	.000	.000	.783	.794
Western Driveway																		_	_		400
% Western Driveway	100	0	0	0	100	0	100	0	0	100	0	0	100	100	100	100	100	0	0	100	100
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

28 Lord Road, Suite 280 Marlborough, MA

N/S: Site Driveway

E/W: Wells Avenue Newton, MA

File Name: 840 West Driveway at Wells 4-6 PM Wed

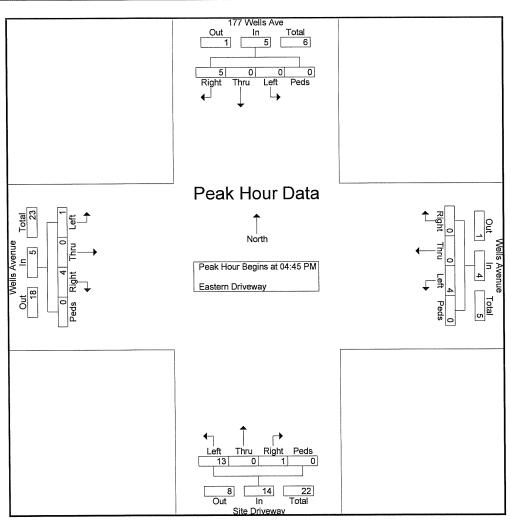
Site Code: 840 Start Date: 7/1/2015

Page No : 1

Groups Printed-Western Driveway - Heavy Vehicles

		181	Wells	Ave			Wel	Is Ave	enue			Site	Drive	eway				lls Av			
		Fre	om No	orth			Fr	om Ea	ast			Fr	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	1	0	0	0	1	0	25	1	0	26	2	0	13	0	15	6	7	2	0	15	57
04:15 PM	2	0	0	0	2	0	21	2	0	23	1	0	9	0	10	1	8	0	0	9	44
04:30 PM	9	0	0	0	9	0	26	0	0	26	0	0	7	2	9	7	4	0	0	11	55
04:45 PM	9	0	0	0	9	0	24	0	0	24	0	0	4	0	4	7	2	0	0	9	46
Total	21	0	0	0	21	0	96	3	0	99	3	0	33	2	38	21	21	2	0	44	202
																					1
05:00 PM	11	0	0	0	11	0	41	0	0	41	0	0	14	1	15	3	9	0	0	12	79
05:15 PM	11	0	0	0	11	0	33	0	0	33	0	0	12	0	12	4	11	0	0	15	71
05:30 PM	7	0	0	0	7	0	19	0	0	19	1	0	8	0	9	4	5	1	0	10	45
05:45 PM	1	0	0	0	1	0	24	1	0	25	1	0	8	2	11	2	3	0	0	5	42
Total	30	0	0	0	30	0	117	1	0	118	2	0	42	3	47	13	28	1	0	42	237
	•																				
Grand Total	51	0	0	0	51	0	213	4	0	217	5	0	75	5	85	34	49	3	0	86	439
Apprch %	100	0	0	0		0	98.2	1.8	0		5.9	0	88.2	5.9		39.5	57	3.5	0		
Total %	11.6	0	0	0	11.6	0	48.5	0.9	0	49.4	1.1	0	17.1	1.1	19.4	7.7	11.2	0.7	0	19.6	
Western Driveway	51	0	0	0	51	0	212	4	0	216	3	0	75	5	83	33	48	3	0	84	434
% Western Driveway	100	0	0	0	100	0	99.5	100	0	99.5	60	0	100	100	97.6	97.1	98	100	0	97.7	98.9
Heavy Vehicles	0	0	0	0	0	0	1	0	0	1	2	0	0	0	2	1	1	0	0	2	5
% Heavy Vehicles	0	0	0	0	0	0	0.5	0	0	0.5	40	0	0	0	2.4	2.9	2	0	0	2.3	1.1

MDM Transportation Consultants, Inc. 28 Lord Road, Suite 280 Marlborough, MA


N/S: Site Driveway E/W: Wells Avenue

Newton, MA

File Name: 840 East Driveway at Wells 4-6 PM Wed

Site Code: 840 Start Date : 7/1/2015

			Wells					ls Ave					Drive	•				ils Avo			
Start Time	Right		Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Ai	nalysis	From (04:00 F	PM to (05:45 PN	/I - Pea	k 1 of '	1													
Peak Hour fo	r Entire	Inters	ection	Begin:	s at 04:4	5 PM															
04:45 PM	2	0	0	0	2	0	0	0	0	0	1	0	4	0	5	1	0	0	0	1	8
05:00 PM	1	0	0	0	1	0	0	1	0	1	0	0	5	0	5	1	0	0	0	1	8
05:15 PM	1	0	0	0	1	0	0	1	0	1	0	0	0	0	0	1	0	1	0	2	4
05:30 PM	1	0	0	0	1	0	0	2	0	2	0	0	4	0	4	1	0	0	0	1	8
Total Volume	5	0	0	0	5	0	0	4	0	4	1	0	13	0	14	4	0	1	0	5	28
% App. Total	100	0	0	0		0	0	100	0		7.1	0	92.9	0		80	0	20	0		
PHF	.625	.000	.000	.000	.625	.000	.000	.500	.000	.500	.250	.000	.650	.000	.700	1.00	.000	.250	.000	.625	.875

28 Lord Road, Suite 280 Marlborough, MA

N/S: Site Driveway at Wells 4-6 PM Wed

E/W: Wells Avenue Site Code : 840
Newton, MA Start Date : 7/1/2015

Page No : 1

Groups Printed-Eastern Driveway

		177	Wells	Ave			Wel	ls Ave	enue			Site	Drive	eway			We	lls Ave	enue		
		Fre	om No	orth			Fı	om E	ast			Fr	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	4	0	0	0	4	0	0	1	0	1	0	0	1	0	1	1	0	1	0	2	8
04:15 PM	2	0	0	0	2	1	0	0	0	1	0	0	0	0	0	0	0	1	0	1	4
04:30 PM	3	0	1	0	4	1	0	0	0	1	0	0	1	0	1	0	0	0	0	0	6
04:45 PM	2	0	0	0	2	0	0	0	0	0	1	0	4	0	5	1	0	0	0	1	8
Total	11	0	1	0	12	2	0	1	0	3	1	0	6	0	7	2	0	2	0	4	26
05:00 PM	1	0	0	0	1	0	0	1	0	1	0	0	5	0	5	1	0	0	0	1	8
05:15 PM	1	0	0	0	1	0	0	1	0	1	0	0	0	0	0	1	0	1	0	2	4
05:30 PM	1	0	0	0	1	0	0	2	0	2	0	0	4	0	4	1	0	0	0	1	8
05:45 PM	1	0	0	0	1	0	0	1	0	1	1	0	4	0	5	0	0	0	0	0	7
Total	4	0	0	0	4	0	0	5	0	5	1	0	13	0	14	3	0	1	0	4	27
	•																				
Grand Total	15	0	1	0	16	2	0	6	0	8	2	0	19	0	21	5	0	3	0	8	53
Apprch %	93.8	0	6.2	0		25	0	75	0		9.5	0	90.5	0		62.5	0	37.5	0		
∵⊤otal %	28.3	0	1.9	0	30.2	3.8	0	11.3	0	15.1	3.8	0	35.8	0	39.6	9.4	0	5.7	0	15.1	

□ Seasonal Adjustment Calculations

									Sub Average												Sub Average												Sub Average
July	Adjustment to Year		0.95		, n. o	6	86.0	ć	0.97			1.00	(100.28)	1.01		1.02	;	1.09	;	1.01	1.03		1.02		ò	0.94		0.95	;	0.94		0.94	0.94
June	Adjustment Adjustment to Year to Year		0.93	6	0.y2		0.96		0.95			0.97		0.97		0.97		0.98		0.98	0.97		0.95		Č	U. 94		0.95		0.93	;	0.94	0.94
May	Adjustment to Year		0.95		0.97	;	96.0		0.96			1.01		0.97		0.98		0.98		0.98	0.98		0.89		,	π.00		0.99		96.0		96.0	0.98
		YEAR	186,197	%0	188,054	%0	187,827	%0	0.1%		YEAR	13,372	1%	13,472	-5%	13,205	%0	13,166	%0	13,121	-0.5%	YEAR	141,027	į	YEAK	135,235	-1%	134,482	-2%	130,446	1%	131,306	-0.5%
RAFFIC		DEC	174,000	4%	187,895	-3%	181,669	-3%	1/6,163		DEC	13,327	-1%	13,225	1%	13,377	-5%	13,136	%0	13,081	Growth	DEC	128,666	1	S E	136,428	%/-	127,100	-1%	125,409	-1%	124,607	Growth
RAGE DAILY 1		AON	176,509	3%	187,378	%0	186,469	-1%	185,233		NON	13,161	2%	13,414	%0	13,434	%0	13,452	-2%	13,217		NON.	140,898		NON I	138,708	-1%	137,526	-3%	129,593	-1%	128,712	
ONTHLY AVE		OCT	186,291	1%	188,694	-5%	185,609	5%	190,128		OCT	13,712	%0	13,733	-5%	13,495	1%	13,679	%0	13,726		OCT	146,271		OCT	137,288	-3%	133,473	-5%	128,923	4%	134,144	
SECTION I - CONTINUOUS COUNTING STATION MONTHLY AVERAGE DAILY TRAFFIC		O.	190,885	1%	193,140	-1%	190,548	%0	191,411		QHS.	14,037	-1%	13,928	-1%	13,778	-2%	13,441	%0	13,462		GT.	141,340		SEP	140,079	-3%	135,767	-1%	132,674	1%	133,978	
NUOUS COUNT		SI IA	194,125	-1%	191,197	3%	196,457	1%	197,467		7.10	13.212	1%	13,338	-5%	13,088	%0	13,103	%0	13,064		AIIG	144,999		AUG	144,937	-5%	142,327	%0	142,140	%0	141,851	
TION I - CONTI		=	196,208	-1%	193,303	-1%	191,419	%0	192,130		=	13.354	%0	13,353	-3%	12,907	%9-	12,127	4.2	12,964		=======================================	138,599		JOF	143,685	-1%	141,706	-1%	139,048	1%	140,057	
SEC		2	199,477	%0	197,594	-1%	195,145	%0	194,612		2	13.817	2,0,0	13.900	-5%	13,655	-1%	13,479	-1%	13,372		=	148,787		NOS	143,114	-1%	141,633	%0	140,277	-1%	138,977	
		> 4	196.834	-1%	193,034	1%	194,846	-1%	193,159	-	کرد ن	13 231	2,01	13.835	-3%	13.476	%0	13,452	%0	13,426		> > > > > > > > > > > > > > > > > > > >	158,583		MAY	135,239	%0	135,880	%0	136,235	%0	136.712	
		F RTE.28	194.334	-1%	192.155	%0	192,337	-3%	187,402	NOT NO COOL	מייי	47 REO	3,000	14.051	-4%	13.518	-1%	13.379	2%	13,591		06-1	142,034	H OF RTE.18	APR	134,354	-1%	133,124	%9-	116.911	13%	131,533	
		-93 - NORTH O	177.697	4%	190,696	%0	190.193	-5%	180,861	H + 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	E.123 - A1 III	MAK 12 201	100'01	13.560	%1-	13 451	%0	13 410	-4%	12.870	Ī	28 SOUTH OF	138,451	RTE.3 - NORT	MAR	124.807	%9	132.301	-1%	129.712	-4%	124 813	1
		STATION 691 - QUINCY - RTE.I-93 - NORTH OF RTE.28	175 000	%0	175.019	%9	185.226	-1%	182,613	100000	STATION 703 - ABING ION - RIE:123 - AI INE BROCKLON C.E.	12 TEB	66 'S'	13 134	70°	12 651	4%	13 151		12.336		STATION 4165 - 1-95/ ROUTE 128 SOUTH OF 1-90	133,659	STATION 6255 - WEYMOUTH - RTE.3 - NORTH OF RTE.18	FEB	123.983	%8	127 637	%1-	125 494	-2%	116 501)
		TATION 691 - C	JAN 173 000	%?-	166 541	%2"	164 007	%6 ':	179,468		TATION 703 - F	JAN	12,251	12 196	56, 130	11 629	25,1	12 181	18,1	12.347		TATION 4165 -	JAIN 130,033	TATION 6255 -	JAN	120 200	%P	125.304	%6-	118 936	48%	123 783	201103
		Ś	g	3	11	=	12	!	13	•		χ 8	ŝ	ç	2	÷	=	7	1	13	2		¥ 2	c.	ΥR	g)	ç	2	12	1	7	2

Average Adjusment Factors 0.95

0.99

0.95

ITALICS = ESTIMATED DATA
MADT

□ Speed Data

Page 1

MDM TRANSPORTATION CONSULTANTS, INC. 28 Lord Road, Suite 280 Marlborough, MA www.mdmtrans.com

Wells Avenue Between Nahanton Street and #1 Wells Avenue Newton, MA

Site Code: 00000770

Northbound																										
- 6	11	t 4	15 16	17 19 18 20	9 21	23	25 26	27 28	30 30	31 33 32 34	3 35 4 36	37 38	39 40	41	£ 4	45 46 4	47 49 48 50	51 52	54	28 22	28	9 09	67 64 62 64	99	L 666	Total
٥	0	0	0	0	1 0			0	-				0	0	0			0	0	0	0			0	0	7
000	000	00	00						0 +				o c	00	00			00	oc	oc	00			00	00	ო
00	0.0	00	0					000	-0,) ,	000	000			000	000	000) O c			00	00	ю ч
00	00	001	00					000	-0:				-00	00	-			> o c		> o c	000) O C	000	+ & E
00,	000	500	200	000				7 = 5	25				7 -	- 2 -	c			000	000	000	000				000	148
	000	000	000					35 -	S 62				- + c	- m -	, 7 -					000	000			00	00	204
000	000	>00	000					22	386) 65 K	- α -							00			00	00	368
700	000	000	>00					60.5	<u> </u>) @ ç	- 0 +	- 0 0					000				00	oc	271
- <u>e</u> (, a c	o N (-1:					\$ 60	888				2 10 0	-00	000				000	000	000			000	, o c	506
2 8 '	11 27	45 9	58 4					104	32.0				941	o c	000				000	000	000			000) O C	963
	000	000	000					42.5	288				~ 9 c	74.	> c				, o c	000) O C			000	000	384
-06	000	000	> 0 0					\$ 8 £	. 46				7 -	- 🕶 🕶	> +- c				000	, o c	000			, o c	000	179
- 0 &	0 0 8	28	83 0 0	0 1 116 133	1 2 3 209	284	2 538	2 791	9 1162 1	6 5 145 754	5 5 4 459	214	- 2 46	- 1 - 2	000	0 4	000	000	000	000	000	000	000	.00	000	37
48	43	58	83	116 133	3 209	284	538	791	1162 1	1145 754	4 459	9 214	94	56	6	4	0 8	0	0	0	0	0	0	0	0	6173
				15th Percentile: 50th Percentile: 85th Percentile: 95th Percentile:			23 MPH 29 MPH 33 MPH 36 MPH																			

29 MPH 0 0.0%

Mean Speed(Average): Number of Vehicles > 55 MPH: Percent of Vehicles > 55 MPH:

Page 2

MDM TRANSPORTATION CONSULTANTS, INC. 28 Lord Road, Suite 280 Marlborough, MA www.mdmtrans.com

Wells Avenue Between Nahanton Street and #1 Wells Avenue	venue n Naha	anton §	Street 8	and #1	Wells	Aven	ne						28 Lc	ord Rt 1arlbo	Lord Road, Suite 280 Marlborough, MA	uite 28 MA	0									C	<u>.</u>	9	1
Newton, MA	, MA												≶	v.md	www.mdmtrans.com	IS.COI	=									מ	Site Code: 000007	de: vu	077000
Southbound	-	Ε:	13	15	17	19	21	23	25	27	29	31	33 3	35 3	37 39	14 4	43	45	47	49	51	53	55	57 58	59 60 60	61 63 62 64	3 65 4 66	5 67 3 999	Total
Time	10	12	14	16	18	7.0	77	54	07	07								2											,
14	c	C	0	0	0	0	0	0	0								0	0	0	0	0 (0 0	0 (00					
00:00		. 0	. 0	. 0	0	0	0	0	0								0	٥,	0 (0 (0 (0 0	> 0	5 6					۷ ،
05:00		0	0	0	0	0	0	0	0								0	٥,	ه د	ه د	٥ د	0.0	> T	> C					
03:00	0	0	0	0	-	0	0	0	0								-	- c	-	> -	-	.		. c					
04:00	0	0	0	0	0	0	2	0	0								4 6	o 6	7 +	- c) C	۰.	, 0					
02:00	0 (0 0	0 0	0 0	0 0	5 0	5 C	9 -		D 4	° ¢		- 6	- c - c	31.	6	4	-	0	0	0	0	0	0	0	0	0	0	509
06:00	، د	- 0	> -	, c	۰ د	> 4	9	- 1	32								8	7	0	0	0	0	0,	0 (
08:00	-	0	-	2	. 0	œ	24	44	22			Ì					-	- '	0 0	0	0 0	0	0 0	-					
00:60		0	0	0	0		80	23	39									70 -	۷,	5)	-	.	-					
10:00	2	-	0	0	-	က	4	13	τ.								4 (4 ,	- c	> c	- c	, c) C	o 0					
11:00	0	0	-	0	0 (CV (P (<u> </u>	57 8										۰ ۵	. 0	0	0	0	0					
12 PM	7	-	0	0	2	უ (۶,	47	F. 9								- 0	•		0	0	0	0	0					
13:00	0 0	0	۰,			۷ ۳	s C	¥ ‡	27								2	0	0	0	0	0	0	0					
14:00	٠,	> <	-	> -	- 0	۰.	<u> </u>	- 4	20								7	o	0	0	0	0	0	0					
15:00	_ <	-	- c	a c	o ~	4 12	D LC	35	e =								-	0	0	0	0	0	0	0					
17:00	> c	-) C	0 0	- 0	,	o 60	**	28									0	0	0	0	0	0 (0 (
18:00	, r,		. 0	0	0	0	က	4	15								2	-	0	0 (۰,	0 0	٥ د	> c					
19:00		0	0	0	0		es	•	o								N		-	-		5 6	- c	-					
20:00	-	0	0	_	-	0	0	က	7								7	> c	۰,	, c	> c	> C	۰.	, c					
21:00	0	0	0	0	0	۰ ۵	-	0 0									٠.	. c	- c			. 0	0	0					
22:00	0	0	0	0	0 0	-	- c	> c	- c								.0		0	0	0	0	0	0					
23:00 Total	- 6 -	2 0	ວທ	۸ م	25	32 0) -	212	341		÷	186 11					46	19	6	-	-	0	τ-	0					υ .
Gr. Total	19	2	5	7	21	35	- = = = = = = = = = = = = = = = = = = =	212	341	634	963 11	1186 11	1108 77	177 41	419 205	5 81	46	19	6	-	-	0	-	0	0	0	-	_	0 6205
Stats					15th Percentile 50th Percentile	centile :		26 31	26 MPH 31 MPH																				
					85th Percentile : 95th Percentile :	rcentile :		38	MPH																				
				Mean	Mean Speed(Average)	erage):		32	32 MPH																				
			Nur Per	ber of Ve cent of Ve	Number of Vehicles > 55 MPH : Percent of Vehicles > 55 MPH :	MPH			%0:0																				

□ Intersection Crash Data

INTERSECTION CRASH RATE WORKSHEET

CITY/TOWN : Newton, M	IA			COUNT DA	ΓE:	Aug-15
DISTRICT: 6	UNSIGN	IALIZED :	Х	SIGNA	LIZED :	
		~ IN	TERSECTIO	N DATA ~		
MAJOR STREET :	Nahanton St	reet				Agent Mark Park
MINOR STREET(S):	Winchester	Street				
INTERSECTION DIAGRAM (Label Approaches)	North Naha	nton Street (3)		ter Street 2)	Nahanton (4)	Street
			PEAK HOU	JR VOLUME:	3	
APPROACH:	1	2	3	4	5	Total Peak Hourly
DIRECTION:	NB	SB	EB	WB		Approach Volume
PEAK HOURLY VOLUMES (AM/PM) :		350	1,263	538		2,151
"K" FACTOR:	0.104	INTERSE		(V) = TOT/ H VOLUME :	AL DAILY [20,683
TOTAL # OF CRASHES	12	# OF YEARS :	5	CRASHES	GE#OF PERYEAR(.):	2.40
CRASH RATE CALC	JLATION :	0.32	RATE =	(A * 1,	000,000) * 365)	
Comments : MassDOT			0.76, Unsigr	nalized = 0.58		
Project Title & Date:	#840 - New	ton				

INTERSECTION CRASH RATE WORKSHEET

CITY/TOWN : Newton, M	A			COUNT DA	ΓE:	Aug-15
DISTRICT: 6	UNSIGN	ALIZED : [SIGNA	LIZED :	X
		~ IN	TERSECTIO	N DATA ~		
MAJOR STREET :	Nahanton Str	eet				
MINOR STREET(S):	Wells Avenue	e				
	***************************************	M-00-14-10-11-1				11.0 (market)
1						
	 		333 Na			
INTERSECTION DIAGRAM	North		Stre (2			
(Label Approaches)	Nahai	nton Street			Nahanton	Street
		(3)			(4)	
			Wells A (1			
		***************************************			 	MANAGEMENT AND
APPROACH :	1	2	PEAK HOU	R VOLUME:	5 5	Total Peak
DIRECTION :	NB	SB	EB	WB	3	Hourly Approach
PEAK HOURLY VOLUMES (AM/PM) :	1,096	178	897	826		Volume 2,997
"K" FACTOR:	0.104	INTERSI	ECTION ADT APPROACH	· /	AL DAILY	28,817
TOTAL # OF CRASHES :	22	# OF YEARS :	5	CRASHES	GE#OF PERYEAR(():	4.40
CRASH RATE CALCU	JLATION :	0.42	RATE =	<u>(A*1,</u>	000,000)	
Comments : MassDOT Project Title & Date:	District 6 Avg		0.76, Unsign	alized = 0.58		

<i>mass</i> 109	DOT	MassDO	T Cra	sh Report	for Ne	wton f	or 20	09-2013										
1						Total	Total						Road Surface				Distance from Nearest Roadway	
sh Number	StVTown Name	Crash Date	Crash Time	Crash Seventy	Number of Vahicles	Nontatal Iniulias	Fatal Iniuries I	Manner of Cullision	Vehicle Action Prior to Cresh	Vehicle Travel Directions	Most Harmful Events /1: Collision with motor	Vehicle Configuration V1: Light truck(van, mini-van,	Contribut	Ambient Light	Weather Condition	At Roadway Intersection	intersection	Non Material Type
				Property damage	,					ls.	rehicle in traffic / V2:	panel, pickup, sport utility) with only four tires / V2.Passenger						
1805	NEWTON	10-Sep-2009	5:12 PM	only (none injured)	2	0	0	Rear-end		reported i	n traffic	car V1: Passanner car / V2:1 inht	Drv	Davlight	Clear(Unknown		NAHANTON STREET	
				Property damage	,	1			V1: Slowing or stopped in	V1:Westbound /	V1: Not reported / V2: Not	truck(van, mini-van, panel, pickup, sport utility) with only				NAHANTON STREET /		
334	NEWTON	30-Jul-2009	4:12 PM	only (none injured)	2	0	0 1	Rear-end	traffic / V2:Travelling straight ahead	V2:Westbound	reported V1: Collision with motor	four tires	Drv	Daylight	Clear	WELLS AVENUE		
				Property damage	,				In Town of the Land	V1:Westbound /	whicle in traffic / V2: Callision with motor vehicle	V1: Passenger car /				NAHANTON STREET /		
5990	NEWTON	29-Sep-2009	5:05 PM	only (none injured)	2	0		Sideswipe, same direction	V1: Traveling straight ahead / V2:Traveling straight ahead	V2 Westbound	in traffic	V2 Passenger car	Dry	Davlight Dark - lighted	Clear	WELLS AVENUE		
4596	NEWTON	17-Feb-2009	9:40 PM	Not Reported	,	0	0	Unknown	V1: Parked	V1:Not reported	V1: Unknown V1: Callision with motor	V1; Passender car	Drv	roadway	Cleat		NAHANTON STREET	-
									V1; Travelling straight ahead /	ŀ	vehicle in traffic / V2: Collision with motor vehicle	V1: Passenger car /						
5721	NEWTON	03-Jun-2009	5:08 PM	Non-fatal injury	2	2	0	Rear-end	V2 Travelling straight ahead	V2:Southbound	in traffic V1: Collision with motor	V2 Passenger car	Drv	Davlight	Clear		NAHANTON STREET	
				Property damag					V1: Parked / V2:Travelling	V1:Southbound /	wehicle in traffic / V2: Collision with parked motor	V1; Passenger car /						
5416	NEWTON	09-Jun-2009	11:58 AM	only (none injured)	2	0	0	Sideswipe, same direction	straight shead	V2:Southhound	vehicle V1: Collision with parked	V2 Passenger car	Wet	Davlight	Rain		NAHANTON STREET	
											motor vehicle / V2: Collision with motor vehicle in traffic /	V1: Passenger car /						
ļ		1		Property damag only (none	•				V1: Travelling straight ahead / V2:Parked / V3:Parked		V3: Collision with motor vehicle in traffic	V2:Passenger car / V3:Passenger car	n _~	Davlight	Clear/Clear		NAHANTON STREET	
1360	NEWTON	17-Jun-2009	2:36 PM	injured	3	10		Rear-end	V1: Traveling straight ahead	reported V1:Northbound	V1: Collision with tree		Dov	Davlight	Clear	NAHANTON STREET / WINCHESTER STREET		
0155	NEWTON	22-May-2009	6:19 PM	Non-fatal injury	-	-	1	Single vehicle crash	V1: Iravelino stratoni anead	VI NOISISCON	VI Considir Wallace	V1: Passenger car V1: Light truck(van, mini-van, panel, pickup, sport utility) with						
											V1: Collision with motor vehicle in traffic / V2:	only four tires / V2:Light truck(van. mini-van. panel.						
				Property damag only (none		-			V1: Travelling straight ahead /	V1:Westbound / V2:Southbound	Collision with motor vehicle	pickup, sport utility) with only	Wet	Davlight	Rain	NAHANTON STREET / WINCHESTER STREET		
3060	NEWTON	24-Jun-2009	6:31 PM	iniured)	- 2	10	0	Anole	V2:Turning left	V2 Southbound	in traffic V1: Collision with motor vehicle in traffic / V2:	V1: Passenger car / V2 Light truck(van, mini-van, panel,						
		1			1	1.			V1: Leaving traffic lane /	V1:Northbound /	Collision with motor vehicle in traffic	pickup, sport utility) with only four tires	Dry	Davlight	Clear/Clear		NAHANTON STREET	
7708	NEWTON	26-May-2009	3:31 PM	Non-fatal injury	12	4	10	Head-on	V2 Travellino straight shead	V2 Southbound	Jane.							
10												V1; Passenger car / V2:Light					1	T
											V1: Callision with motor	truck(van, mini-van, panel, pickup, sport utility) with only]			
											vehicle in traffic / V2: Collision with motor vehicle	four tires / V3:Light truck(van, mini-van, panel, pickup, sport						
				1					V1: Travelling straight ahead /	V1-Northbound /	in traffic / V3: Collision with	utility) with only four tires / V4:Light truck(van, mini-van,			1			1
									V2:Travelling straight ahead / V3:Slowing or stooped in traffic	V2: Southbound /	motor vehicle in traffic / V4: Collision with motor vehicle	panel, pickup, sport utility) with	Dry	Davlight	Clear/Clear	NAHANTON STREET / WELLS AVENUE	1	
1249	NEWTON	29-Jan-2010	3:19 PM	Non-fatal injury	4-	3	0	Angle	/ V4 Travelling straight ahead	V3-Eastbound / V4-Westbound	in traffic	only four tires V1: Passenger car / V2:Light truck(van, mini-van, panel,						
				1					V1: Turning left / V2:Travelling		V1: Other / V2: Collision with	pickup, sport utility) with only	Dev	Davlight	Clear/Clear	NAHANTON ST / WELLS		
3730	NEWTON	11-Oct-2010	8:19 AM	Non-fatal injury Property dama	2 pe	2	0	Angle	straight ahead	V1:Eastbound / V2:Westbound	motor vehicle in traffic	four tires	1	Service III	July 10 Post			
2855	NEWTON	23-Jun-2010	7:57.PM	Property dama only (none injured)	1	0	0	Angle	V1: Parked	V1:Unknown	V1: Collision with unknown movable object V1: Collision with motor	V1: Passenger car	Drv	Davlight	Clear		NAHANTON ST	-
				Property dama	90						vehicle in traffic / V2:							
6047	NEWTON	26-Oct-2010	1:37 PM	only (none injured)	2	l _o	0	Angle	V1: Parked / V2:Backing	V1:Not reported / V2:Eastbound	Collision with parked motor vehicle	V1: Passenger car / V2 Passenger car	Drv	Davlight	Clear		NAHANTON ST	
5984	NEWTON	05-May-201		Unknown	1	0	0	Single vehicle crash	V1: Travelling straight ahead	V1:Northbound	V1: Collision with light pole of other post/support	V1: Tractor/semi-trailer	Dry	Dusk	Clear		NAHANTON STREET	
3004	NGW ON	US-INEV-101	23355	Property dama only (none	ge											NAHANTON ST /		
7451	NEWTON	29-Dec-2010	10.29 AM	Injured) Property dama	1	0	0	Single vehicle crash	V1: Turning left	V1:Eastbound	V1: Collision with tree	V1: Passenger car	Drv	Dawn	Clear/Clear	WINCHESTER ST		1
	NEWTON	29-Sep-201	9.06 AM	only (none injured)	,	l _n	0	Sideswipe, same direction	V1: Travelling straight ahead	V1 Eastbound	V1: Collision with utility pole	V1: Passenger car	Drv	Davlight	Clear/Clear	NAHANTON ST / WINCHESTER ST		
9139	HEWICH	720-360-201	, 0.0071111	Property dama only (none	ge	1						V1: Light truck(van, mini-van, panel, pickup, sport utility) with		Dark - roadway		WINCHESTER STREET /		
32876	NEWTON	03-Feb-2016	5:28 AM	iniured)	1_	0	-	Single vehicle crash	V1: Travelling straight ahead	V1:Southbound	V1: Collision with curb	only four tires	Snow	not lichted	Snow	NAHANTON STREET		
011														,		,	,	
			1	Property dama	ioe						V1: Collision with motor vehicle in traffic / V2:	V1: Passenger car / V2:Light buck(van, mini-van, panel,			1	NAHANTON ST. / WELLS		
13739	NEWTON	D4.8491-201	8:10 AM	only (none	,			Angle	V1: Turning left / V2:Travelling straight shead	V1:Southbound / V2:Eastbound	Collision with motor vehicle in traffic	pickup, sport utility) with only four tires	Dry	Davlight	Clear	AVE.		
13/36	NEWTON	0-4101					1					V1: Light truck(van, mini-van, panel, pickup, sport utility) with	1	İ			NAHANTON ST	P3:Pedestrian
23430	NEWTON	11-May-201	1 5:49 PM	Non-fatal injur	v 1	1	0	Not reported	V1: Backing	V1:Southbound	V1; Collision with pedestrian	only four tires V1: Light truck(van, mini-yan,	Not reported	Not reported	Not Reported		INAMANTON ST	T U.T GOLDON
36959	NEWTON	29-Jun-201	00:00 AM	only (none	1			Not reported	V1: Travelling straight ahead	V1:Northbound	V1: Collision with tree	panel, pickup, sport utility) with onty four tires	Not reported	Not reported	Not Reported		NAHANTON ST	
30936	REWIGH	20-0411-201	00.00 1311					1			V1: Collision with parked	V1: Passenger car / V2:Light truck(van, mini-van, panel,						
01265	NEWTON	14-Nov-201	1 6:01 PM	Not Reported	,			Head-on	V1: Parked / V2:Unknown	V1:Unknown / V2:Unknown	motor vehicle / V2: Collision with parked motor vehicle	pickup, sport utility) with only four tires	Drv	Unknown	Clear		NAHANTON ST	
01203	NET TON	14-140-201										V1: Light truck(van, mini-van, panel, pickup, sport utility) with only four tires / V2:Light	h .		Sleet, hall (freezing			
			1								V1: Collision with motor vehicle in traffic / V2:	truckivan, mini-van, panel,			rain or drizzle)/Sleet	NAHANTON ST /		
89802	NEWTON	08-Feb-201	1 232 PM	Not Reported	,			Sideswipe, opposite direction	V1: Travelling straight ahead / V2:Travelling straight ahead	V1:Northbound / V2:Southbound	Collision with motor vehicle in traffic	pickup, sport utility) with only four tires	Wet	Davlight	hail (freezing rain or drizzle)	WINCHESTER ST		
Journal	11000			Property dam only (none	age								1.	Dark - lighted	Snow/Sleet, hali (freezing rain or		WINCHESTER STREET / NAHANTON STREET	1
11213	NEWTON	01-Anr-201	1 4:39 AM	Injured)	1	0	0	Single vehicle crash	V1: Travelling straight shead	V1:Southbound	V1: Collision with tree	V1: Passender car	Snow	roadway	drizzie)	1	TRANSPORT STREET	
012												V1: Light truck(van, mini-van,					T	
			T	Property dam	age						V1: Collision with motor wehicle in traffic / V2:	panel, pickup, sport utility) wit	h			NAHANTON ST / WELLS		
19344	NEWTON	26_1(1.201	8-02 AM	anly (nane	2	0.	0	Anole	V1: Travelling straight ahead a V2:Tuming left	V1:Northbound / V2:Southbound	Collision with motor vehicle in traffic	only four tires / V2:Passenger car	Drv	Davlight	Cloudy	AVE NAHANTON ST/WELLS		
	1	1	T	Property dam	age						V1: Collision with motor vehicle in traffic / V2:	l		Post and		NAHANTON ST / WELLS		
21053	NEWTON	Q8_Dac-20	12 5:26 PM	only (none	2	0	0	Angle	V1: Turning left / V2:Travelling straight ahead	V1:Westbound / V2:Eastboun	Collision with motor vehicle in traffic	V1: Passenger car / V2:Passenger car	Wet	Dark - lighted roadway	Cloudy	AVE AVE		
21953	NEWTON	3,5,500-20	- maximum			T	1					V1: Light truck(van, mini-van, panel, pickup, sport utility) wi	th					
				Property dam	age						V1: Collision with motor vehicle in traffic / V2:	only four tires / V2:Light truck(van, mini-van, panel, pickup, sport utility) with only	1		1			1
84972	NEWTON	11,8400.00	12 5 33 PM	only (none	- 2	0		Angle	V1: Travelling straight ahead V2:Backing	/ V1:Southbound / V2:Westbound	Collision with motor vehicle in traffic	four tires	Drv	Davlight	Clear		WELLS AVE	
	ACM LUN	mav-20		Property dan	age	Ť	T		V1: Slowing or stopped in		V1: Collision with motor vehicle in traffic / V2:	V1: Light truck(van, mini-van, panel, pickup, sport utility) wi only four tires / V2 Passenge	eh		1			
70004	Lumarra.	27 5	12 9:07 AM	only (none	- 4-		le.	Rear-end	traffic / V2:Slowing or stoppe in traffic	V1:Unknown / V2:Unknown	Collision with motor vehicle in traffic	only four tires / V2:Passenger car	Drv	Davlight	Clear/Clear		WELLS AVE	
70221	NEWTON	27-Sep-20	L DUI AM	Property dam	200	٦	ľ				V1: Collision with motor vehicle in traffic / V2:							
n.o.c	NEWSTON:	17.0	p.er	only foone			,	Angle	V1: Travelling straight shead V2:Turning left	V1:Eastbound / V2:Eastbound	Collision with motor vehicle in traffic	V1: Passenger car / V2:Passenger car	Dry	Davlight	Clear		WELLS AVE	
B1012 09655	NEWTON NEWTON	14-Dec-20	12 10 46 A	M Not Reported	- <u> </u>	ő	O	Unknown	V1: Parked	V1:Unknown	V1; Unknown	V1: Not reported V1: Light truck(van, mini-van,	Drv	Davlight	Clear/Clear	-	WELLS AVE	
				pt=4 27	. .		_	Rear-end	V1: Parked	V1:Reported but invalid	V1: Collision with parked motor vehicle	panel, pickup, sport utility) wi only four tires	Drv	Dark - lighted roadway	Cloudy		WELLS AVE	
28843	NEWTON	21-Dec-20	12 7:43 PN	Not Reported		I_	10											
013								Т	T		V1: Collision with motor	V1: Passenger car / V2:Light		T	T			Т
				Property dan	nage			1	V1: Turning left / V2:Travellin		vehicle in traffic / V2: Collision with motor vehicle	truck(van, mini-van, panel, pickup, sport utility) with only	.			NAHANTON ST/WELLS		
56762	NEWTON	01-Aun-20	13 7:20 AN	only (none injured)	2	0	0	Angle	straight ahead	V1:Westbound / V2:Eastbour	v1: Collision with cyclist	tour tires	Drv	Davlight	Clear/Clear	AVE		
		l		t blos formi				Angle	V1: Turning left	V1:Eastbound	(bicycle, tricycle, unicycle, pedal car)	V1 Passenger car	Drv	Davlight	Clear/Clear	NAHANTON ST/WELLS AVE		
556772	NEWTON	11-Aug-20	13 9.06 AM	A Non-fatal ini		-1,-	ľ	1446				V1: Passender car V1: Light truck(van, mini-van panel, pickup, sport utility) w	ith					
									V1: Slowing or stopped in		V1: Collision with motor vehicle in traffic / V2:	enty four tires / V2:Light truck(van, mini-van, panel,				1		
	1				_ _	١.		Bass on 4	traffic / V2:Travelling straight	V1:Eastbound / V2:Eastboun	Collision with motor vehicle d in traffic	pickup, sport utility) with only		Davlight	Clear	NAHANTON ST / WELLS AVE		
665345	NEWTON	19-Nov-20	13 8:39 AA	Property dar				Rear-end	HIDAN	- Campoino / V. Essenduri	T	V1: Light truck(van, mini-van panel, pickup, sport utility) w	ith			NAHANTON ST /		
	NEWTON	06-Apr-20	13 621 P	anly (none	,	lo		Single vehicle crash	V1: Turnino left	V1:Northbound	V1: Collision with tree	only four tires	Drv	Davlight	Clear	WINCHESTER ST		
385996			T								V1: Collision with motor vehicle in traffic / V2: Collision with motor vehicle		1			NAHANTON ST /		
385996		20.11-12	013 8 09 AF	M Non-tatal ini	urv 2			Angle	V1: Turning left / V2:Travellin straight ahead	v1:Southbound / v2:Westbound	in traffic	V1: Passenger car / V2 Passenger car	Dry	Davlight	Cloudy/Cloudy	WINCHESTER ST		
	NEWTON							- 1	1			1			1	1		
385996 428273	NEWTON	ZO-MaV-2	- 1	- 1	- 1	- 1	- 1		1	i i	vehicle in traffic / V2:				1	1		
	NEWTON	70-1124-2		Property day	mage				V1: Travelling straight ahead V2:Entering traffic lane /	/ V1:Westbound / V2:Westbound /	in traffic / V3: Collision with	h V2:Passenger car /				NAHANTON ST /		
	NEWTON		013 1:10 PI	only (none	mage 3	0		Angle	V1: Travelling straight ahead V2:Entering traffic lane / V3:Slowing or stopped in tra	V1:Westbound / V2:Westbound / V3:Westbound	Collision with motor vehicle in traffic / V3: Collision with motor vehicle in traffic	V2-Passenger car / V3-Passenger car	Drv	Daylight	Clear	NAHANTON ST /		
128273				only (none viniured)	3	0	0	Anale Sinale vehicle crash	V3: Slowing or stagged in tra	ffic V3 Westbound	in traffic / V3: Collision with	h V2Passengercar/	Drv Drv	Daylight Daylight	Clear/Clear	NAHANTON ST / WINCHESTER ST NAHANTON ST / WINCHESTER ST		

84D Cresh Data Combined xis

□ Public Transportation Information	

PRICE PERTRIP Local 80s Bus + Bus Papid Bus + Bus CharlleCard \$1.60 \$1.60 \$2.10 \$2.10 CharlleTicket \$2.10 \$2.10 \$2.15 \$2.17 CharleTicken+ \$2.10 \$2.65 \$4.75 \$2.15 \$2.17 Senior/TAP** \$0.80 \$1.05 \$1.10 \$1.10 \$1.10 UNLINITED TRIP PASSES \$0.80 \$1.05 \$1.10 \$1.20 \$1.20 1-Day \$112.00 \$19.00 \$12.00 \$1.20 \$1.20 Monthly \$50.00 \$50.00 \$575.00 \$75.00 \$75.00		a		(B)	
rd \$1.60 \$1.60 \$2.10 ket \$2.10 \$2.10 \$2.65 Soard \$2.10 \$4.20 \$2.65 \$0.80 \$0.80 \$1.05 \$12.00 \$12.00 \$12.00 \$5 \$12.00 \$12.00 \$12.00 \$5 \$50.00 \$12.00 \$12.00 \$5 \$10.00 \$12.00 \$12.00 \$5 \$10.00 \$12.00 \$12.00 \$5 \$10.00 \$12.00 \$12.00 \$5 \$10.00 \$12.00 \$12.00 \$5 \$10.00 \$12.00 \$12.00 \$5 \$10.00 \$12.00 \$12.00 \$5 \$10.00 \$12.00 \$12.00 \$5 \$10.00 \$12.00 \$12.00 \$5 \$10.00 \$12.00 \$12.00 \$5 \$10.00 \$12.00 \$12.00 \$12.00 \$5 \$10.00 \$12.00 \$	PRICE PER TRIP	Local Bus	Bus + Bus	Rapid Transit	Bus + Rapi Transit
S2.10 S2.15 S2.65	CharlieCard	\$1,60	\$1.60	\$2.10	\$2.10
90ard \$2.10 \$4.20 \$2.65 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	CharlieTicket	\$2.10	\$2,10	\$2.65	\$4.75***
\$0.80 \$0.80 \$1.05 P** \$0.80 \$0.80 \$1.05 DTRIP PASSES \$12.00 \$12.00 \$12.00 \$5100 \$5100 \$5100 \$100 \$100 \$100 \$100	Cash-on-Board	\$2.10	\$4.20	\$2.65	\$4.75***
Fig. 10 Fig. 10 Fig. 10	Student*	\$0.80	\$0.80	\$1.05	\$1.05
ITED_TRIP_PASSES	Senior/TAP**	\$0.80	\$0.80	\$1.05	\$1.05
\$12.00 \$12.00 \$12.00 \$12.00 \$19.00 \$19.00 \$19.00 \$19.00 \$19.00 \$75.00 \$75.00 \$77.00 \$19.00 \$77.00 \$19.00 \$1	UNLIMITED TRIP	PASSE5			
\$19.00 \$19.00 \$19.00 \$19.00 \$19.00 \$19.00 \$75.00 \$75.00 \$77.00	1-Day	\$12.00	\$12.00	\$12.00	\$12.00
Monthly \$50.00 \$50.00 \$75.00 \$75.00 Serior/JAP Monthly\$29,00/month for unlimited travel on	7-Day	\$19.00	\$19.00	\$19,00	\$19,00
Senior/TAP Monthly\$29,00/month for unlimited travel on	Monthly	\$50.00	\$50.00	\$75.00	\$75.00
	Senior/TAP Mon	thly\$29.00/	month for L	inlimited t	ravel on

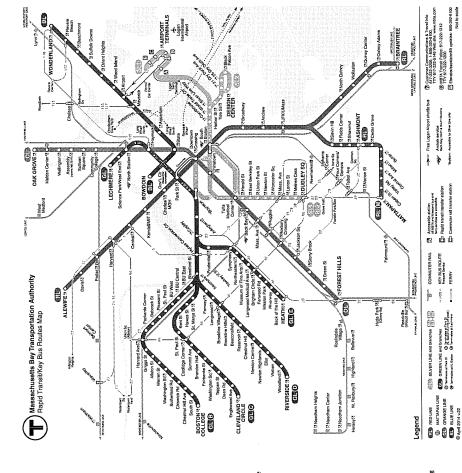
VALID PASSES: LinkPass (\$75/mo.); StudentPass* (\$26/Month for 5-Day validity Mon. - Fri. or 7 day validity on all days); Senior/TAP Pass* (\$29/mo.); and express bus, commuter rail, and boat passes.

Blind Access CharlieCard holders ride free: if using a guide, the guide rides free FREE FARES: Children 11 and under ride free when accompanied by an adult;

- * Available to students through participating middle schools and
 - ** Available to Medicare cardholders, seniors 65+, and persons with disabilities. high schools.
- *** For Silver Line SL4 or SL5 pay \$2.65. Also see "transfers."

If paying with a ChalleTidest or CharlleCard, discounted transfers that are available are automatic—just use the same ficted or end throughout your retp. If paying with cash onboard a vehicle, free transfers are only allowed between rapid transit lines, and in either of the following cases you must ask for a transfer ticket from the operator before paying your fare:

- Bearding There Lines List or SIS and transferring to other rapid transit.


- Bearding as farebox aboard the Green Line or SiNer Lines and transferring to SiNer Line SIA or SIS later in your trip. TRANSFERS

Free transfers between the Mattapan High Speed Line and the Red Line at

Schedules are available at the following stations: Park Street, Airport, Malden, Harvard, Government Centel (Green Une Level), Back Bay, Downtown Crossing (Dorage Une Level), and Quincy Center, or ask a Customer Service Agent. Schedules are also available at Boston (tity Hall, the State Transportation Building Library (10 Park Plaza), 45 High St, and online at mbta.com. SCHEDULES

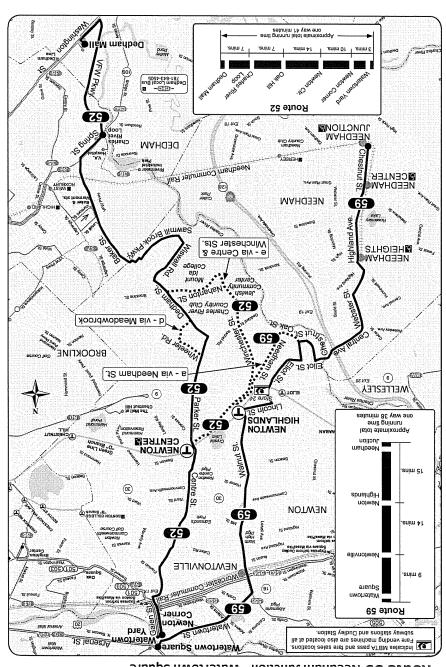
.. Hog ... KEY BUS ROUTE Frequed Sewice

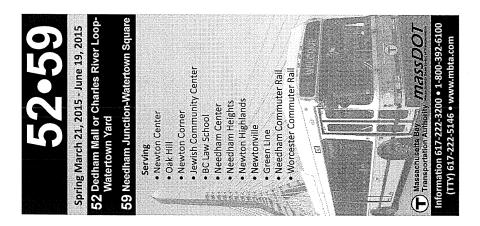
4 (CIN) OHEEN LINE and branchos

(i) Turnings of Park 8: (i) (VI) (Park 6 (Line)) (ii) (Park 6 (Line)) (iii)

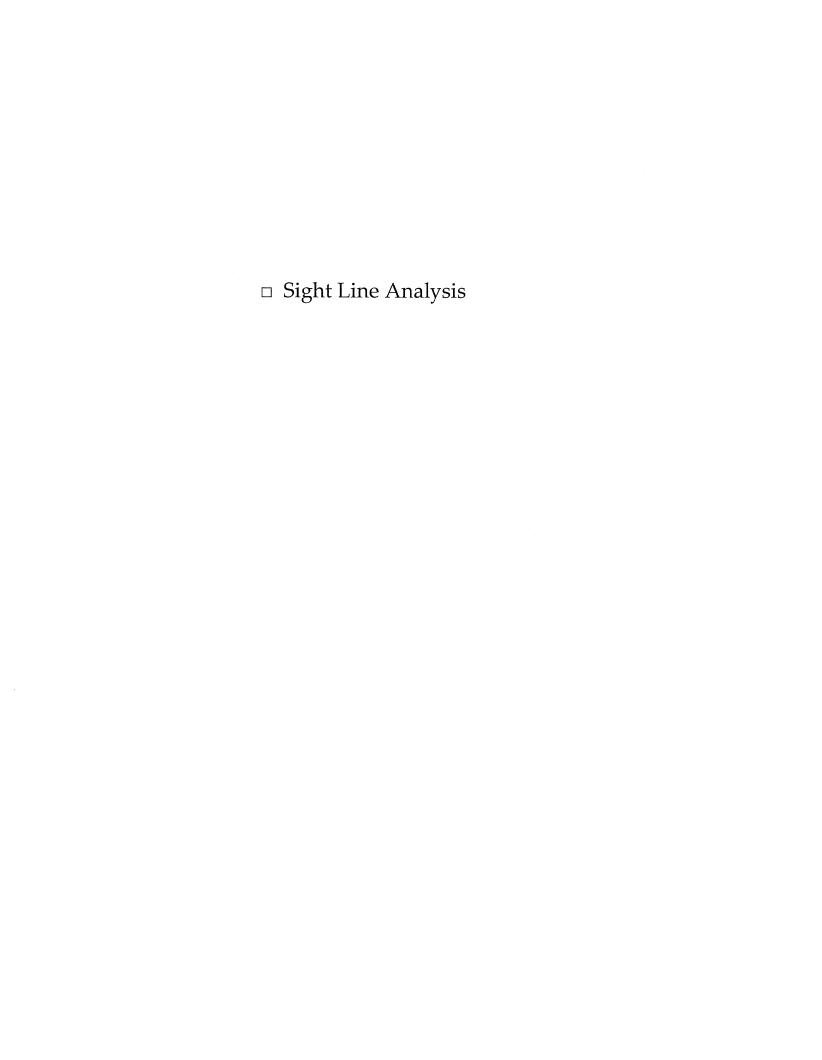
Ô Orange Line Green Line

Spring March 21, 2015 - June 19, 2015





Information 617-222-3200 • 1-800-392-6100 (TTV) 617-222-5146 • www.mbta.com


			ter	Blue e om	ry 20	ig at nent	m ⊆	s run	ays.			di _	Φ	pu			
Schodulo Boriode (approximate):	sh Hour: 6:30 AM - 9:00 AM Midday: 9:00 AM - 3:30 PM sh Hour: 3:30 PM - 6:30 PM	Evening: 6:30 PM - 8:00 PM Late Night: 8:00 PM - CLOSE Government Center:	Due to the closure of Government Center Station, please use Orange Line and	Haymarket Station to transfer between Blue and Green Lines. For travel around the Government Center area walking to/from	a nearby station will often be fastest. A shuttle bus (Rt. 608) also operates every 20	minutes from 5:20AM – 1:00AM, starting at Haymarket and serving State, Government	Center, and Bowdoin Stations, / days a week. Shuttle operates until 2:304M on Friday/Saturday nights, and begins at 6:004M on Sundays.	Green Line Notes: *The first two "C" Line AM inbound trips run	through to Lechmere Station on weekdays.	instruction on weekends.		all trips on weekends. Except the last trip on Friday and Saturday will run to/from Park Street Station.	w - Last trips wait at some stations, primarily in the Downtown area, for connecting service. Departure times are	approximate. * Silver Line - For AM rush 8 minutes and for the PM rush 10 minutes		Spring 2015 Holidays April 20: see Weekday May 25: see Sunday	
Schodulo	AM Rush Hour: Midday: PM Rush Hour:	E Late Governm	Due to the Station, ple	Haymarkel and Green Governme	a nearby s	minutes fro Haymarkel	Center, and Bowdoin week. Shuttle opera Friday/Saturday nigh	Green Line Notes. *The first two "C" Lir	through to	inbound tri Lechmere	*The "D" L North Stat	all trips on weekend on Friday and Satur Park Street Station.	w - Last tri primarily in connecting	* Silver Line		April 20	
	Last Trip	12:15AM 12:18AM	w12:22AM w12:30AM	w1:05AM 12:53AM	12:26AM	w1:00AM	w12:30AM w12:35AM	12:10AM		12:00AM	12:30AM w12:47AM	12:45AM 12:30AM	12:34AM w12:48AM	1:01AM	12:20AM 12:40AM	S	
	Late Night Service	16 min 16 min	16 min 16 min	26 min 26 min	13 min	13 min	10 min 10 min	10 min	10 min	0 0 0 0 min 1 min	12 min 12 min	8 min 8 min	15 min 15 min	8	20 min 20 min	9 mim 9	
Sunday	Evening Service	16 min 16 min	16 min 16 min	12 min 12 min		9 min	10 min 10 min	7 min 7	, , ,			8 min	15 min 15 min	SL1/SL2	15 min 15 min		
Ś	P.I Pe Sen	16 min 16 min	16 min 16 min	12 min 12 min	ł	e r	10 min 10 min	0 mim o		2		8 min	15 min 15 min	Use	15 min 15 min		
	A.M. First Peak Trip Service	6:08AM 16 min 6:00AM 16 min	6:00AM 16 min 6:00AM 16 min	6:03AM 26 min 5:51AM 26 min	i	6:03AM 13 min 6:21AM 13 min	6:00AM 13 min 6:00AM 13 min	5:20AM* 10 min 6:06AM 10 min				5:50AM 12 min 6:12AM 12 min	6:50AM 15 min 6:35AM 15 min	6:05AM	6:02AM 15 min 6:20AM 15 min	6:00AM 10 min 6:15AM 10 min	
-	Last F Trip 1					w 2:29AM 6:3						2:00AM 5::	12:35AM 6::	6:0 w 2:30AM	2:20AM 6:0		
	Late Night I Service	14 min w 2:10AM 14 min 1:52AM	14 min w 2:15AM 14 min w 2:07AM	26 min w 2:45AM 26 min 2:33AM		13 min 2: 13 min w 2:	10 min w 2:13AM 10 min w 2:13AM	11 min 1:48AM	10 min 1:4	10 min w 2:25AM 10 min 1:43AM 10 min w 2:30AM	10 min 2: 10 min w 2:	12 min 2:0 12 min 2:1	15 min 12:3 15 min 12:4	w 2:3	20 min 2:2 20 min 2:0	>	
rdav	D 41	14 min 1 14 min 1	14 min 1 14 min 1	12 min 2 12 min 2		9 min 9 min 1	10 min 1	7 min 7				12 min 1	15 min 1 15 min 1	se SL1/SL2	15 min 2 15 min 2		
Saturday	P.M. Peak Service	14 min 14 min	14 min 14 min	12 min 12 min	e o	9 min	8 min 8 min	7 min 7 min	8 min			12 min 12 min	15 min 15 min	Use SL	15 min 15 min	10 min 10 min	
	A.M. Peak Service	/ 14 min / 14 min	1 14 min 1 14 min	A 26 min A 26 min	1 9 min		A 10 min	/* 7 min 7 m		10 min 10 min 10 min	A 10 min A 10 min	A 12 min A 12 min	/ 15 min / 15 min	5	4 15 min 4 15 min		
	First / Trip	M 5:24AM 5:15AM	M 5:16AM 5:16AM	M 5:15AM 5:05AM		M 5:13AM M 5:29AM	M 5:16AM M 5:16AM	M 4:45AM*				7.5:33AM 7.5:35AM	M 6:10AM M 5:50AM	5:28AM	5:23AM 5:40AM		
	Last y- Trip ay Friday	12:15AM w 2:10AM 12:18AM 1:52AM	и w 2:15A и w 2:07A	1 w 2:45AM 1 2:33AM	1	7 2:10AM 1 w 2:30AM	M w 2:13A	12:10AM 1:48AM	1:40AI	w12:46AM w 2:25AM 12:05AM 1:43AM	M 2:15AM M v2:11AM	7 2:03AM		w 2:30AM	2:20AM 2:05AM	>	
	Last Trip Monday- e Thursday		12 min w12:22AM w 2:15AM 12 min w12:30AM w 2:07AM	w1:05AM 12:53AM		12:40AM w1:00AM	10 min w12:30AM w 2:13AM	12:10AN	12:10AM 1:40AM	w12:46AN 12:05AN		12:44AM 12:30AM		12:53AM	12:20AM	min 12:48AM min w1:02AM	
787	Late ng Night se Service	12 min 12 min		12 min 12 min	1	10 min 10 min			e e	e of the contract of the contr		12 min 12 min	15 min 15 min	SL1/SL2	20 min 20 min	5 5	
Wookday	ay Evening ce Service	iin 12 min iin 12 min	in 12 min in 12 min	in 12 min in 12 min	6	in 9 min in 9 min	iin 10 min	1				iin 8 min 8 min	in 9 min in 9 min	Use SL1	in 15 min in 15 min		
	sh ur Midday rice Service	9 min 14 min 9 min 14 min	nin 14 min nin 14 min	nin 8 min nin 8 min	6	5 min 9 min 5 min 9 min	nin 8 min	0 00		6 min 8 min 7 min 8 min 7 min 8 min		nin 8 min	min 10 min min 10 min	min U	min 15 min nin 15 min		
	Rush First Hour Trip Service	5:24AM 9 m 5:15AM 9 m	5:16AM 9 min 5:16AM 9 min	5:17AM 5 min 5:05AM 5 min	1	5:13AM 5 min 5:29AM 5 min	5:16AM 6 min 5:16AM 6 min	1		5:55AM 6 min 4:56AM 7 min		5:38AM *8 min 5:40AM *8 min		5:28AM 5 m 5:35AM 5 m	5:20AM 10 min 5:40AM 10 min		
_	Rapid Transit Line	Red Line Alewife Braintree		"M" Ashmont 5		Orient Heights 5 Bowdoin 5	e Line	Green Line "B" Boston College 5	Sircle	*"D" Riverside		Silver Line SL1 Logan Airport 5	-	Additional Waterfront-only service Silver Line Way 5 South Station 5	SL4 Dudley Station 5		

Route 52 Dedham Mall or Charles River Loop - Watertown Yard Route 59 Needham Junction - Watertown Square

State Scattler Ward Ward State State Ward War
No Route 52 service on Saturday or Sunday Route 52

Stopping Sight Distance - Posted

		SPEED (MPH)	BRAKE REACTION DISTANCE (FT)	BRAKING DISTANCE (FT)	CALCULATED STOPPING SIGHT DISTANCE (FT)
Direction 1	NB	30	110.25	86.3	196.5
Direction 2	SB	30	110.25	86.3	196.5

INPUTS	Direction 1	Direction 2
Travel Direction	NB	SB
Speed	30	30
Grade	0	0
t	2.5	2.5
а	11.2	11.2

Stopping Sight Distance (SSD) - Source: AASHTO

SSD = Reaction Distance + Brake Distance

Reaction Distance = 1.47 x t x V

Brake Distance = $V^2 / (30 \times ((a/32.2)+G))$

Where:

t = reaction time (sec)

V = travel speed (mph)

G= roadway grade a - deceleration rate (ft/sec^2)

Stopping Sight Distance - Average

		SPEED (MPH)	BRAKE REACTION DISTANCE (FT)	BRAKING DISTANCE (FT)	CALCULATED STOPPING SIGHT DISTANCE (FT)
Direction 1	NB	29	106.575	80.6	187.2
Direction 2	SB	32	117.6	98.1	215.7

<u>INPUTS</u>	Direction 1	Direction 2
Travel Direction	NB	SB
Speed	29	32
Grade	0	0
t	2.5	2.5
а	11.2	11.2

Stopping Sight Distance (SSD) - Source: AASHTO

SSD = Reaction Distance + Brake Distance

Reaction Distance = 1.47 x t x V

Brake Distance = $V^2 / (30 \times ((a/32.2)+G))$

Where:

t = reaction time (sec)

V = travel speed (mph) G= roadway grade

a - deceleration rate (ft/sec^2)

Stopping Sight Distance - 85th Percentile

		SPEED (MPH)	BRAKE REACTION DISTANCE (FT)	BRAKING DISTANCE (FT)	CALCULATED STOPPING SIGHT DISTANCE (FT)
Direction 1	NB	33	121.275	104.4	225.6
Direction 2	SB	35	128.625	117.4	246.0

INPUTS	<u>Direction 1</u>	Direction 2
Travel Direction	NB	SB
Speed	33	35
Grade	0	0
t	2.5	2.5
а	11.2	11.2

Stopping Sight Distance (SSD) - Source: AASHTO

SSD = Reaction Distance + Brake Distance

Reaction Distance = 1.47 x t x V

Brake Distance = $V^2 / (30 \times ((a/32.2)+G))$

Where:

t = reaction time (sec)

V = travel speed (mph)

G= roadway grade

a - deceleration rate (ft/sec^2)

Intersection Sight Distance Calculations

Source: A Policy on Geometric Design of Highways and Street, 6th Edition; AASHTO; 2011.

ISD = 1.47 * V * t

V = speed t = time gap

t = 7.5 s for a passenger car for Left Turn from a Stop t = 6.5 s for a passenger car for Right Turn from a Stop

Posted (Advisory) Speed Limit

Proposed Site Driveway ISD = 1.47 * 30 * 7.5 = 331ft SAY 335 ft (left-turn from a stop)

Proposed Site Driveway ISD = 1.47 * 30 * 6.5 = 287ft SAY 290 ft (right-turn from a stop)

□ Kendrick Street In	terchange	

fassDOT Home | About Us | Employment | Contact Us | Site Policies

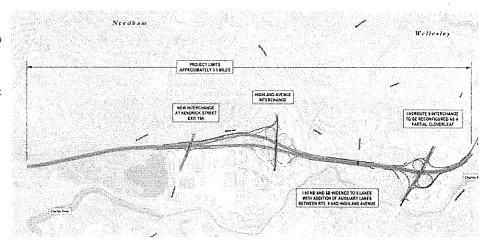
The Official Website of The Massachusetts Department of Transportation - Highway Division

Mass. Gov

Needham-Wellesley I-95 Add-A-Lane

Home > Highlighted Projects > Needham-Wellesley I-95 Add-A-Lane

Project Area


The work on I-95 begins approximately 1,000 feet north of the Needham Branch RR Bridge in Needham and continues to 5,000 feet north of Route 9 in Wellesley, approximately 3.8 miles.

Project Overview

This project is the sixth and final contract to provide an additional travel lane and shoulder toward the median on I-95 from approximately Route 24 in Randolph to Route 9 in Wellesley. This widening includes restoring the breakdown lanes for their intended use. This sixth contract is a 3.8-mile segment of I-95 from just north of the Needham Branch railroad bridge in Needham to about 5,000 feet north of Route 9 in Wellesley.

Work under this project includes:

- ▶ Additional travel lane and shoulder to I-95 northbound and southbound toward the median along the entire length of the project.
- A new interchange at Kendrick Street and two collector-distributor roads connecting Kendrick Street and Highland Avenue.
- ▶ Seven new noise barriers.
- Upgrades to the interchanges at Highland Avenue and Route 9 to improve safety and mobility to reduce traffic diversions to local roads.
- Two additional auxiliary lanes between Highland Avenue and Route 9.

- ▶ Four new bridges: Kendrick Street over I-95, a new flyover ramp at the Kendrick Street interchange, Highland Avenue over Route 128, and I-95 over Route 9.
- ▶ Widening of the bridge carrying Central Avenue over I-95.

Project Status

Barletta Heavy Division, Inc. is the prime contractor. Construction began in January 2015 and is expected to be completed in Spring 2019. MassDOT established an interim milestone requiring a portion of the new Kendrick Street Interchange to be open to traffic in Fall 2016.

The project has been split into five major stages to minimize impacts to the traveling public. Stage 1 (January 2015 to October 2015) includes the following:

- ▶ Widening the northern half of the Kendrick Street Bridge while maintaining the existing three lanes on the structure.
- ▶ Building Kendrick Street ramp bridge to I-95 NB.
- ▶ Commencing construction of the new Highland Street Bridge while maintaining traffic on the existing spans.
- ▶ Initial construction at the interchange of I-95 and Route 9.
- ▶ Demolition of the railroad bridge over I-95.

Current Construction Activities: Week of August 3rd

Throughout the week of August 3, 2015, Barletta Heavy Division (BHD), MassDOT's contractor for the Route 128 Add-a-Lane Bridge V project, will continue construction operations. Work will be performed during both the standard working hours of 7:00AM to 3:00PM and third shift of 7:00PM to 5:00AM.

During the third shift, construction activities will be located on both Route 9 and Route 128 mainline and require the closure of two highway lanes, which is prohibited during standard working hours. Work on the mainline will include the installation of drainage in the median south of Kendrick Street and from the Railroad Bridge to Central Avenue, and the drainage component for a temporary cross over lane

Within standard working hours, work will take place on the Kendrick Street Bridge, Central Avenue Bridge, and the Highland Avenue Bridge. At the Kendrick Street Bridge, the work will continue on the installation of walls, and forming, reinforcing, and pouring the west abutment wall, and work will continue on setting the bearings and setting the structural steel. Furthermore, the installation of the utility

racks and hanger will commence.

At Highland Avenue, work will conclude on forming and reinforcing of the east abutment walls, and pouring of the east abutment wall will commence. Work will conclude on striping the west abutment, and the backfill and preload of the west abutment will commence. Finally, striping and shoring of the pier caps will commence.

At the Central Avenue Bridge site, excavations and lagging for the central arch will be undertaken.

At Route 9, work will conclude on the installation of the mast arms and strain pole foundations, and the installation of the traffic controller foundations and cabinets will begin. Work will commence on the removal of the center median and the construction of the left-turn lanes.

It should be noted that in early September, the left-turn lanes and the cross over will be activated on Route 9. More information will provided when a date has been set. Please share this information with neighbors, friends, co-workers, family members or anyone else you think may benefit from it.

Upcoming Meetings

No meetings are planned at this time.

Getting Involved

Please sign up for e-mail updates on the project. Send questions and comments to: NWi95@dot.state.ma.us

For additional information, please contact:

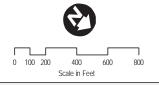
Nathaniel Curtis, Howard/Stein-Hudson, Public Involvement Specialist

Tel: (617)482-7080 x236

or

Trish Foley

MassDOT Legislative Liaison for Norfolk & Bristol Counties


Tel: 857-368-8907

Select Language ▼ Powered by Microsoft Translator | <u>Translation Support</u>

MassDOT Home | About Us | Employment | Contact Us | Site Policies | Project Info

Copyright © 2015 Commonwealth of Massachusetts

Legend:

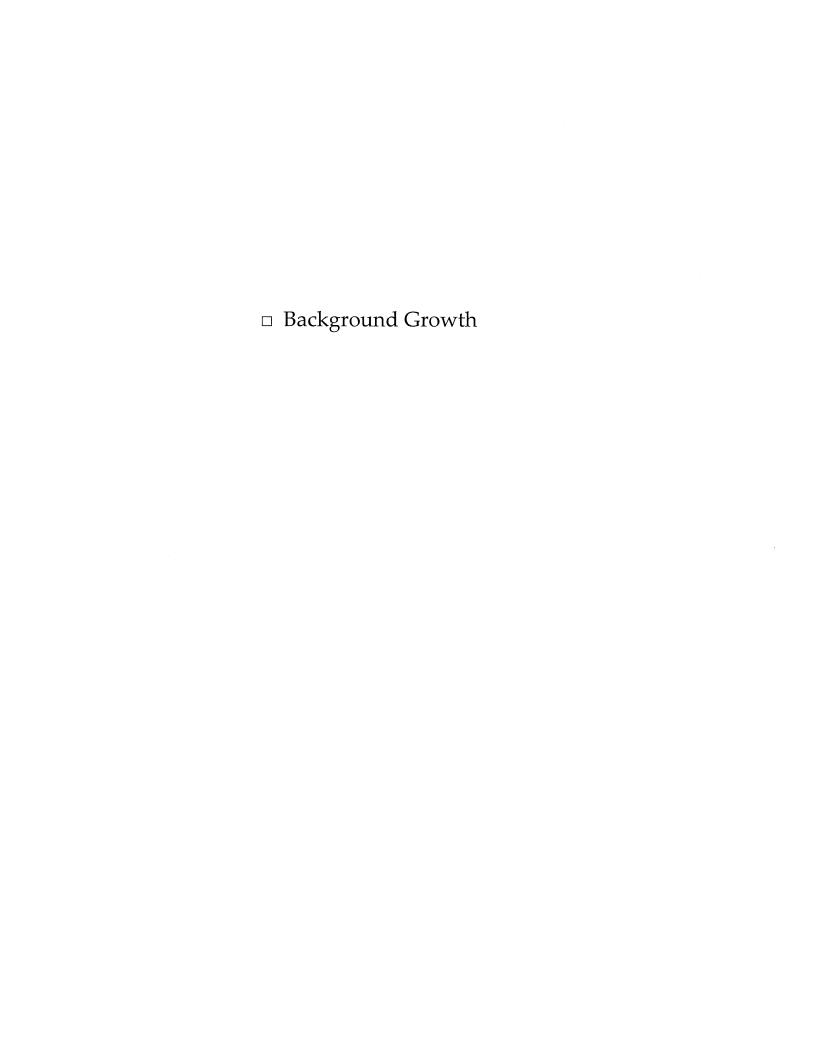
Flagged Wetlands

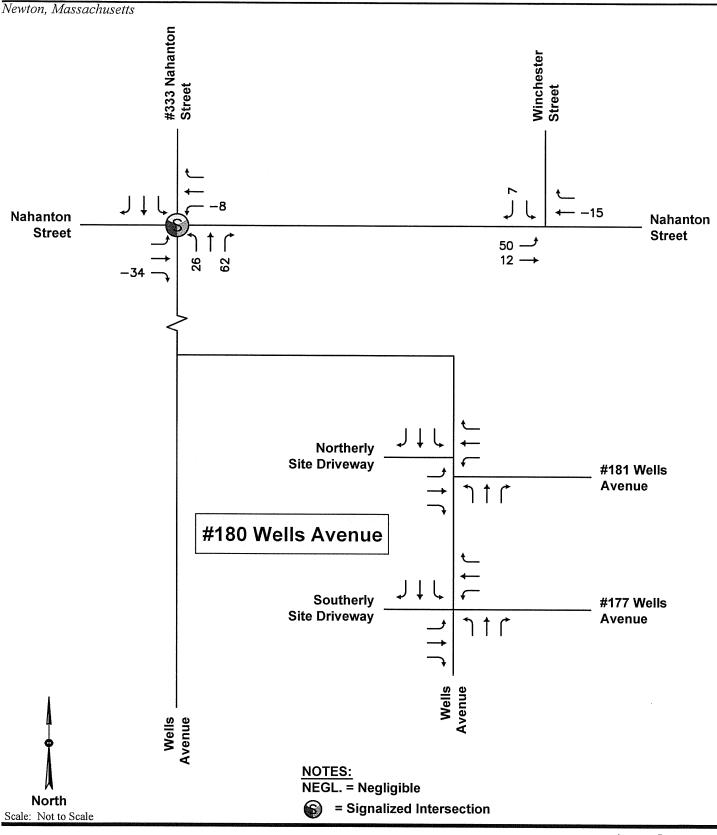
Kendrick Street to Highland Avenue

I-95 / I-93 Transportation Improvement Project Bridge V

SCALE	DATE	PROJECT NO
1"-400'	luno 2011	602711

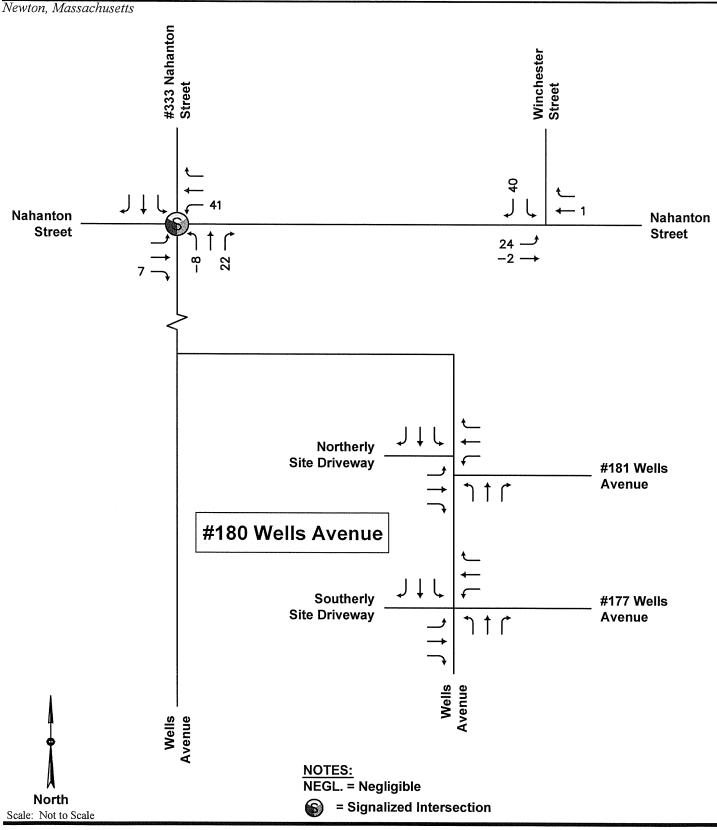
Legend:

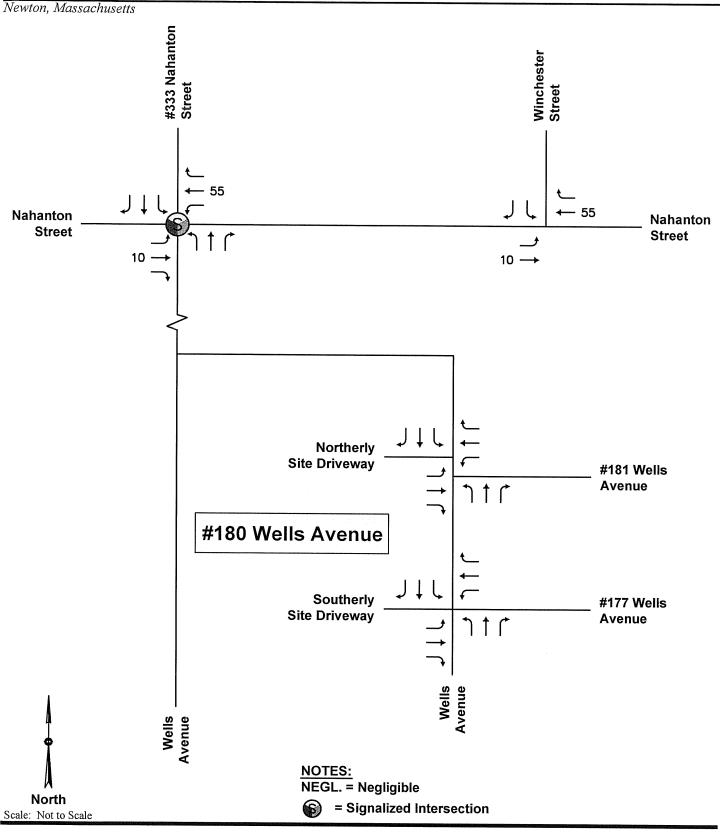

Flagged Wetlands


Kendrick Street Interchange

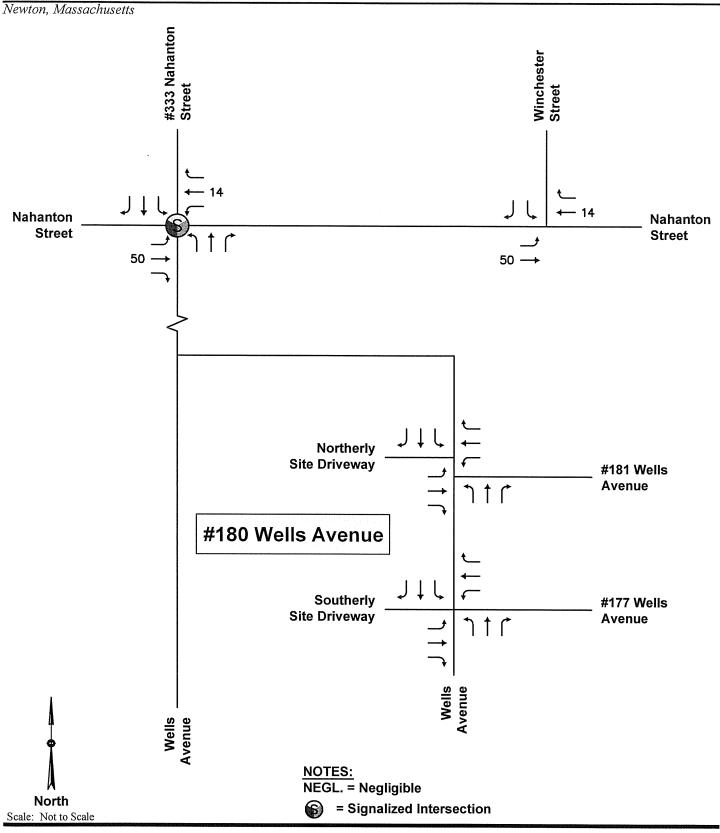
I-95 / I-93 Transportation Improvement Project Bridge V

SCALE	DATE	PROJECT NO
1"=200'	June 2011	603711



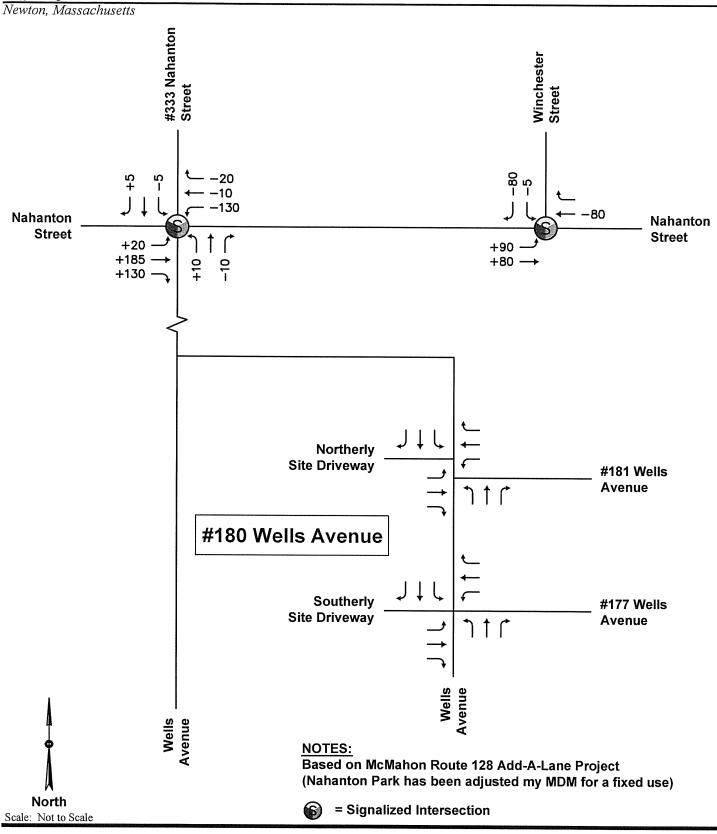

Attachments

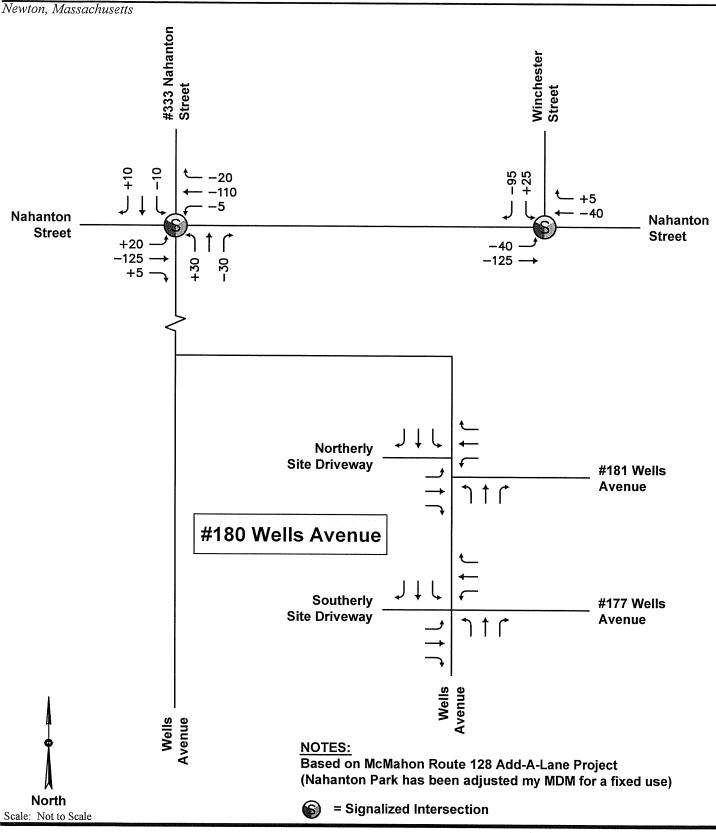
135 Wells Avenue Site Generated Trips
Weekday Morning
Peak Hour Traffic Volumes


Attachments

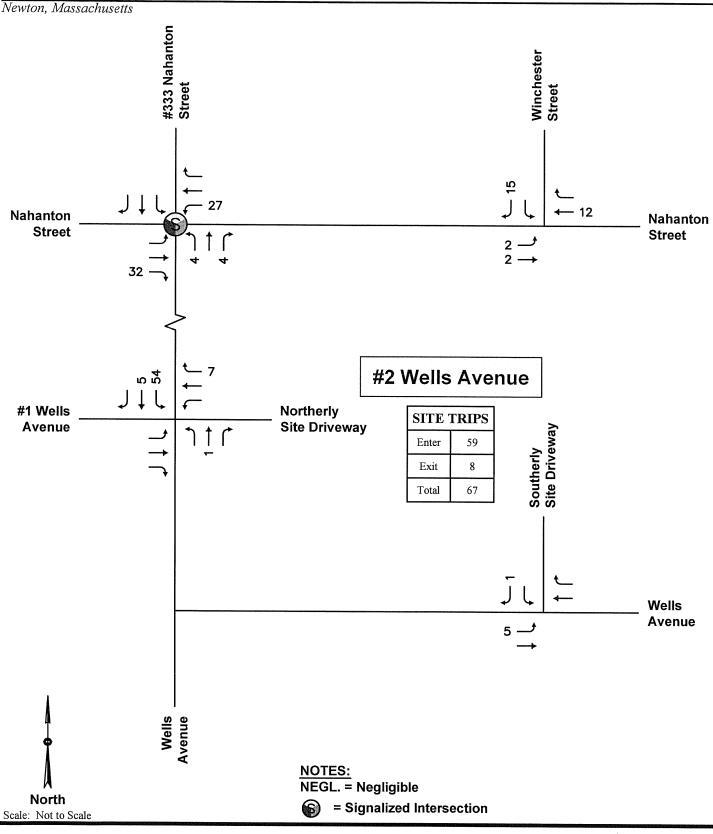
135 Wells Avenue Site Generated Trips Weekday Evening Peak Hour Traffic Volumes

Attachments


Center 128 Site Generated Trips Weekday Morning Peak Hour Traffic Volumes


Attachments

Center 128 Site Generated Trips Weekday Evening Peak Hour Traffic Volumes


Attachments

2025 Projected Build Traffic Shifts Route 128 Add-a-lane Project Weekday Morning Peak Hour Traffic Volumes

Attachments

2025 Projected Build Traffic Shifts Route 128 Add-a-lane Project Weekday Evening Peak Hour Traffic Volumes

Attachments

2025 Projected Build Traffic Shifts 2 Wells Ave Office Expansion Weekday Morning Peak Hour Traffic Volumes

Attachments

2025 Projected Build Traffic Shifts 2 Wells Ave Office Expansion Weekday Evening Peak Hour Traffic Volumes

Institute of Transportation Engineers (ITE) 9th Edition Land Use Code (LUC) 710 - General Office Building

Average Vehicle Trips Ends vs: 1000 Sq. Feet Gross Floor Area

Independent Variable (X): 60.585

AVERAGE WEEKDAY DAILY

T = 11.03 * (X)

T = 11.03 * 60.59

T = 668.25

T = 668 vehicle trips

with 50% (334 vpd) entering and 50% (334 vpd) exiting.

WEEKDAY MORNING PEAK HOUR OF ADJACENT STREET TRAFFIC

T = 1:56 * (X)

T = 1.56 * 60.59

T = 94.51

T = 95 vehicle trips

with 88% (84 vph) entering and 12% (11 vph) exiting.

WEEKDAY EVENING PEAK HOUR OF ADJACENT STREET TRAFFIC

T = 1.49 * (X)

T = 1.49 * 60.59

T = 90.27

T = 90 vehicle trips

with 17% (15 vph) entering and 83% (75 vph) exiting.

SATURDAY DAILY

T = 2.46 * (x)

T = 2.46 * 60.59

T = 149.04

T = 150 vehicle trips

with 50% (75 vpd) entering and 50% (75 vpd) exiting.

SATURDAY MIDDAY PEAK HOUR OF GENERATOR

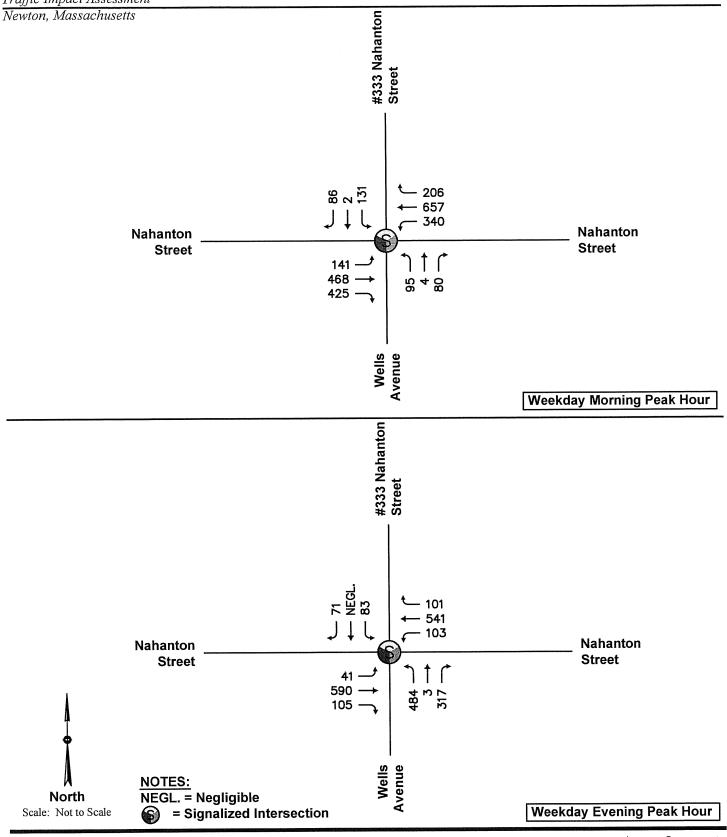
T = 0.43 * (X)

T = 0.43 * 60.59

T = 26.05

T = 26 vehicle trips

with 54% (14 vph) entering and 46% (12 vph) exiting.


□ Trip Distribution Calculations	

Norkplace MCD/County Flows for the United States and Puerto Rico Sorted				
	or more information on sampling and estimation methods, confidentiality protection, id sampling and nonsampling errors, see			
	Residence	Workplace		
İ				
			% of Total	
		MCD		
Number	MCD	Newton city	25.2%	
	Newton city Boston city	Newton city	17.3%	
1	Waltham city	Newton city	5.5%	
	Framingham town	Newton city	3.4%	
	Brookline town	Newton city	2.7%	
1,088	Somerville city	Newton city	2.7%	
1,006	Watertown Town city	Newton city	2.5%	
902	Needham town	Newton city	2.2%	
	Natick town	Newton city	2.2%	
	Medford city	Newton city	1.9%	
	Cambridge city	Newton city	1.9%	
l .	Dedham town	Newton city	1.3%	
	Everett city	Newton city	1.3%	
1	Belmont town	Newton city Newton city	1.3% 1.2%	
475	Lowell city		1.2%	
474		Newton city Newton city	1.2%	
	Billerica town	Newton city	1.1%	
	Norwood town	Newton city	1.1%	
	Marlborough city	Newton city	1.1%	
446		Newton city	1.1%	
353		Newton city	0.9%	
349	Revere city	Newton city	0.9%	
348	Ashland town	Newton city	0.9%	
325	Walpole town	Newton city	0.8%	
317	Woburn city	Newton city	0.8%	
306	Transaction to the	Newton city	0.8%	
	Milton town	Newton city	0.7%	
	Canton town	Newton city	0.7%	
1	7 Lexington town	Newton city	0.7%	
	Worcester city Brockton city	Newton city Newton city	0.6%	
1	Millis town	Newton city	0.6%	
1	D Burlington town	Newton city	0.6%	
1	5 Medfield town	Newton city	0.6%	
1	5 Weymouth Town city	Newton city	0.6%	
	3 Shrewsbury town	Newton city	0.6%	
22	2 Easton town	Newton city	0.6%	
21	B Braintree Town city	Newton city	0.5%	
21	4 Westwood town	Newton city	0.5%	
20	7 Wayland town	Newton city	0.5%	
1	5 Lynn city	Newton city	0.5%	
	9 Medway town	Newton city	0.5%	
	7 Chelmsford town	Newton city	0.5%	
	4 Sudbury town	Newton city	0.5%	
1	3 Wilmington town	Newton city	0.5%	
18		Newton city	0.5%	
	9 Sharon town	Newton city Newton city	0.4%	
	8 Franklin Town city 8 Stoughton town	Newton city	0.4%	
17		Newton city	0.4%	
	6 Holliston town	Newton city	0.4%	
1	3 Melrose city	Newton city	0.4%	
	1 Dracut town	Newton city	0.4%	
	3 Hudson town	Newton city	0.4%	
14	0 Hopkinton town	Newton city	0.3%	
13	1 '	Newton city	0.3%	
12	_l	Newton city	0.3%	
40.27	7 Mansfield town	I Newton City	0.570	

			То	/From Rout	es		
	Nahanton Street Nahanton Street Winchester Street			er Street	Total		
Residence	(From	1	(From	East)	(From North)		
	(1.0111						
Newton city	10% 50%	2.5% 8.7%	25% 25%	6.3% 4.3%	65% 25%	16.4% 4.3%	25.2% 17.3%
Boston city	75%	4.1%	25%	1.4%	25%	0.0%	5.5%
Waltham city Framingham town	100%	3.4%	2370	0.0%		0.0%	3.4%
Brookline town	100%	0.3%	65%	1.8%	25%	0.7%	2.7%
Somerville city	50%	1.4%	25%	0.7%	25%	0.7%	2.7%
Watertown Town city	50%	1.2%	25%	0.6%	25%	0.6%	2.5%
Needham town	100%	2.2%		0.0%		0.0%	2.2%
Natick town	100%	2.2%		0.0%		0.0%	2.2%
Medford city	50%	1.0%	25%	0.5%	25%	0.5%	1.9%
Cambridge city	50%	0.9%	25%	0.5%	25%	0.5%	1.9%
Dedham town	50%	0.7%	50%	0.7%		0.0%	1.3%
Everett city	50%	0.7%	25%	0.3%	25%	0.3%	1.3%
Belmont town	50% 100%	0.6% 1.2%	25%	0.3%	25%	0.3%	1.3%
Lowell city Wellesley town	100%	1.2%		0.0%		0.0%	1.2%
Arlington town	75%	0.9%		0.0%	25%	0.0%	1.2%
Billerica town	100%	1.1%		0.0%	2070	0.0%	1.1%
Norwood town	100%	1.1%		0.0%		0.0%	1.1%
Marlborough city	100%	1.1%		0.0%		0.0%	1.1%
Quincy city	75%	0.8%	25%	0.3%		0.0%	1.1%
Malden city	50%	0.4%	50%	0.4%		0.0%	0.9%
Revere city	50%	0.4%	25%	0.2%	25%	0.2%	0.9%
Ashland town	100%	0.9%		0.0%		0.0%	0.9%
Walpole town	100%	0.8%	000/	0.0%		0.0%	0.8%
Woburn city	75% 100%	0.6%	25%	0.2%		0.0%	0.8%
Randolph town Milton town	50%	0.6%	50%	0.0%		0.0%	0.7%
Canton town	75%	0.5%	25%	0.4%		0.0%	0.7%
Lexington town	75%	0.5%		0.0%	25%	0.2%	0.7%
Worcester city	100%	0.6%		0.0%		0.0%	0.6%
Brockton city	100%	0.6%		0.0%		0.0%	0.6%
Millis town	100%	0.6%		0.0%		0.0%	0.6%
Burlington town	100%	0.6%		0.0%		0.0%	0.6%
Medfield town	100%	0.6%		0.0%		0.0%	0.6%
Weymouth Town city	75%	0.4%	25%	0.1%		0.0%	0.6%
Shrewsbury town	100%	0.6%		0.0%		0.0%	0.6% 0.6%
Easton town Braintree Town city	100% 75%	0.6%	25%	0.0%		0.0%	0.5%
Westwood town	100%	0.5%	2370	0.1%		0.0%	0.5%
Wayland town	100%	0.5%		0.0%		0.0%	0.5%
Lynn city	50%	0.3%	50%	0.3%		0.0%	0.5%
Medway town	100%	0.5%		0.0%		0.0%	0.5%
Chelmsford town	100%	0.5%		0.0%		0.0%	0.5%
Sudbury town	100%	0.5%		0.0%		0.0%	0.5%
Wilmington town	75%	0.4%	25%	0.1%		0.0%	0.5%
Weston town	100%	0.5%		0.0%		0.0%	0.5%
Sharon town	100%	0.4%		0.0%		0.0%	0.4%
Franklin Town city	100% 100%	0.4%		0.0%		0.0%	0.4% 0.4%
Stoughton town	100%	0.4%		0.0%		0.0%	0.4%
Nashua city Holliston town	100%	0.4%		0.0%		0.0%	0.4%
Melrose city	50%	0.2%	25%	0.1%	25%	0.1%	0.4%
Dracut town	100%	0.4%		0.0%		0.0%	0.4%
Hudson town	100%	0.4%		0.0%		0.0%	0.4%
Hopkinton town	100%	0.3%		0.0%		0.0%	0.3%
Reading town	50%	0.2%	25%	0.1%	25%	0.1%	0.3%
Mansfield town	100%	0.3%		0.0%		0.0%	0.3%
	Total	55.0%		19.8%		25.1%	100.0%
	SAY	55.0%	L	20.0%	L	25.0%	100.0%

100.0%

□ Nahanton at Wells Calibration

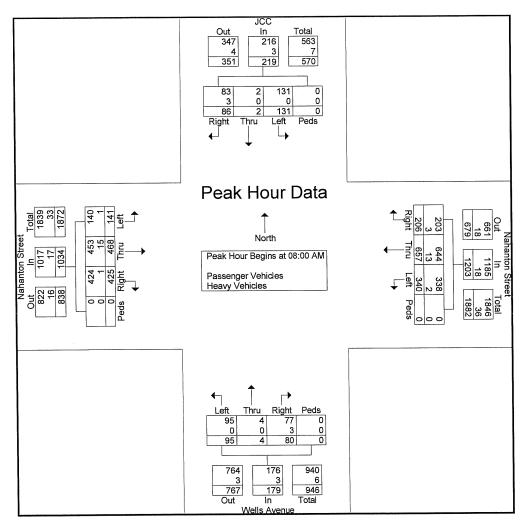
Attachments

Calibration Data July 1, 2015 Count Peak Hour Traffic Volumes

MDM Transportation Consultants, Inc.

28 Lord Road, Suite 280 Marlborough, MA

N/S: Wells Avenue E/W: Nahanton Street


Newton, MA

File Name: 840 Wells Ave at Nahanton St 8-9 AM

Site Code: 840 Start Date: 7/1/2015

Page No : 2

	-		JCC					anton S					lls Ave					anton S			
		Fre	om No	rth			F1	rom Ea	est			F	om So	utn							
Start Time		Thru	Left	Peds	App. Total	Right	Thru		Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A							k 1 of 1	1													
Peak Hour fo	r Entire	Interse	ection	Begins										_					•	0.40	505
08:00 AM	9	1	24	0	34	31	175	67	0	273	27	2	19	0	48	85	124	31	U	240	595
08:15 AM	16	0	19	0	35	67	159	70	0	296	14	1	21	0	36	102	114	34	0	250	617
08:30 AM	21	0	30	0	51	57	169	100	0	326	13	1	26	0	40	99	123	42	0	264	681
08:45 AM	40	1	58	0	99	51	154	103	0	308	26	0	29	0	55	139	107	34	0	280	742
Total Volume	86	2	131	0	219	206	657	340	0	1203	80	4	95	0	179	425	468	141	0	1034	2635
% App. Total	39.3	0.9	59.8	0		17.1	54.6	28.3	0		44.7	2.2	53.1	0		41.1	45.3	13.6	0		
PHF	.538	.500	.565	.000	.553	.769	.939	.825	.000	.923	.741	.500	.819	.000	.814	.764	.944	.839	.000	.923	.888
Passenger Vehicles	83	2	131	0	216	203	644	338	0	1185	77	4	95	0	176	424	453	140	0	1017	2594
% Passenger Vehicles				_	_	_		_	_	40		•	_	•	2	1	15	4	0	17	41
Heavy Vehicles	3	0	0	0	3	3	13	- 2	0	18	3	0	0	0	3	1	15	0.7	0	17	
% Heavy Vehicles	3.5	0	0	0	1.4	1.5	2.0	0.6	0	1.5	3.8	0	0	0	1.7	0.2	3.2	0.7	0	1.6	1.6

MDM Transportation Consultants, Inc.

28 Lord Road, Suite 280 Marlborough, MA

N/S: Wells Avenue

E/W: Nahanton Street

Newton, MA

File Name: 840 Wells Ave at Nahanton St 8-9 AM

Site Code: 840

Start Date : 7/1/2015

Page No : 1

Groups Printed- Passenger Vehicles - Heavy Vehicles

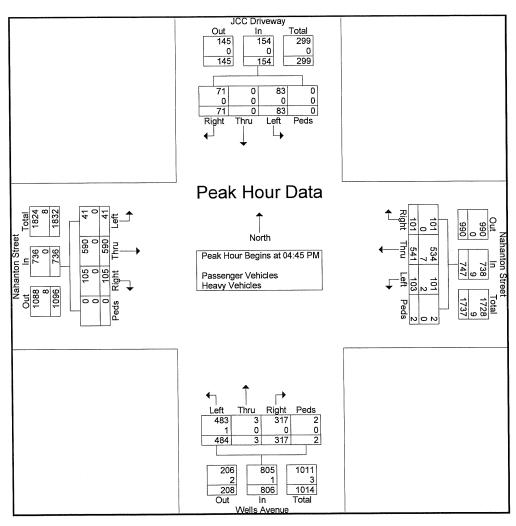
			JCC				Nah	anton (Street			We	lls Ave	enue				anton :			
		Fr	om No	orth			F	rom Ea	ast			Fr	om So	uth			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
08:00 AM	9	1	24	0	34	31	175	67	0	273	27	2	19	0	48	85	124	31	0	240	595
08:15 AM	16	0	19	0	35	67	159	70	0	296	14	1	21	0	36	102	114	34	0	250	617
08:30 AM	21	0	30	0	51	57	169	100	0	326	13	1	26	0	40	99	123	42	0	264	681
08:45 AM	40	1	58	0	99	51	154	103	0	308	26	0	29	0	55	139	107	34	0	280	742
Total	86	2	131	0	219	206	657	340	0	1203	80	4	95	0	179	425	468	141	0	1034	2635
Grand Total	86	2	131	0	219	206	657	340	0	1203	80	4	95	0	179	425	468	141	0	1034	2635
Apprch %	39.3	0.9	59.8	0		17.1	54.6	28.3	0		44.7	2.2	53.1	0		41.1	45.3	13.6	0		
Total %		0.1	5	0	8.3	7.8	24.9	12.9	0	45.7	3	0.2	3.6	0	6.8	16.1	17.8	5.4	0	39.2	
Passenger Vehicles	83	2	131	0	216	203	644	338	0	1185	77	4	95	0	176	424	453	140	0	1017	2594
% Passenger Vehicles																					
Heavy Vehicles	3	0	0	0	3	3	13	2	0	18	3	0	0	0	3	1	15	1	0	17	41
% Heavy Vehicles	3.5	0	0	0	1.4	1.5	2	0.6	0	1.5	3.8	0	0	0	1.7	0.2	3.2	0.7	0	1.6	1.6

MDM Transportation Consultants, Inc. 28 Lord Road, Suite 280

Marlborough, MA

N/S: Wells Avenue E/W: Nahanton Street

Newton, MA


File Name: 840 Wells Ave at Nahanton St 445-6

Site Code: 840

Start Date : 6/30/2015

Page No : 2

			Drive					anton S					lls Ave					anton S			
		Fre	om No	rth			Fı	rom Ea	ast			Fr	om So	uth			Fr	om W	est		
Start Time	Right	Thru	Left	Peds .	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From 0	4:45 F	PM to 05	5:45 PN	/I - Pea	k 1 of 1	I													
Peak Hour fo	r Entire	Interse	ection	Begins	at 04:4	5 PM													_		
04:45 PM	13	0	17	0	30	27	140	26	1	194	52	1	118	1	172	29	124	9	0	162	558
05:00 PM	22	0	17	0	39	22	134	22	0	178	100	1	134	0	235	24	141	14	0	179	631
05:15 PM	17	0	32	0	49	21	140	26	0	187	89	1	109	1	200	28	158	9	0	195	631
05:30 PM	19	0	17	0	36	31	127	29	1	188	76	0	123	0_	199	24	167	9	0	200	623
Total Volume	71	0	83	0	154	101	541	103	2	747	317	3	484	2	806	105	590	41	0	736	2443
% App. Total	46.1	0	53.9	0		13.5	72.4	13.8	0.3		39.3	0.4	60	0.2		14.3	80.2	5.6	0		
PHF	.807	.000	.648	.000	.786	.815	.966	.888	.500	.963	.793	.750	.903	.500	.857	.905	.883	.732	.000	.920	.968
Passenger Vehicles	71	0	83	0	154	101	534	101	2	738	317	3	483	2	805	105	590	41	0	736	2433
% Passenger Vehicles		_	_	_	_		_	_	_	•		_		_	,		0	^	0	0	10
Heavy Vehicles	0	0	0	0	0	0	7	2	0	9	0	0	1	0	1	0	0	0	0	U	10
% Heavy Vehicles	0	0	0	0	0	0	1.3	1.9	0	1.2	0	0	0.2	0	0.1	0	0	0	0	U	0.4

MDM Transportation Consultants, Inc.

28 Lord Road, Suite 280 Marlborough, MA

N/S: Wells Avenue E/W: Nahanton Street

Newton, MA

File Name: 840 Wells Ave at Nahanton St 445-6

Site Code: 840

Start Date : 6/30/2015

Page No : 1

Groups Printed- Passenger Vehicles - Heavy Vehicles

		JCC	Drive	eway			Nahanton Street					We	lls Ave	enue				anton :			
		Fr	om No	orth			Fi	rom E	ast			Fr	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:45 PM	13	0	17	0	30	27	140	26	1	194	52	1	118	1	172	29	124	9	0	162	558
Total	13	0	17	0	30	27	140	26	1	194	52	1	118	1	172	29	124	9	0	162	558
	•					•													_	1	
05:00 PM	22	0	17	0	39	22	134	22	0	178	100	1	134	0	235	24	141	14	0	179	631
05:15 PM	17	0	32	0	49	21	140	26	0	187	89	1	109	1	200	28	158	9	0	195	631
05:30 PM	19	0	17	0	36	31	127	29	1	188	76	0	123	0	199	24	167	9	0	200	623
05:45 PM	17	0	28	0	45	22	147	19	0	188	71	0	72	0	143	19	142	11	0	172	548
Total	75	0	94	0	169	96	548	96	1	741	336	2	438	1	777	95	608	43	0	746	2433
														_					_	000	0004
Grand Total	88	0	111	0	199	123	688	122	2	935	388	3	556	2	949	124	732	52	0	908	2991
Apprch %	44.2	0	55.8	0		13.2	73.6	13	0.2		40.9	0.3	58.6	0.2		13.7	80.6	5.7	0		
Total %	2.9	0	3.7	0	6.7	4.1	23	4.1	0.1	31.3	13	0.1	18.6	0.1	31.7	4.1	24.5	1.7	0	30.4	
Passenger Vehicles	88	0	111	0	199	123	680	120	2	925	388	3	555	2	948	124	731	52	0	907	2979
% Passenger Vehicles																					12
Heavy Vehicles	0	0	0	0	0	0	8	2	0	10	0	0	1	0	1	0	1	0	0	0.1	
% Heavy Vehicles	0	0	0	0	0	0	1.2	1.6	0	1.1	0	0	0.2	0	0.1	0	0.1	0	0	0.1	0.4

Weekday Morning Peak Hour

	۶		*	•	4-	•	1	†	/	1	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	个	7	ሻ	1>		ሻ	1→		ሻ	1>	
Volume (vph)	141	468	425	340	657	206	95	4	80	131	2	86
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	14	11	11	11	12	12	16	12	11	11
Grade (%)		3%			-3%			0%			0%	
Storage Length (ft)	175		175	250		0	0		125	75		0
Storage Lanes	1		1	1		0	1		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.964			0.856			0.853	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1702	1756	1697	1753	1762	0	1736	1626	0	1805	1567	0
Flt Permitted	0.080			0.373			0.693			0.696		
Satd. Flow (perm)	143	1756	1697	688	1762	0	1266	1626	0	1322	1567	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			478		27			90			97	
Link Speed (mph)		35			30			30			30	
Link Distance (ft)		1000			960			1000			500	
Travel Time (s)		19.5			21.8			22.7			11.4	
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles (%)	1%	3%	0%	1%	2%	2%	4%	0%	0%	0%	0%	0%
Adj. Flow (vph)	158	526	478	382	738	231	107	4	90	147	2	97
Shared Lane Traffic (%)												_
Lane Group Flow (vph)	158	526	478	382	969	0	107	94	0	147	99	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		11			11			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	4.07	4.0=	0.04	4.00	4.00	4.00	4.00	4.00	0.05	4.00	4.04	4.04
Headway Factor	1.07	1.07	0.94	1.02	1.02	1.02	1.00	1.00	0.85	1.00	1.04	1.04
Turning Speed (mph)	15		9	15	4	9	15	2	9	15	2	9
Number of Detectors	. 1	1	1	1	1		1	2		1 - 44	2 Than	
Detector Template	Left		50	50			Ε0	Thru		Left	Thru	
Leading Detector (ft)	20	50	50	50	50		50	100		20	100	
Trailing Detector (ft)	0	0	0	0	0		0	0 0		0	0 0	
Detector 1 Position(ft)	0	0	0	0	0		0	6		20	6	
Detector 1 Size(ft)	20	50	50	50	50		50	_		CI+Ex	CI+Ex	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CITEX	CITEX	
Detector 1 Channel	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Extend (s)	0.0 0.0	0.0 0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)		0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	94		0.0	94	
Detector 2 Position(ft)								9 4 6			6	
Detector 2 Size(ft)								Cl+Ex			CI+Ex	
Detector 2 Type								OLLEX			OIILX	
Detector 2 Channel								0.0			0.0	
Detector 2 Extend (s)	nm±n⁴	NA	Perm	pm+pt	NA		Perm	NA		Perm	NA	
Turn Type	pm+pt	INA	r GIIII	ρπ _∓ μι	IN/A		ı GIIII	11/7		1 51111	11/7	

G:\Projects\840 - Newton (60 Wells)\Synchro\Report\For Calibration\840 Ex AM - July Uncalibrated.syn MDM Transportation Consultants, Inc.

Weekday Morning Peak Hour

White and the second se	<u></u>		7	*	4-	*	1	Ť	<i>*</i>	\	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	3	1		3	1			2			2	
Permitted Phases	1		1	1			2			2		
Detector Phase	3	1	1	3	1		2	2		2	2	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	10.0	11.0	11.0	10.0	11.0		11.0	11.0		11.0	11.0	
Total Split (s)	16.0	55.0	55.0	16.0	55.0		20.0	20.0		20.0	20.0	
Total Split (%)	17.6%	60.4%	60.4%	17.6%	60.4%		22.0%	22.0%		22.0%	22.0%	
Maximum Green (s)	12.0	50.0	50.0	12.0	50.0		15.0	15.0		15.0	15.0	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	2.0	2.0	1.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	5.0	5.0	4.0	5.0		5.0	5.0		5.0	5.0	
Lead/Lag		Lead	Lead		Lead		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?		Yes	Yes		Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	2.0	3.0	3.0	2.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	None	Min	Min	None	Min		None	None		None	None	
Act Effct Green (s)	61.2	50.0	50.0	61.2	50.0		12.7	12.7		12.7	12.7	
Actuated g/C Ratio	0.70	0.58	0.58	0.70	0.58		0.15	0.15		0.15	0.15	
v/c Ratio	0.56	0.52	0.41	0.63	0.94		0.58	0.30		0.76	0.32	
Control Delay	21.6	14.3	2.1	9.0	37.1		48.2	11.2		61.7	10.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	21.6	14.3	2.1	9.0	37.1		48.2	11.2		61.7	10.8	
LOS	С	В	Α	Α	D		D	В		Е	В	
Approach Delay		10.3			29.2			30.9			41.2	
Approach LOS		В			С			С			D	
90th %ile Green (s)	12.0	50.0	50.0	12.0	50.0		15.0	15.0		15.0	15.0	
90th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
70th %ile Green (s)	12.0	50.0	50.0	12.0	50.0		15.0	15.0		15.0	15.0	
70th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
50th %ile Green (s)	11.1	50.0	50.0	11.1	50.0		14.7	14.7		14.7	14.7	
50th %ile Term Code	Gap	Max	Max	Gap	Max		Gap	Gap		Gap	Gap	
30th %ile Green (s)	9.0	50.0	50.0	9.0	50.0		11.6	11.6		11.6	11.6	
30th %ile Term Code	Gap	Max	Max	Gap	Max		Gap	Gap		Gap	Gap	
10th %ile Green (s)	6.9	49.3	49.3	6.9	49.3		7.8	7.8		7.8	7.8	
10th %ile Term Code	Gap	Gap	Gap	Gap	Gap		Gap	Gap		Gap	Gap	
Queue Length 50th (ft)	32	177	0	60	489		56	2		79	1	
Queue Length 95th (ft)	93	269	40	93	#794		109	43		#161	43	
Internal Link Dist (ft)		920			880			920			420	
Turn Bay Length (ft)	175		175	250						75		
Base Capacity (vph)	319	1013	1181	644	1029		219	356		228	351	
Starvation Cap Reductn	0	0	0	0	0		0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0		0	0	
Reduced v/c Ratio	0.50	0.52	0.40	0.59	0.94		0.49	0.26		0.64	0.28	
Intersection Summary												

Area Type:

Other

Cycle Length: 91

2015 Existing Condition (Uncalibrated)

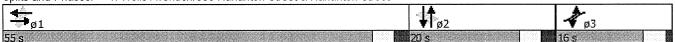
1: Wells Avenue/#333 Nahanton Street & Nahanton Street

Weekday Morning Peak Hour

Actuated Cycle Length: 86.9

Natural Cycle: 90

Control Type: Actuated-Uncoordinated


Maximum v/c Ratio: 0.94 Intersection Signal Delay: 22.9 Intersection Capacity Utilization 80.5%

Intersection LOS: C
ICU Level of Service D

Analysis Period (min) 15 90th %ile Actuated Cycle: 91 70th %ile Actuated Cycle: 91 50th %ile Actuated Cycle: 89.8 30th %ile Actuated Cycle: 84.6 10th %ile Actuated Cycle: 78

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Weekday Evening Peak Hour

	<i>></i>	-	*	•	4	1	*	†	<i>></i>	/	ļ.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተ	ř	ሻ	₽		ሻ	₽		ሻ	1→	
Volume (vph)	41	590	105	103	541	101	484	3	317	299	0	71
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	14	11	11	11	12	12	16	12	11	11
Grade (%)		3%			-3%			0%			0%	
Storage Length (ft)	175		175	250		0	0		125	75		0
Storage Lanes	1		1	1		0	1		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.976			0.851			0.850	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1719	1809	1697	1736	1804	0	1805	1617	0	1805	1561	0
Flt Permitted	0.130	1000	1001	0.130		ŭ	0.709	7017	ŭ	0.459	1001	ŭ
Satd. Flow (perm)	235	1809	1697	238	1804	0	1347	1617	0	872	1561	0
Right Turn on Red	200	1000	Yes	200	100-1	Yes	10-17	1017	Yes	012	1001	Yes
Satd. Flow (RTOR)			80		10	100		327	100		353	100
Link Speed (mph)		35	00		30			30			30	
Link Distance (ft)		1000			960			1000			500	
Travel Time (s)		19.5			21.8			22.7			11.4	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	0.97	0.97	0.97	2%	1%	0.97	0.97	0.97	0.97	0.97	0.97	0.97
• • • • • • • • • • • • • • • • • • • •	42	608	108	106	558	104	499	3	327	308	0 %	73
Adj. Flow (vph)	42	000	100	100	556	104	499	٠	321	300	U	13
Shared Lane Traffic (%)	40	608	108	100	662	٥	499	330	0	308	73	0
Lane Group Flow (vph)	42 No.			106		0						_
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		11			11			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	4.07	4.07	0.04	4.00	4.00	4.00	4.00	4.00	0.05	4.00	4.04	4.04
Headway Factor	1.07	1.07	0.94	1.02	1.02	1.02	1.00	1.00	0.85	1.00	1.04	1.04
Turning Speed (mph)	15		9	15	4	9	15	•	9	15	•	9
Number of Detectors		1	1	1	1		1	2		. 1	2	
Detector Template	Left						=0	Thru		Left	Thru	
Leading Detector (ft)	20	50	50	50	50		50	100		20	100	
Trailing Detector (ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Size(ft)	20	50	50	50	50		50	6		20	6	
Detector 1 Type	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)								94			94	
Detector 2 Size(ft)								6			6	
Detector 2 Type								CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)								0.0			0.0	
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA		Perm	NA	

G:\Projects\840 - Newton (60 Wells)\Synchro\Report\For Calibration\840 Ex PM - July Uncalibrated.syn MDM Transportation Consultants, Inc.

Weekday Evening Peak Hour

	≯		*	•	←	1	1	†	/	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	3	1		3	1			2			2	
Permitted Phases	1		1	1			2			2		
Detector Phase	3	1	1	3	1		2	2		2	2	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	10.0	11.0	11.0	10.0	11.0		11.0	11.0		11.0	11.0	
Total Split (s)	14.0	35.0	35.0	14.0	35.0		45.0	45.0		45.0	45.0	
Total Split (%)	14.9%	37.2%	37.2%	14.9%	37.2%		47.9%	47.9%		47.9%	47.9%	
Maximum Green (s)	10.0	30.0	30.0	10.0	30.0		40.0	40.0		40.0	40.0	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	2.0	2.0	1.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	5.0	5.0	4.0	5.0		5.0	5.0		5.0	5.0	
Lead/Lag		Lead	Lead		Lead		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?		Yes	Yes		Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	2.0	3.0	3.0	2.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	None	Min	Min	None	Min		None	None		None	None	
Act Effct Green (s)	37.9	30.8	30.8	37.9	30.8		35.1	35.1		35.1	35.1	
Actuated g/C Ratio	0.44	0.36	0.36	0.44	0.36		0.41	0.41		0.41	0.41	
v/c Ratio	0.18	0.93	0.16	0.44	1.01		0.90	0.38		0.86	0.09	
Control Delay	15.0	53.1	9.2	19.7	68.7		45.3	3.5		47.8	0.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	15.0	53.1	9.2	19.7	68.7		45.3	3.5		47.8	0.2	
LOS	В	D	A	В	E		D	А		D	Α	
Approach Delay		44.7	, ,	_	61.9		_	28.7			38.7	
Approach LOS		D			E			C			D	
90th %ile Green (s)	10.0	30.0	30.0	10.0	30.0		40.0	40.0		40.0	40.0	
90th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
70th %ile Green (s)	8.7	30.0	30.0	8.7	30.0		40.0	40.0		40.0	40.0	
70th %ile Term Code	Gap	Max	Max	Gap	Max		Max	Max		Max	Max	
50th %ile Green (s)	7.6	30.0	30.0	7.6	30.0		40.0	40.0		40.0	40.0	
50th %ile Term Code	Gap	Max	Max	Gap	Max		Max	Max		Max	Max	
30th %ile Green (s)	6.4	30.0	30.0	6.4	30.0		35.4	35.4		35.4	35.4	
30th %ile Term Code	Gap	Max	Max	Gap	Max		Gap	Gap		Gap	Gap	
10th %ile Green (s)	0.0	30.0	30.0	0.0	30.0		21.9	21.9		21.9	21.9	
10th %ile Term Code	Skip	Max	Max	Skip	Max		Gap	Gap		Gap	Gap	
Queue Length 50th (ft)	13	~380	11	34	~440		251	Оар 1		151	0 0	
Queue Length 95th (ft)	31	#606	49	64	#679		#458	50		#316	0	
Internal Link Dist (ft)	31	920	43	04	880		∏-1 30	920		ποιο	420	
Turn Bay Length (ft)	175	320	175	250	000			320		75	720	
	287	652	663	290	657		648	947		419	934	
Base Capacity (vph)		002	003	290	037		048	0		0	0	
Starvation Cap Reductn	0	0	0	0	0		0	0		0	0	
Spillback Cap Reductn	0		0	0	0		0	0		0	0	
Storage Cap Reductn	0 15	0 0.93	0.16	0.37	1.01		0.77	0.35		0.74	0.08	
Reduced v/c Ratio	0.15	0.93	0.10	0.37	1.01		0.77	0.30		0.74	0.00	
Intersection Summary	OII.											
Area Type:	Other											

Area Type: Cycle Length: 94 Other

2015 Existing Conditions (Uncalibrated)

1: Wells Avenue/#333 Nahanton Street & Nahanton Street

Weekday Evening Peak Hour

Actuated Cycle Length: 85.2

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.01 Intersection Signal Delay: 43.8 Intersection Capacity Utilization 91.8%

Intersection LOS: D
ICU Level of Service F

Analysis Period (min) 15 90th %ile Actuated Cycle: 94 70th %ile Actuated Cycle: 92.7 50th %ile Actuated Cycle: 91.6 30th %ile Actuated Cycle: 85.8 10th %ile Actuated Cycle: 61.9

~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

4	₩ _{ø2}	₽ ø3
25 e	45 s	145

MDM Transportation Consultants, Inc.

28 Lord Road, Suite 280 Marlborough, MA

Stop Delay Study Westbound Approach

Nahanton Street Newton, Ma File Name: 840 Nahanton Street Left Turn Delay 8-9

Site Code: 840

Start Date : 7/31/2015

Page No : 1

Summary Information:

Julilliary illiorination.	
8:00:00 AM - 9:00:00 AM	Left Turn Lane
Total Vehicle Count:	325
Delayed Vehicle Count:	325
Through Vehicle Count:	0
Average Stopped Time:	32.47
Maximum Stopped Time:	149
Min. Secs. for Delay:	0
Average Queue:	2.94
Queue Density:	5.08
Maximum Queue:	18
Delay in Vehicle Hour:	2.94
Total Delay:	10553

MDM Transportation Consultants, Inc.

28 Lord Road, Suite 280 Marlborough, MA

Stop Delay Study Northbound Approach

Wells Avenue Newton, Ma File Name: 840 Wells Ave Delay Wed PM

Site Code: 840

Start Date : 7/1/2015

Page No : 1

Summary Information:

5:00:00 PM - 5:59:00 PM	Left Turn Lane
Total Vehicle Count:	488
Delayed Vehicle Count:	488
Through Vehicle Count:	0
Average Stopped Time:	26.83
Maximum Stopped Time:	75
Min. Secs. for Delay:	0
Average Queue:	3.73
Queue Density:	4.92
Maximum Queue:	21
Delay in Vehicle Hour:	3.73
Total Delay:	13092

Weekday Morning Peak Hour

	۶		*	•	4	•	4	†	<i>></i>	\	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	Ť	đ	ሻ	1→		ሻ	1>		ሻ	₽	
Volume (vph)	141	468	425	340	657	206	95	4	80	131	2	86
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	14	11	11	11	12	12	16	12	11	11
Grade (%)		3%			-3%			0%			0%	
Storage Length (ft)	175		175	250		0	0		125	75		0
Storage Lanes	1		1	1		0	1		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.964			0.856			0.853	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1702	1756	1697	1753	1762	0	1736	1626	0	1805	1567	0
Flt Permitted	0.080			0.358			0.639			0.652		
Satd. Flow (perm)	143	1756	1697	*307	1762	0	1167	*1818	0	1239	1567	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			478		29			90			97	
Link Speed (mph)		35			30			30			30	
Link Distance (ft)		1000			960			1000			500	
Travel Time (s)		19.5			21.8			22.7			11.4	
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles (%)	1%	3%	0%	1%	2%	2%	4%	0%	0%	0%	0%	0%
Adj. Flow (vph)	158	526	478	382	738	231	107	4	90	147	2	97
Shared Lane Traffic (%)												
Lane Group Flow (vph)	158	526	478	382	969	0	107	94	0	147	99	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		11			11			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	0.94	1.02	1.02	1.02	1.00	1.00	0.85	1.00	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1		1	2		1	2	
Detector Template	Left							Thru		Left	Thru	
Leading Detector (ft)	20	50	50	50	50		50	100		20	100	
Trailing Detector (ft)	0	0	0	0	0		0	0		. 0	0	
Detector 1 Position(ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Size(ft)	20	50	50	50	50		50	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)								94			94	
Detector 2 Size(ft)								6			6	
Detector 2 Type								CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)								0.0			0.0	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	***************************************	Perm	NA		Perm	NA	and the same of th

G:\Projects\840 - Newton (60 Wells)\Synchro\Report\For Calibration\840 Ex AM - July Uncalibrated.syn MDM Transportation Consultants, Inc.

Weekday Morning Peak Hour

	۶		*	•	←	•	4	†	<i>></i>	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	3	1		3	1			2			2	
Permitted Phases	1		1	1			2			2	_	
Detector Phase	3	1	1	3	1		2	2		2	2	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	10.0	11.0	11.0	10.0	11.0		11.0	11.0		11.0	11.0	
Total Split (s)	16.0	55.0	55.0	16.0	55.0		20.0	20.0		20.0	20.0	
Total Split (%)	17.6%	60.4%	60.4%	17.6%	60.4%		22.0%	22.0%		22.0%	22.0%	
Maximum Green (s)	12.0	50.0	50.0	12.0	50.0		15.0	15.0		15.0	15.0	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	2.0	2.0	1.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	2.0	3.0	3.0	2.0	3.0		3.0	3.0		3.0	3.0	
Lead/Lag		Lead	Lead		Lead		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?		Yes	Yes		Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	2.0	3.0	3.0	2.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	None	Min	Min	None	Min		None	None		None	None	
Act Effct Green (s)	64.5	50.3	50.3	64.5	50.3		14.8	14.8		14.8	14.8	
Actuated g/C Ratio	0.75	0.58	0.58	0.75	0.58		0.17	0.17		0.17	0.17	
v/c Ratio	0.46	0.52	0.40	0.85	0.93		0.54	0.27		0.69	0.28	
Control Delay	16.2	13.6	2.0	31.8	34.5		44.1	10.2		52.5	9.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	16.2	13.6	2.0	31.8	34.5		44.1	10.2		52.5	9.8	
LOS	В	В	Α	С	С		D	В		D	Α	
Approach Delay	_	9.2			33.8			28.3			35.3	
Approach LOS		Α			С			С			D	
90th %ile Green (s)	12.0	50.0	50.0	12.0	50.0		15.0	15.0		15.0	15.0	
90th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
70th %ile Green (s)	12.0	50.0	50.0	12.0	50.0		15.0	15.0		15.0	15.0	
70th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
50th %ile Green (s)	12.0	50.0	50.0	12.0	50.0		15.0	15.0		15.0	15.0	
50th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
30th %ile Green (s)	12.0	50.0	50.0	12.0	50.0		12.2	12.2		12.2	12.2	
30th %ile Term Code	Max	Max	Max	Max	Max		Gap	Gap		Gap	Gap	
10th %ile Green (s)	8.4	40.9	40.9	8.4	40.9		7.7	7.7		7.7	7.7	
10th %ile Term Code	Gap	Gap	Gap	Gap	Gap		Gap	Gap		Gap	Gap	
Queue Length 50th (ft)	28	172	•	96	476		56	2		79	1	
Queue Length 95th (ft)	87	253	38	#247	#769		107	41		#153	41	
Internal Link Dist (ft)	01	920		,, , ,	880			920			420	
	175	320	175	250	000					75		
Turn Bay Length (ft)	362	1066		467	1081		231	394		245	388	
Base Capacity (vph) Starvation Cap Reductn	0	000	_	0	_		0	0		0	0	
	0	0		0	_		0	0		0	0	
Spillback Cap Reductn	0	0					0	0		0	0	
Storage Cap Reductn Reduced v/c Ratio	0.44			_			0.46	0.24		0.60	0.26	
Intersection Summary	0.17	0.10	0.50									
Area Type:	Other											

Area Type:

Other

Cycle Length: 91

2015 Existing Condition (Calibrated)

1: Wells Avenue/#333 Nahanton Street & Nahanton Street

Weekday Morning Peak Hour

Actuated Cycle Length: 86.4

Natural Cycle: 75

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.93 Intersection Signal Delay: 23.9 Intersection Capacity Utilization 78.8%

Intersection LOS: C
ICU Level of Service D

Analysis Period (min) 15
90th %ile Actuated Cycle: 91
70th %ile Actuated Cycle: 91
50th %ile Actuated Cycle: 91
30th %ile Actuated Cycle: 88.2
10th %ile Actuated Cycle: 71
* User Entered Value

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

*** o1	↓ † _{ø2}	₽ ø3
55 s	20 s	16 s

Weekday Evening Peak Hour

	۶	→	*	•	4	4	1	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	Ť	7	ሻ	₽		ሻ	1		ř	₽	
Volume (vph)	41	590	105	103	541	101	484	3	317	299	0	71
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	14	11	11	11	12	12	16	12	11	11
Grade (%)		3%			-3%			0%			0%	
Storage Length (ft)	175	0,70	175	250		0	0		125	75		0
Storage Lanes	1		1	1		0	1		1	1		0
Taper Length (ft)	25		•	25		•	25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.850	1.00	0.976	1.00	1.00	0.851	1,00		0.850	
Flt Protected	0.950		0.000	0.950	0.010		0.950	0.00		0.950		
Satd. Flow (prot)	1719	1809	1697	1736	1804	0	1805	1617	0	1805	1561	0
Flt Permitted	0.122	1005	1007	0.122	1004	U	0.709	1017	v	0.439	1001	·
Satd. Flow (perm)	221	1809	1697	*307	1804	0	1347	*1818	0	834	1561	0
	221	1009	Yes	301	1004	Yes	1041	1010	Yes	004	1001	Yes
Right Turn on Red			83		11	163		*51	163		367	103
Satd. Flow (RTOR)		25	03		30			30			307	
Link Speed (mph)		35			960			1000			500	
Link Distance (ft)		1000						22.7			11.4	
Travel Time (s)	0.07	19.5	0.07	0.07	21.8	0.07	0.07		0.07	0.07	0.97	0.97
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97		
Heavy Vehicles (%)	0%	0%	0%	2%	1%	0%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	42	608	108	106	558	104	499	3	327	308	0	73
Shared Lane Traffic (%)						_			•	000	70	•
Lane Group Flow (vph)	42	608	108	106	662	0	499	330	. 0	308	73	.0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		11			11			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	0.94	1.02	1.02	1.02	1.00	1.00	0.85	1.00	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1		1	2		1	2	
Detector Template	Left							Thru		Left	Thru	
Leading Detector (ft)	20	50	50	50	50		50	100		20	100	
Trailing Detector (ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Size(ft)	20	50	50	50	50		50	6		20	6	
Detector 1 Type	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)	0.0	0.0	0.0					94			94	
Detector 2 Size(ft)								6			6	
Detector 2 Type								CI+Ex			CI+Ex	
Detector 2 Channel								J/(-: - .	
Detector 2 Extend (s)								0.0			0.0	
, -	nm±nt	NA	Perm	pm+pt	NA		Perm	NA		Perm	NA	
Turn Type	pm+pt	INH	r cilli	hiii.ht	INA		ı GIIII	INT		ı ÇIIII	1 V /~\	

G:\Projects\840 - Newton (60 Wells)\Synchro\Report\For Calibration\840 Ex PM - July Uncalibrated.syn MDM Transportation Consultants, Inc.

Weekday Evening Peak Hour

	•		*	•	4	1	4	†	<i>></i>	1	+	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	3	1		3	1			2			2	
Permitted Phases	1		1	1			2			2		
Detector Phase	3	1	1	3	1		2	2		2	2	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	10.0	11.0	11.0	10.0	11.0		11.0	11.0		11.0	11.0	
Total Split (s)	14.0	35.0	35.0	14.0	35.0		45.0	45.0		45.0	45.0	
Total Split (%)	14.9%	37.2%	37.2%	14.9%	37.2%		47.9%	47.9%		47.9%	47.9%	
Maximum Green (s)	10.0	30.0	30.0	10.0	30.0		40.0	40.0		40.0	40.0	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	2.0	2.0	1.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	2.0	3.0	3.0	2.0	3.0		3.0	3.0		3.0	3.0	
Lead/Lag		Lead	Lead		Lead		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?		Yes	Yes		Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	2.0	3.0	3.0	2.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	None	Min	Min	None	Min		None	None		None	None	
Act Effct Green (s)	41.4	32.9	32.9	41.4	32.9		36.5	36.5		36.5	36.5	
Actuated g/C Ratio	0.49	0.39	0.39	0.49	0.39		0.43	0.43		0.43	0.43	
v/c Ratio	0.15	0.86	0.15	0.34	0.93		0.86	0.45		0.86	0.08	
Control Delay	13.3	42.1	8.3	15.5	50.5		38.6	16.7		46.5	0.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	13.3	42.1	8.3	15.5	50.5		38.6	16.7		46.5	0.2	
LOS	В	D	Α	В	D		D	В		D	Α	
Approach Delay		35.7			45.7			29.8			37.6	
Approach LOS		D			D			С			D	
90th %ile Green (s)	10.0	30.0	30.0	10.0	30.0		40.0	40.0		40.0	40.0	
90th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
70th %ile Green (s)	8.5	30.0	30.0	8.5	30.0		40.0	40.0		40.0	40.0	
70th %ile Term Code	Gap	Max	Max	Gap	Max		Max	Max		Max	Max	
50th %ile Green (s)	7.5	30.0	30.0	7.5	30.0		40.0	40.0		40.0	40.0	
50th %ile Term Code	Gap	Max	Max	Gap	Max		Max	Max		Max	Max	
30th %ile Green (s)	6.2	30.0	30.0	6.2	30.0		33.8	33.8		33.8	33.8	
30th %ile Term Code	Gap	Max	Max	Gap	Max		Gap	Gap		Gap	Gap	
10th %ile Green (s)	0.0	30.0	30.0	0.0	30.0		20.5	20.5		20.5	20.5	
10th %ile Term Code	Skip	Max	Max	Skip	Max		Gap	Gap		Gap	Gap	
Queue Length 50th (ft)	12	341	9	32	~413		240	103		147	0	
Queue Length 95th (ft)	29	#582	46	61	#653		#440	182		#315	0	
Internal Link Dist (ft)		920			880			920			420	
Turn Bay Length (ft)	175		175	250						75		
Base Capacity (vph)	329	703	711	362	709		688	851		425	977	
Starvation Cap Reductn	0	0	0	0	0		0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0		0	0	
Reduced v/c Ratio	0.13	0.86	0.15	0.29	0.93		0.73	0.39		0.72	0.07	
Intersection Summary												
Area Type:	Other											

Area Type: Cycle Length: 94

2015 Existing Conditions (Calibrated)

1: Wells Avenue/#333 Nahanton Street & Nahanton Street

Weekday Evening Peak Hour

Actuated Cycle Length: 84.5

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.93 Intersection Signal Delay: 37.0 Intersection Capacity Utilization 89.3%

Intersection LOS: D ICU Level of Service E

Analysis Period (min) 15 90th %ile Actuated Cycle: 94 70th %ile Actuated Cycle: 92.5 50th %ile Actuated Cycle: 91.5 30th %ile Actuated Cycle: 84 10th %ile Actuated Cycle: 60.5

* User Entered Value

~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	The drift indeed.	44	≯
-	ø1	♥ 1°ø2	* ₩ ø3
ηE		45 c	14 s

LEVEL OF SERVICE METHODOLOGY

Capacity analysis of intersections is developed using the Synchro® computer software, which implements the methods of the 2010 Highway Capacity Manual (HCM). The resulting analysis presents a level-of-service (LOS) designation for individual intersection movements and (for signalized intersections) for the entire intersection. The LOS is a letter designation that provides a qualitative measure of operating conditions based on several factors including roadway geometry, speeds, ambient traffic volumes, traffic controls, and driver characteristics. Since the LOS of a traffic facility is a function of the traffic flows placed upon it, such a facility may operate at a wide range of LOS, depending on the time of day, day of week, or period of year. A range of six levels of service are defined on the basis of average delay, ranging from LOS A (the least delay) to LOS F (delays greater than 50 seconds for unsignalized movements, and greater than 80 seconds for signalized movements).

Signalized Intersection Performance Measures

The six LOS designations for signalized intersections may be described as follows:

- *LOS A* describes operations with low control delay; most vehicles do not stop at all.
- *LOS B* describes operations with relatively low control delay. However, more vehicles stop than LOS A.
- LOS C describes operations with higher control delays. Individual cycle failures may begin to appear. The number of vehicles stopping is significant at this level, although many still pass through the intersection without stopping.
- LOS D describes operations with control delay in the range where the influence of congestion becomes more noticeable. Many vehicles stop and individual cycle failures are noticeable.
- *LOS E* describes operations with high control delay values. Individual cycle failures are frequent occurrences.
- LOS F describes operations with high control delay values that often occur with over-saturation. Poor progression and long cycle lengths may also be major contributing causes to such delay levels.

The LOS for signalized intersections are calculated using the operational analysis methodology of the 2010 *Highway Capacity Manual*.¹ This method assesses the effects of signal type, timing, phasing, and progression; vehicle mix; and geometrics on delay. LOS designations are based on the criterion of control or signal delay per vehicle. Control or signal delay is a measure of driver discomfort, frustration, and fuel consumption, and includes initial deceleration delay approaching the traffic signal, queue move-up time, stopped delay and final acceleration delay. **Table A1** summarizes the relationship between LOS and control delay. The tabulated control delay criterion may be applied in assigning LOS designations to individual lane groups, to individual intersection approaches, or to entire intersections.

Table A1 LEVEL-OF-SERVICE CRITERIA FOR SIGNALIZED INTERSECTIONS¹

	Control (Signal) Delay per Vehicle
Level of Service	(Seconds)
A	≤10.0
В	10.1 to 20.0
С	20.1 to 35.0
D	35.1 to 55.0
E	55.1 to 80.0
F	>80.0

¹Source: *Highway Capacity Manual 2010;* Transportation Research Board; Washington, DC; 2010.

-

¹Highway Capacity Manual 2010; Transportation Research Board; Washington, DC; 2010.

Unsignalized Intersection Performance Measures

The six LOS designations for unsignalized intersections may be described as follows:

- *LOS A* represents a condition with little or no control delay to minor street traffic.
- LOS B represents a condition with short control delays to minor street traffic.
- LOS C represents a condition with average control delays to minor street traffic.
- LOS D represents a condition with long control delays to minor street traffic.
- *LOS E* represents operating conditions at or near capacity level, with very long control delays to minor street traffic.
- *LOS F* represents a condition where minor street demand volume exceeds capacity of an approach lane, with extreme control delays resulting.

The LOS designations of unsignalized intersections are determined by application of a procedure described in the 2010 *Highway Capacity Manual.*² LOS is measured in terms of average control delay. Mathematically, control delay is a function of the capacity and degree of saturation of the lane group and/or approach under study and is a quantification of motorist delay associated with traffic control devices such as traffic signals and STOP signs. Control delay includes the effects of initial deceleration delay approaching a STOP sign, stopped delay, queue move-up time, and final acceleration delay from a stopped condition. Definitions for LOS at unsignalized intersections are also given in the *Highway Capacity Manual 2010*. **Table A2** summarizes the relationship between LOS and average control delay.

Table A2 LEVEL-OF-SERVICE CRITERIA FOR UNSIGNALIZED INTERSECTIONS¹

	Level o	f Service
Average Control Delay (seconds per vehicle)	v/c ≤ 1	v/c > 1
≤ 10.0	A	F
10.1 to 15.0	В	F
15.1 to 25.0	С	F
25.1 to 35.0	D	F
35.1 to 50.0	E	F
>50.0	F	F

¹Source: *Highway Capacity Manual 2010*, Transportation Research Board; Washington, DC; 2010.

_

² ibid

1: Wells Avenue/#333 Nahanton Street & Nahanton Street

Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBF Lane Configurations T
Lane Configurations T
Volume (vph) 98 707 590 415 821 134 83 4 88 60 8 77 Ideal Flow (vphpl) 1900 1
Ideal Flow (vphpl) 1900
Lane Width (ft) 11 11 14 11 11 11 12 12 16 12 11 17 Grade (%) 3% -3% 0% 0% 0% 0% Storage Length (ft) 175 175 250 0 0 125 75 0 Storage Lanes 1 1 1 0 1 1 1 1 0 Taper Length (ft) 25 25 25 25 25 25 25 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frt 0.850 0.979 0.856 0.864 Flt Protected 0.950 0.950 0.950 0.950
Grade (%) 3% -3% 0% 0% Storage Length (ft) 175 175 250 0 0 125 75 0 Storage Lanes 1 1 1 0 1 1 1 1 0 Taper Length (ft) 25<
Storage Length (ff) 175 175 250 0 0 125 75 0 Storage Lanes 1 1 1 1 0 1
Storage Lanes 1 1 1 1 0 1 2 <
Taper Length (ft) 25 25 25 25 Lane Util. Factor 1.00 </td
Lane Util. Factor 1.00 1.
Frt 0.850 0.979 0.856 0.864 Flt Protected 0.950 0.950 0.950 0.950
Flt Protected 0.950 0.950 0.950 0.950
" , " " " " " " " " " " " " " " " " " "
Flt Permitted 0.077 0.233 0.667 0.619
Satd. Flow (perm) 139 1740 1697 *307 1777 0 *1818 1626 0 1176 1587 0
Right Turn on Red Yes Yes Yes Yes
Satd. Flow (RTOR) 616 15 93 75
Link Speed (mph) 35 30 30
Link Distance (ft) 1000 960 1000 500
Travel Time (s) 19.5 21.8 22.7 11.4
Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Heavy Vehicles (%) 0% 4% 0% 0% 3% 1% 1% 0% 0% 0% 0% 0% 0%
Adj. Flow (vph) 103 744 621 437 864 141 87 4 93 63 8 75
Shared Lane Traffic (%)
Lane Group Flow (vph) 103 744 621 437 1005 0 87 97 0 63 83 0
Enter Blocked Intersection No No No No No No No No No No No
Lane Alignment Left Left Right Left Right Left Right Left Right
Median Width(ft) 11 11 12 12
Link Offset(ft) 0 0 0
Crosswalk Width(ft) 16 16 16 16
Two way Left Turn Lane
Headway Factor 1.07 1.07 0.94 1.02 1.02 1.00 1.00 0.85 1.00 1.04 1.04
Turning Speed (mph) 15 9 15 9 15 9
Number of Detectors 1 1 1 1 1 1 2 1 2
Detector Template Left Thru Left Thru
Leading Detector (ft) 20 50 50 50 50 50 50 100 20 100
Trailing Detector (ft) 0 0 0 0 0 0 0 0 0
Detector 1 Position(ft) 0 0 0 0 0 0 0 0 0
Detector 1 Size(ft) 20 50 50 50 50 50 6 20 6
Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex
Detector 1 Channel
Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Detector 2 Position(ft) 94 94
Detector 2 Size(ft) 6
Detector 2 Type CI+Ex CI+Ex
Detector 2 Channel
Detector 2 Extend (s) 0.0 0.0
Turn Type pm+pt NA Perm pm+pt NA Perm NA Perm NA

 $\label{thm:complete} G: \ensuremath{$\text{Newton (60 Wells)}} Synchro\ensuremath{$\text{Newton(Complete Calibrated).syn(Calibrated)$

1: Wells Avenue/#333 Nahanton Street & Nahanton Street

	٠	-	*	•	—	4	•	†	/	1	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	3	1		3	1			2			2	
Permitted Phases	1		1	1			2			2		
Detector Phase	3	1	1	3	1		2	2		2	2	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	10.0	11.0	11.0	10.0	11.0		11.0	11.0		11.0	11.0	
Total Split (s)	16.0	55.0	55.0	16.0	55.0		20.0	20.0		20.0	20.0	
Total Split (%)	17.6%	60.4%	60.4%	17.6%	60.4%		22.0%	22.0%		22.0%	22.0%	
Maximum Green (s)	12.0	50.0	50.0	12.0	50.0		15.0	15.0		15.0	15.0	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	2.0	2.0	1.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	2.0	3.0	3.0	2.0	3.0		3.0	3.0		3.0	3.0	
Lead/Lag		Lead	Lead		Lead		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?		Yes	Yes		Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	2.0	3.0	3.0	2.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	None	Min	Min	None	Min		None	None		None	None	
Act Effct Green (s)	67.1	52.0	52.0	67.1	52.0		11.2	11.2		11.2	11.2	
Actuated g/C Ratio	0.79	0.61	0.61	0.79	0.61		0.13	0.13		0.13	0.13	
v/c Ratio	0.28	0.70	0.49	0.91	0.92		0.36	0.33		0.41	0.30	
Control Delay	7.7	16.5	2.2	39.7	31.0		37.9	11.3		41.8	12.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	7.7	16.5	2.2	39.7	31.0		37.9	11.3		41.8	12.9	
LOS	Α	В	Α	D	С		D	В		D	В	
Approach Delay		9.9			33.7			23.9			25.4	
Approach LOS		Α			С			С			С	
90th %ile Green (s)	12.0	50.0	50.0	12.0	50.0		14.5	14.5		14.5	14.5	
90th %ile Term Code	Max	Max	Max	Max	Max		Gap	Gap		Gap	Gap	
70th %ile Green (s)	12.0	50.0	50.0	12.0	50.0		10.6	10.6		10.6	10.6	
70th %ile Term Code	Max	Max	Max	Max	Max		Gap	Gap		Gap	Gap	
50th %ile Green (s)	12.0	50.0	50.0	12.0	50.0		8.7	8.7		8.7	8.7	
50th %ile Term Code	Max	Max	Max	Max	Max		Gap	Gap		Gap	Gap	
30th %ile Green (s)	12.0	50.0	50.0	12.0	50.0		6.9	6.9		6.9	6.9	
30th %ile Term Code	Max	Max	Max	Max	Max		Gap	Gap		Gap	Gap	
10th %ile Green (s)	12.0	50.0	50.0	12.0	50.0		6.0	6.0		6.0	6.0	
10th %ile Term Code	Max	Max	Max	Max	Max		Min	Min		Min	Min	
Queue Length 50th (ft)	7	241	1	111	421		43	2		31	4	
Queue Length 95th (ft)	45	445	44	#326	#827		86	43		70	42	
Internal Link Dist (ft)		920			880			920			420	
Turn Bay Length (ft)	175		175	250						75		
Base Capacity (vph)	368	1061	1275	481	1090		362	398		234	376	
Starvation Cap Reductn	0	0	0	0	0		0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0		0	0	
Reduced v/c Ratio	0.28	0.70	0.49	0.91	0.92		0.24	0.24		0.27	0.22	
Intersection Summary					· · · · · · · · · · · · · · · · · · ·							
Area Type:	Other											

Area Type:

Other

Cycle Length: 91

1: Wells Avenue/#333 Nahanton Street & Nahanton Street

2015 Existing Condition
Weekday Morning Peak Hour

Actuated Cycle Length: 85.3

Natural Cycle: 75

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.92 Intersection Signal Delay: 22.0 Intersection Capacity Utilization 81.5%

Intersection LOS: C
ICU Level of Service D

Analysis Period (min) 15
90th %ile Actuated Cycle: 90.5
70th %ile Actuated Cycle: 86.6
50th %ile Actuated Cycle: 84.7
30th %ile Actuated Cycle: 82.9
10th %ile Actuated Cycle: 82
* User Entered Value

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

øl	↓ † _{ø2}	-
55 s	20 s	16 s

Intersection										
Int Delay, s/veh 132	.6									
Movement	EBL	EBT			WBT	WBR	SBL	SBR		
Vol, veh/h	285	570			986	65	25	384		
Conflicting Peds, #/hr	0	0			0	0	0	0		
Sign Control	Free	Free			Free	Free	Stop	Stop		
RT Channelized	-	None			-	None	· <u>-</u>	None		
Storage Length	225	_			-	-	0	_		
Veh in Median Storage, #	_	0			0	_	0	-		
Grade, %	-	0			0	_	0	_		
Peak Hour Factor	97	97			97	97	97	97		
Heavy Vehicles, %	2	4			1	2	11	3		
Mvmt Flow	294	588			1016	67	26	396		
						0.	20	000		
Major/Minor	Major1				Major2		Minor2			
Conflicting Flow All	1084	0			-	0	2225	1050		
Stage 1	-	_			-	-	1050	-		
Stage 2	-	-			-	-	1175	-		
Critical Hdwy	4.12	-			-	-	6.51	6.23		
Critical Hdwy Stg 1	-	_			_	-	5.51	-		
Critical Hdwy Stg 2	_	_			_	_	5.51	-		
Follow-up Hdwy	2.218	_			_	_	3.599	3.327		
Pot Cap-1 Maneuver	643	_			_	_	45	~ 275		
Stage 1	-	_			_	_	324			
Stage 2	_	_			_	_	281	_		
Platoon blocked, %					_	_	201			
Mov Cap-1 Maneuver	643	_			_	_	~ 24	~ 275		
Mov Cap-2 Maneuver	-	_			_	_	~ 24	210		
Stage 1	_	_			_		324			
Stage 2	_	_			_	_	153	-		
Glage 2	_	_			_	-	100	-		
Approach	EB				WB		SB			
HCM Control Delay, s	5.1				0		\$ 739.8			
HCM LOS							F			
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1						
Capacity (veh/h)	643			- 168						
HCM Lane V/C Ratio	0.457		_	- 2.51						
HCM Control Delay (s)	15.2		_	-\$ 739.8						
HCM Lane LOS	13.2 C	-	-	- F						
HCM 95th %tile Q(veh)	2.4	-	-	- 36.1						
TOWN JOHN /OHIE CA(AGH)	2.4	-	-	- 30.1						
Notes									-	
 Volume exceeds capacit 	y \$: De	elay exc	eeds 30	00s +: Com	putatior	Not Defi	ned *: All ma	ajor volume ir	n platoon	

Intersection							
	.4						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	9	1	0	63	116	53	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	<u>'</u>	None	-	None	-	None	
Storage Length	0	-	-	_	-	-	
Veh in Median Storage, #	0	_	_	0	0	_	
Grade, %	0	_	_	0	0	_	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mymt Flow	10	1	0	68	126	58	
WWW.	10	ı	U	00	120	00	
Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	223	155	184	0		0	
Stage 1	155	_	-	-	-	-	
Stage 2	68	_	_	_	-	_	
Critical Hdwy	6.42	6.22	4.12	_	-	_	
Critical Hdwy Stg 1	5.42	-	-	_	-	_	
Critical Hdwy Stg 2	5.42	-	_	_	-	_	
Follow-up Hdwy	3.518	3.318	2.218	_	-	_	
Pot Cap-1 Maneuver	765	891	1391	_	-	-	
Stage 1	873	-		_	-	_	
Stage 2	955	_	_	-	_	_	
Platoon blocked, %	000			_	_	_	
Mov Cap-1 Maneuver	765	891	1391	_	_	_	
Mov Cap-2 Maneuver	765	-	1001	_	_	_	
Stage 1	873	-		_	_	_	
Stage 2	955			_			
Stage 2	300	-	_	_	_	_	
Approach	EB		NB		SB		
HCM Control Delay, s	9.7		0		0		***************************************
HCM LOS	Α						
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR				
Capacity (veh/h)	1391	- 776					
HCM Lane V/C Ratio	-	- 0.014					
HCM Control Delay (s)	0	- 9.7					
HCM Lane LOS	Α	- A					
HCM 95th %tile Q(veh)	0	- 0					

Intersection														
Int Delay, s/veh	1.3													
Movement	EBL	EBT	EBR	٧	VBL	WBT	WBR		NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	2	0	0		0	0	7		1	53	1	16	77	1
Conflicting Peds, #/hr	0	0	0		0	0	0		0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	5	Stop	Stop	Stop		Free	Free	Free	Free	Free	Free
RT Channelized	· -	·-	None .				None		_	-	None	_	-	None
Storage Length	-	-	-		-	-	-		_	-	-	-	_	_
Veh in Median Storage, #	# -	0	-		-	0	-		-	0	-	-	0	-
Grade, %	-	0	-		-	0	-		-	0	-	-	0	-
Peak Hour Factor	92	92	92		92	92	92		92	92	92	92	92	92
Heavy Vehicles, %	2	2	2		2	2	2		2	2	2	2	2	2
Mvmt Flow	2	0	0		0	0	8		1	58	1	17	84	1
Major/Minor	Minor2			Min	nor1			М	ajor1			Major2		
Conflicting Flow All	183	180	84		179	180	58		85	0	0	59	0	0
Stage 1	119	119	-		60	60	-		_	_	-	-	-	-
Stage 2	64	61	_		119	120	_		_	_	_	_	_	_
Critical Hdwy	7.12	6.52	6.22	7	7.12	6.52	6.22		4.12	_	_	4.12	_	_
Critical Hdwy Stg 1	6.12	5.52	-	6	5.12	5.52	_		-	_	_	_	_	_
Critical Hdwy Stg 2	6.12	5.52	_	6	5.12	5.52	_		_	_	_	-	_	_
Follow-up Hdwy	3.518	4.018	3.318	3.	518	4.018	3.318	2	2.218	_	-	2.218	_	_
Pot Cap-1 Maneuver	778	714	975		783	714	1008		1512	-	_	1545	-	_
Stage 1	885	797	_		951	845	_		-	_	-	-	_	_
Stage 2	947	844	_		885	796	_		-	-	_	_	_	-
Platoon blocked, %										-	-		_	_
Mov Cap-1 Maneuver	764	705	975		775	705	1008		1512	_	_	1545	_	_
Mov Cap-2 Maneuver	764	705	-		775	705	-		_	-	-	-	_	-
Stage 1	884	787	-		950	844	-		-	-	-	-	-	-
Stage 2	939	843	-		874	786	-		-	-	-	-	-	-
Approach	EB				WB				NB			SB		
HCM Control Delay, s	9.7				8.6				0.1			1.3		
HCM LOS	Α				Α									
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1WB	Ln1	SBL	SBT	SBR						
Capacity (veh/h)	1512	_	_		008	1545	_	-						
HCM Lane V/C Ratio	0.001	_	_			0.011	_	_						
HCM Control Delay (s)	7.4	0	_	9.7	8.6	7.4	0	-						
HCM Lane LOS	A	Ā	_	A	A	A	Ā	_						
HCM 95th %tile Q(veh)	0	-	_	0	0	0	-							
	U			U	U	J								

1: Wells Avenue/#333 Nahanton Street & Nahanton Street

	•	-	*	*	—	*	1	†	*	\	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	7	Ť	†		ሻ	₽		ሻ	Ŧ	
Volume (vph)	120	920	733	314	888	117	125	4	146	57	8	78
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	14	11	11	11	12	12	16	12	11	11
Grade (%)		3%			-3%			0%			0%	
Storage Length (ft)	175		175	250		0	0		125	75		0
Storage Lanes	1		1	1		0	1		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.983			0.854			0.863	
FIt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1719	1740	1697	1771	1783	0	1787	1623	0	1805	1585	0
FIt Permitted	0.077			0.128			0.638			0.403		
Satd. Flow (perm)	139	1740	1697	*307	1783	0	*1818	1623	0	766	1585	0
Right Turn on Red	,,,,		Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			576		14			154			82	
Link Speed (mph)		35			30			30			30	
Link Opeca (mpn) Link Distance (ft)		1000			960			1000			500	
Travel Time (s)		19.5			21.8			22.7			11.4	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	0.30	4%	0%	0%	3%	1%	1%	0%	0%	0%	0%	0%
Adj. Flow (vph)	126	968	772	331	935	123	132	4	154	60	8	82
Shared Lane Traffic (%)	120	500		001	000							
Lane Group Flow (vph)	126	968	772	331	1058	0	132	158	0	60	90	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	LOIL	11	ragin	20.0	11			12	J		12	ŭ
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10										
Headway Factor	1.07	1.07	0.94	1.02	1.02	1.02	1.00	1.00	0.85	1.00	1.04	1.04
Turning Speed (mph)	1.57	1.01	9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1	-	1	2		1	2	
Detector Template	Left	•		•	•			Thru		Left	Thru	
Leading Detector (ft)	20	50	50	50	50		50	100		20	100	
Trailing Detector (ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0		0	0		0	0	
` ,	20	50	50	50	50		50	6		20	6	
Detector 1 Size(ft) Detector 1 Type	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex	
	CITEX	CITEX	OIILX	OILLX	OI · LX		OI LX	0		•,		
Detector 1 Channel	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	94		0.0	94	
Detector 2 Position(ft)								6			6	
Detector 2 Size(ft)								CI+Ex			CI+Ex	
Detector 2 Type								OITEX			O1 - LX	
Detector 2 Channel								0.0			0.0	
Detector 2 Extend (s)	المداد مصيد	NI A	Dorm	nm±n‡	NA		Perm	NA		Perm	NA	
Turn Type	pm+pt	NA	Perm	pm+pt	IVA		ı Gilli	1477	······································	. 01111	1 47 7	

G:\Projects\840 - Newton (60 Wells)\Synchro\Report\Complete Calibrated\840 No-Build AM (Calibrated).syn MDM Transportation Consultants, Inc.

	•		•	1	4	*	4	†	<i>></i>	1	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	3	1		3	1			2			2	
Permitted Phases	1		1	1			2			2		
Detector Phase	3	1	1	3	1		2	2		2	2	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	10.0	11.0	11.0	10.0	11.0		11.0	11.0		11.0	11.0	
Total Split (s)	16.0	59.0	59.0	16.0	59.0		15.0	15.0		15.0	15.0	
Total Split (%)	17.8%	65.6%	65.6%	17.8%	65.6%		16.7%	16.7%		16.7%	16.7%	
Maximum Green (s)	12.0	54.0	54.0	12.0	54.0		10.0	10.0		10.0	10.0	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	2.0	2.0	1.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	2.0	3.0	3.0	2.0	3.0		3.0	3.0		3.0	3.0	
Lead/Lag		Lead	Lead		Lead		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?		Yes	Yes		Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	2.0	3.0	3.0	2.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	None	Min	Min	None	Min		None	None		None	None	
Act Effct Green (s)	68.1	55.5	55.5	68.1	55.5		10.9	10.9		10.9	10.9	
Actuated g/C Ratio	0.79	0.65	0.65	0.79	0.65		0.13	0.13		0.13	0.13	
v/c Ratio	0.39	0.86	0.59	0.75	0.92		0.57	0.46		0.62	0.33	
Control Delay	11.5	23.4	4.3	20.6	28.5		46.6	11.7		65.3	13.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	11.5	23.4	4.3	20.6	28.5		46.6	11.7		65.3	13.8	
LOS	В	С	Α	С	C		D	В		Е	В	
Approach Delay		14.7			26.6			27.6			34.4	
Approach LOS		В			С			С			С	
90th %ile Green (s)	12.0	54.0	54.0	12.0	54.0		10.0	10.0		10.0	10.0	
90th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
70th %ile Green (s)	12.0	54.0	54.0	12.0	54.0		10.0	10.0		10.0	10.0	
70th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
50th %ile Green (s)	11.0	54.0	54.0	11.0	54.0		10.0	10.0		10.0	10.0	
50th %ile Term Code	Gap	Max	Max	Gap	Max		Max	Max		Max	Max	
30th %ile Green (s)	7.4	54.0	54.0	7.4	54.0		8.7	8.7		8.7	8.7	
30th %ile Term Code	Gap	Max	Max	Gap	Max		Gap	Gap		Gap	Gap	
10th %ile Green (s)	6.1	50.5	50.5	6.1	50.5		6.1	6.1		6.1	6.1	
10th %ile Term Code	Gap	Gap	Gap	Gap	Gap		Gap	Gap		Gap	Gap	
Queue Length 50th (ft)	10	409	42	48	481		70			32	4	
Queue Length 95th (ft)	59	#743	114	144	#836		130	57		#91	47	
Internal Link Dist (ft)		920			880			920			420	
Turn Bay Length (ft)	175		175	250						75		
Base Capacity (vph)	370	1137	1309	485	1170		254	359		107	292	
Starvation Cap Reductn	0	0	0	0	0		0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0		0	0	
Storage Cap Reductn	Ō	0	0	0	0		0	0		0	0	
Reduced v/c Ratio	0.34	0.85	0.59	0.68	0.90		0.52	0.44		0.56	0.31	
Intersection Summary												
Aron Type:	Othor											

Area Type: Other

Cycle Length: 90

1: Wells Avenue/#333 Nahanton Street & Nahanton Street

2020 No-Build Condition Weekday Morning Peak Hour

Actuated Cycle Length: 86

Natural Cycle: 65

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.92 Intersection Signal Delay: 21.0 Intersection Capacity Utilization 93.4%

Intersection LOS: C
ICU Level of Service F

Analysis Period (min) 15
90th %ile Actuated Cycle: 90
70th %ile Actuated Cycle: 90
50th %ile Actuated Cycle: 89
30th %ile Actuated Cycle: 84.1
10th %ile Actuated Cycle: 76.7

* User Entered Value

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Spire and I hades.	44.,	₽ ₆₃
ron	15s	16 s

2: Nahanton Street & Winchester Street

American and resident and a second supplementaries and the second second second second second second second second	<u> </u>	_	4	Ą	<u></u>	J
				~	**	प
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	Ť	۴	∱	ř	Ť	ř
Volume (vph)	434	689	983	67	21	336
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	12	14	14	16	16
Storage Length (ft)	225			0	0	0
Storage Lanes	1			1	1	1
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt				0.850		0.850
FIt Protected	0.950				0.950	
Satd. Flow (prot)	1711	1827	2007	1689	1843	1777
Flt Permitted	0.080				0.950	
Satd. Flow (perm)	144	1827	2007	1689	1843	1777
Right Turn on Red	1-7-1	1021	2001	Yes	10.0	Yes
•				69		73
Satd. Flow (RTOR)		35	30	03	30	70
Link Speed (mph)					500	
Link Distance (ft)		960 19.7	1000			
Travel Time (s)	0.07	18.7	22.7	0.07	11.4	0.07
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	2%	4%	1%	2%	11%	3%
Adj. Flow (vph)	447	710	1013	69	22	346
Shared Lane Traffic (%)						
Lane Group Flow (vph)	447	710	1013	69	22	346
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		11	11		16	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.04	1.00	0.92	0.92	0.85	0.85
Turning Speed (mph)	15	1.00	0.02	9	15	9
Number of Detectors	1	2	2	1	1	1
	Left	Thru	Thru	•	Left	Right
Detector Template	20	100	100	Right 20	20	20
Leading Detector (ft)						
Trailing Detector (ft)	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	6	20	20	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex
Detector 1 Channel		_				<u></u>
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94	94			
Detector 2 Size(ft)		6	6			
Detector 2 Type		CI+Ex	CI+Ex			
Detector 2 Channel						
Detector 2 Extend (s)		0.0	0.0			
Turn Type	pm+pt	NA	NA	pm+ov	Prot	pt+ov
Protected Phases	5	2	6	4	4	45
FIDIBULEU FIIASES	J	۷	U	- 		T U

G:\Projects\840 - Newton (60 Wells)\Synchro\Report\Complete Calibrated\840 No-Build AM (Calibrated).syn MDM Transportation Consultants, Inc.

2: Nahanton Street	t & Wind	Weekday Morning Peak Hour					
	•		4—	*	\	4	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Permitted Phases	2			6		***************************************	
Detector Phase	5	2	6	4	4	4 5	
Switch Phase							
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0		
Minimum Split (s)	11.0	11.0	11.0	11.0	11.0		
Total Split (s)	29.0	79.0	50.0	11.0	11.0		
Total Split (%)	32.2%	87.8%	55.6%	12.2%	12.2%		
Maximum Green (s)	24.0	74.0	45.0	6.0	6.0		
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0		
Lead/Lag	Lead	0.0	Lag	0.0	0.0		
Lead-Lag Optimize?	Yes		Yes				
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		
Recall Mode	None	None	None	Min	Min		
Act Effct Green (s)	73.2	73.2	45.0	56.0	6.0	34.2	
, ,	0.82	0.82	0.50	0.63	0.07	0.38	
Actuated g/C Ratio v/c Ratio	0.85	0.62	1.00	0.03	0.07	0.38	
	39.1	3.5	52.4	2.0	43.3	18.6	
Control Delay			0.0	0.0	0.0	0.0	
Queue Delay	0.0	0.0			43.3		
Total Delay	39.1	3.5	52.4	2.0	43.3 D	18.6 B	
LOS	D	A	D 40.2	Α	20.1	Ь	
Approach Delay		17.3	49.2				
Approach LOS	24.0	B	D 45.0	6.0	C		
90th %ile Green (s)	24.0	74.0	45.0	6.0	6.0		
90th %ile Term Code	Max	Hold	Max	Max	Max		
70th %ile Green (s)	24.0	74.0	45.0	6.0	6.0		
70th %ile Term Code	Max	Hold	Max	Max	Max		
50th %ile Green (s)	24.0	74.0	45.0	6.0	6.0		
50th %ile Term Code	Max	Hold	Max	Max	Max		
30th %ile Green (s)	24.0	74.0	45.0	6.0	6.0		
30th %ile Term Code	Max	Hold	Max	Max	Max		
10th %ile Green (s)	19.9	69.9	45.0	6.0	6.0		
10th %ile Term Code	Gap	Hold	Max	Max	Max	440	
Queue Length 50th (ft)	185	81	~566	0	12	112	
Queue Length 95th (ft)	#348	121	#846	14	36	189	
Internal Link Dist (ft)		880	920		420		
Turn Bay Length (ft)	225						
Base Capacity (vph)	540	1516	1013	1087	123	741	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.83	0.47	1.00	0.06	0.18	0.47	

Area Type:

Intersection Summary

Other

Cycle Length: 90

Actuated Cycle Length: 89.2

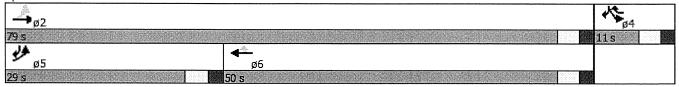
Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.00 Intersection Signal Delay: 30.9 Intersection Capacity Utilization 93.3%

Intersection LOS: C
ICU Level of Service F

Analysis Period (min) 15 90th %ile Actuated Cycle: 90 70th %ile Actuated Cycle: 90 50th %ile Actuated Cycle: 90 30th %ile Actuated Cycle: 90 10th %ile Actuated Cycle: 85.9


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Nahanton Street & Winchester Street

Intersection							
	.4						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	9	1	0	109	98	54	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	· -	None	-	None	-	None	
Storage Length	0	-	-	_	-	-	
Veh in Median Storage, #	0	_	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	10	1	0	118	107	59	
Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	254	136	165	0	-	0	
Stage 1	136	-	-	-	-	-	
Stage 2	118	-	-	-	-	-	
Critical Hdwy	6.42	6.22	4.12	-	-	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	_	-	-	
Follow-up Hdwy	3.518	3.318	2.218	_	-	-	
Pot Cap-1 Maneuver	735	913	1413	-	-	-	
Stage 1	890	-	-	-	-	-	
Stage 2	907	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	735	913	1413	-	-	_	
Mov Cap-2 Maneuver	735	-	-	-	-	-	
Stage 1	890	-	-	_	-	-	
Stage 2	907	-	-	-	-	-	
					27		
Approach	EB	3 	NB		SB		
HCM Control Delay, s	9.9		0		0		
HCM LOS	Α						
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR				
Capacity (veh/h)	1413	- 750					
HCM Lane V/C Ratio	-	- 0.014					
HCM Control Delay (s)	0	- 9.9					
HCM Lane LOS	Ā	- A					
HCM 95th %tile Q(veh)	0	- 0					

4: Wells Avenue & Southern Site Driveway/#177 Wells Avenue

Intersection												
Int Delay, s/veh	0.5	***************************************										
Movement	EBL	EBT	EBR	WBL	. WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	2	0	0	0	0	7	1	99	1	1	58	16
Conflicting Peds, #/hr	0	0	0	C		0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	. <u>-</u>	None	-	-	None	-	-	None
Storage Length	-	-	-	•	-	-	-	-	-	-	-	-
Veh in Median Storage, #	· -	0	-	-	. 0	-	-	0	-	-	0	-
Grade, %	-	0	-	•	•	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2 2	2	2	2	2	2	2	2
Mvmt Flow	2	0	0	() 0	8	1	108	1	1	63	17
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	188	185	72	184	193	108	80	0	0	109	0	0
Stage 1	74	74	-	110		_	-	-	-	-	-	_
Stage 2	114	111	_	74		-	_	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	_	6.12		-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	_	6.12	2 5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	3 4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	772	709	990	777	7 702	946	1518	-	-	1481	-	-
Stage 1	935	833	_	898	5 804	-	-	-	-	-	-	-
Stage 2	891	804	-	938	826	_	_	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	765	708	990	776	701	946	1518	_	-	1481	-	-
Mov Cap-2 Maneuver	765	708	-	776	701	-	-	-	_	-	-	-
Stage 1	934	832	_	894	4 803	-	-	-	-	-	-	-
Stage 2	883	803	-	934	4 825	-	-	-	-	-	-	-
Approach	EB			WE	3		NB			SB		
HCM Control Delay, s	9.7			8.8			0.1			0.1		
HCM LOS	Α				Ä		0.1			• • • • • • • • • • • • • • • • • • • •		
Minor Lane/Major Mvmt	NBL	NBT	NRR	EBLn1WBLn	1 SBL	SBT	SBR					
Capacity (veh/h)	1518		1401(765 94			-					
HCM Lane V/C Ratio	0.001		-	0.003 0.00			-					
HCM Control Delay (s)	7.4		-	9.7 8.			_					
HCM Lane LOS	7. 4 A				ο 7.4 Δ Δ		_					
	0		_		0 0		- -					
HCM 95th %tile Q(veh)	U	-	-	U	U L	_	-					

	۶	→	*	•	4	•	1	†	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	7	ሻ	1→		ሻ	1→		ħ	1→	
Volume (vph)	120	920	779	351	888	117	131	4	151	57	8	78
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	14	11	11	11	12	12	16	12	11	11
Grade (%)		3%			-3%			0%			0%	, ,
Storage Length (ft)	175		175	250		0	0		125	75	070	0
Storage Lanes	1		1	1		0	1		1	1		0
Taper Length (ft)	. 25			25			25			25		ŭ
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.983			0.854			0.863	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1719	1740	1697	1771	1783	0	1787	1623	0	1805	1585	0
Flt Permitted	0.072			0.123			0.634			0.380		_
Satd. Flow (perm)	130	1740	1697	*307	1783	0	*1818	1623	0	722	1585	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			555		14			159			82	
Link Speed (mph)		35			30			30			30	
Link Distance (ft)		1000			960			1000			500	
Travel Time (s)		19.5			21.8			22.7			11.4	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	0%	4%	0%	0%	3%	1%	1%	0%	0%	0%	0%	0%
Adj. Flow (vph)	126	968	820	369	935	123	138	4	159	60	8	82
Shared Lane Traffic (%)											_	
Lane Group Flow (vph)	126	968	820	369	1058	0	138	163	0	60	90	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		11			11	-		12	ŭ		12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	0.94	1.02	1.02	1.02	1.00	1.00	0.85	1.00	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1		1	2		1	2	
Detector Template	Left							Thru		Left	Thru	
Leading Detector (ft)	20	50	50	50	50		50	100		20	100	
Trailing Detector (ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Size(ft)	20	50	50	50	50		50	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex		Cl+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)								94			94	
Detector 2 Size(ft)								6			6	
Detector 2 Type								CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)								0.0			0.0	
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA		Perm	NA	

 $\label{thm:complete} G: \ensuremath{$\text{Newton (60 Wells)}} Synchro \ensuremath{$\text{Report(Complete Calibrated).840 Build AM (Calibrated).syn MDM Transportation Consultants, Inc.} \\$

1: Wells Avenue/#333 Nahanton Street & Nahanton Street

	•		•	•	4	1	•	†	<i>></i>	1	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	3	1		3	1			2			2	
Permitted Phases	1		1	1			2			2		
Detector Phase	3	1	1	3	1		2	2		2	2	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	10.0	11.0	11.0	10.0	11.0		11.0	11.0		11.0	11.0	
Total Split (s)	16.0	59.0	59.0	16.0	59.0		15.0	15.0		15.0	15.0	
Total Split (%)	17.8%	65.6%	65.6%	17.8%	65.6%		16.7%	16.7%		16.7%	16.7%	
Maximum Green (s)	12.0	54.0	54.0	12.0	54.0		10.0	10.0		10.0	10.0	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	2.0	2.0	1.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	2.0	3.0	3.0	2.0	3.0		3.0	3.0		3.0	3.0	
Lead/Lag		Lead	Lead		Lead		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?		Yes	Yes		Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	2.0	3.0	3.0	2.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	None	Min	Min	None	Min		None	None		None	None	
Act Effct Green (s)	69.3	55.8	55.8	69.3	55.8		11.0	11.0		11.0	11.0	
Actuated g/C Ratio	0.79	0.64	0.64	0.79	0.64		0.13	0.13		0.13	0.13	
v/c Ratio	0.38	0.87	0.64	0.81	0.93		0.60	0.47		0.66	0.33	
Control Delay	12.3	24.6	5.5	26.6	30.2		48.3	11.7		71.5	13.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	12.3	24.6	5.5	26.6	30.2		48.3	11.7		71.5	13.8	
LOS	В	С	Α	С	С		D	В		Ε	В	
Approach Delay		15.6			29.3			28.5			36.9	
Approach LOS		В			С			С			D	
90th %ile Green (s)	12.0	54.0	54.0	12.0	54.0		10.0	10.0		10.0	10.0	
90th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
70th %ile Green (s)	12.0	54.0	54.0	12.0	54.0		10.0	10.0		10.0	10.0	
70th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
50th %ile Green (s)	12.0	54.0	54.0	12.0	54.0		10.0	10.0		10.0	10.0	
50th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
30th %ile Green (s)	10.0	54.0	54.0	10.0	54.0		9.1	9.1		9.1	9.1	
30th %ile Term Code	Gap	Max	Max	Gap	Max		Gap	Gap		Gap	Gap	
10th %ile Green (s)	7.1	52.4	52.4	7.1	52.4		6.3	6.3		6.3	6.3	
10th %ile Term Code	Gap	Gap	Gap	Gap	Gap		Gap	Gap		Gap	Gap	
Queue Length 50th (ft)	10	425	61	73	499		75	2		33	4	
Queue Length 95th (ft)	63	#743	159	#211	#836		134	57		#94	47	
Internal Link Dist (ft)		920			880			920			420	
Turn Bay Length (ft)	175		175	250						75		
Base Capacity (vph)	359	1117	1288	481	1150		250	360		99	289	
Starvation Cap Reductn	0	0	0	0	0		0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		Ö	0		0	0	
Reduced v/c Ratio	0.35	0.87	0.64	0.77	0.92		0.55	0.45		0.61	0.31	
Intersection Summary												
Area Type	Other											

Area Type:

Other

Cycle Length: 90

Lanes, Volumes, Timings

1: Wells Avenue/#333 Nahanton Street & Nahanton Street

2020 Build Condition
Weekday Morning Peak Hour

Actuated Cycle Length: 87.4

Natural Cycle: 75

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.93 Intersection Signal Delay: 22.6 Intersection Capacity Utilization 95.8%

Intersection LOS: C
ICU Level of Service F

Analysis Period (min) 15 90th %ile Actuated Cycle: 90 70th %ile Actuated Cycle: 90 50th %ile Actuated Cycle: 90 30th %ile Actuated Cycle: 87.1 10th %ile Actuated Cycle: 79.8

* User Entered Value

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 1: Wells Avenue/#333 Nahanton Street & Nahanton Street

ø1	₩ _{ø2}	₽ ø3
59 s	15 s	16 s

2: Nahanton Street & Winchester Street

	≯				-	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	 ኻ	†	†	ř	ካ	7
Volume (vph)	437	69 ¹	999	6 7	21	357
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	12	14	14	16	16
Storage Length (ft)	225	12	14	0	0	0
				1	1	1
Storage Lanes	1			I	•	1
Taper Length (ft)	25	4.00	4.00	4.00	25	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt				0.850		0.850
FIt Protected	0.950				0.950	
Satd. Flow (prot)	1711	1827	2007	1689	1843	1777
Flt Permitted	0.080				0.950	
Satd. Flow (perm)	144	1827	2007	1689	1843	1777
Right Turn on Red				Yes		Yes
Satd. Flow (RTOR)				69		70
Link Speed (mph)		35	30		30	
Link Distance (ft)		960	1000		500	
Travel Time (s)		18.7	22.7		11.4	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	2%	4%	1%	2%	11%	3%
Adj. Flow (vph)	451	712	1030	69	22	368
Shared Lane Traffic (%)	701	112	1000	00		000
• •	451	712	1030	69	22	368
Lane Group Flow (vph)						
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		11	11		16	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.04	1.00	0.92	0.92	0.85	0.85
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	1	1
Detector Template	Left	Thru	Thru	Right	Left	Right
Leading Detector (ft)	20	100	100	20	20	20
Trailing Detector (ft)	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	6	20	20	20
Detector 1 Type	CI+Ex	Cl+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	OILX	OILX	OIILX	OILX	OIILX	OIILX
	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Extend (s)	0.0					
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94	94			
Detector 2 Size(ft)		6	6			
Detector 2 Type		CI+Ex	CI+Ex			
Detector 2 Channel						
Detector 2 Extend (s)		0.0	0.0			
Turn Type	pm+pt	NA	NA	pm+ov	Prot	pt+ov
Protected Phases	5	2	6	4	4	4 5

G:\Projects\840 - Newton (60 Wells)\Synchro\Report\Complete Calibrated\840 Build AM (Calibrated).syn MDM Transportation Consultants, Inc.

2: Nahanton Street & Winchester Street

	•	→	-	4	-	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Permitted Phases	2			6		
Detector Phase	5	2	6	4	4	4 5
Switch Phase						
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0	
Minimum Split (s)	11.0	11.0	11.0	11.0	11.0	
Total Split (s)	29.0	79.0	50.0	11.0	11.0	
Total Split (%)	32.2%	87.8%	55.6%	12.2%	12.2%	
Maximum Green (s)	24.0	74.0	45.0	6.0	6.0	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
		5.0	5.0		5.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes	2.2	Yes		0.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	Min	Min	
Act Effct Green (s)	73.3	73.3	45.0	56.0	6.0	34.3
Actuated g/C Ratio	0.82	0.82	0.50	0.63	0.07	0.38
v/c Ratio	0.86	0.47	1.02	0.06	0.18	0.51
Control Delay	39.8	3.5	57.0	2.0	43.3	19.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	39.8	3.5	57.0	2.0	43.3	19.6
LOS	D	Α	E	Α	D	В
Approach Delay		17.6	53.5		21.0	
Approach LOS		В	D		C	
90th %ile Green (s)	24.0	74.0	45.0	6.0	6.0	
90th %ile Term Code	Max	Hold	Max	Max	Max	
70th %ile Green (s)	24.0	74.0	45.0	6.0	6.0	
70th %ile Term Code	Max	Hold	Max	Max	Max	
50th %ile Green (s)	24.0	74.0	45.0	6.0	6.0	
50th %ile Term Code		Hold	Max	Max	Max	
	Max				6.0	
30th %ile Green (s)	24.0	74.0	45.0	6.0		
30th %ile Term Code	Max	Hold	Max	Max	Max	
10th %ile Green (s)	20.3	70.3	45.0	6.0	6.0	
10th %ile Term Code	Gap	Hold	Max	Max	Max	404
Queue Length 50th (ft)	188	81	~631	0	12	124
Queue Length 95th (ft)	#355	122	#868	14	36	207
Internal Link Dist (ft)		880	920		420	
Turn Bay Length (ft)	225					
Base Capacity (vph)	539	1515	1012	1086	123	739
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.84	0.47	1.02	0.06	0.18	0.50
Intersection Summary						
Area Type	Other	******				

Area Type:

Other

Cycle Length: 90

Actuated Cycle Length: 89.3

Lanes, Volumes, Timings

2: Nahanton Street & Winchester Street

2020 Build Condition Weekday Morning Peak Hour

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.02 Intersection Signal Delay: 33.0 Intersection Capacity Utilization 94.3%

Intersection LOS: C
ICU Level of Service F

Analysis Period (min) 15
90th %ile Actuated Cycle: 90
70th %ile Actuated Cycle: 90
50th %ile Actuated Cycle: 90
30th %ile Actuated Cycle: 90
10th %ile Actuated Cycle: 86.3

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 2: Nahanton Street & Winchester Street

Intersection							
Int Delay, s/veh	0.4						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	10	1	1	108	98	69	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	_	-	_	-	
Veh in Median Storage, #	0	_	_	0	0	_	
Grade, %	0	_	_	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	11	1	1	117	107	75	
	• • •	•	•		101	10	
Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	264	144	182	0	-	0	
Stage 1	144	-	-	-	-	-	
Stage 2	120	-	-	-	-	-	
Critical Hdwy	6.42	6.22	4.12	-	-	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	2.218	-	-	-	
Pot Cap-1 Maneuver	725	903	1393	-		-	
Stage 1	883	-	-	-	-	-	
Stage 2	905	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	724	903	1393	-	-	-	
Mov Cap-2 Maneuver	724	-	_	-	-	-	
Stage 1	883	-	-	_	-	-	
Stage 2	904	-	-	-	-	-	
A			No		25		
Approach	EB 10		NB 0.4	·····	SB		
HCM Control Delay, s	10		0.1		0		
HCM LOS	В						
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR				
Capacity (veh/h)	1393	- 737					
HCM Lane V/C Ratio	0.001	- 0.016					
HCM Control Delay (s)	7.6	0.010					
HCM Lane LOS	7.0 A	A B					
HCM 95th %tile Q(veh)	0	- 0					
HOW SOUL WING CALACIL)	U	- 0					

ntersection								
	.8							
Movement	WBL	WBR		NBT	NBR	SBL	SBT	
/ol, veh/h	0	12		224	0	70	478	
Conflicting Peds, #/hr	0	0		0	0	0	0	
Sign Control	Stop	Stop		Free	Free	Free	Free	
RT Channelized	-	None		-	None	-	None	
Storage Length	0	-		-	-	-	-	
Veh in Median Storage, #	0	-		0	-	-	0	
Grade, %	0	-		0	-	-	0	
Peak Hour Factor	92	92		92	92	92	92	
Heavy Vehicles, %	2	2		2	2	2	2	
Mvmt Flow	0	13		243	0	76	520	
Major/Minor	Minard			Maia-4		Majora		
Major/Minor	Minor1	0.40		Major1		Major2		
Conflicting Flow All	915	243		0	0	243	0	
Stage 1	243	-		-	-	-	-	
Stage 2	672	-		-	-	- 4.40	-	
Critical Hdwy	6.42	6.22		-	-	4.12	-	
Critical Hdwy Stg 1	5.42	-		-	-	-	-	
Critical Hdwy Stg 2	5.42	<u>.</u>		-	-	-	-	
Follow-up Hdwy	3.518	3.318		-	-	2.218	•	
Pot Cap-1 Maneuver	303	796		-	-	1323	-	
Stage 1	797	-		-	-	-	-	
Stage 2	508	-		-	-	-	-	
Platoon blocked, %				-	-		-	
Mov Cap-1 Maneuver	278	796		-	-	1323	-	
Mov Cap-2 Maneuver	278	-		-	-	-	-	
Stage 1	797	-		-	-	-	-	
Stage 2	467	-		-	-	-	-	
Approach	WB			NB		SB		
HCM Control Delay, s	9.6			0		1		
	9.6 A			U		'		
HCM LOS	A							
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT				
Capacity (veh/h)	-	- 796	1323	-				
HCM Lane V/C Ratio	-	- 0.016		-				
HCM Control Delay (s)	_	- 9.6	7.9	0				
HCM Lane LOS	-	- A	Α	A				
HCM 95th %tile Q(veh)	_	- 0.1	0.2	-				

1: Wells Avenue/#333 Nahanton Street & Nahanton Street

1. VVEIIS AVEITUE/#33	o Han	anton	Jucci	<u> </u>	arreor.				NATURAL PROPERTY OF THE PARTY O		_	-
	۶	>	*	•	4	•	1	†	/	-	\	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኻ	ተ	7	ኽ	1>		ሻ	₽		ሻ	₽	
Volume (vph)	56	675	170	197	557	77	609	4	488	106	5	68
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	14	11	11	11	12	12	16	12	11	11
Grade (%)		3%			-3%			0%			0%	
Storage Length (ft)	175		175	250		0	0		125	75		0
Storage Lanes	1		1	1		0	1		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.982			0.851			0.860	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1685	1791	1664	1771	1782	0	1805	1614	0	1787	1551	0
Flt Permitted	0.124	,,,,,		0.124			0.707			0.247		
Satd. Flow (perm)	220	1791	1664	*307	1782	0	*1818	1614	0	465	1551	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			117		8			*78			72	
Link Speed (mph)		35			30			30			30	
Link Distance (ft)		1000			960			1000			500	
Travel Time (s)		19.5			21.8			22.7			11.4	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	2%	1%	2%	0%	3%	1%	0%	25%	0%	1%	0%	2%
Adj. Flow (vph)	59	711	179	207	586	81	641	4	514	112	5	72
Shared Lane Traffic (%)												
Lane Group Flow (vph)	59	711	179	207	667	0	641	518	0	112	77	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		11	3		11	ŭ		12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	0.94	1.02	1.02	1.02	1.00	1.00	0.85	1.00	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1		1	2		1	2	
Detector Template	Left							Thru		Left	Thru	
Leading Detector (ft)	20	50	50	50	50		50	100		20	100	
Trailing Detector (ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Size(ft)	20	50	50	50	50		50	6		20	6	
Detector 1 Type	CI+Ex	Cl+Ex	CI+Ex	Cl+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)								94			94	
Detector 2 Size(ft)								6			6	
Detector 2 Type								CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)								0.0			0.0	
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA		Perm	NA	

G:\Projects\840 - Newton (60 Wells)\Synchro\Report\Complete Calibrated\840 Ex PM (Calibrated).syn MDM Transportation Consultants, Inc.

	•		*	•	←	1	1	†	<i>></i>	1	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	3	1		3	1			2			2	
Permitted Phases	1		1	1			2			2		
Detector Phase	3	1	1	3	1		2	2		2 2	2	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	10.0	11.0	11.0	10.0	11.0		11.0	11.0		11.0	11.0	
Total Split (s)	14.0	35.0	35.0	14.0	35.0		45.0	45.0		45.0	45.0	
Total Split (%)	14.9%	37.2%	37.2%	14.9%	37.2%		47.9%	47.9%		47.9%	47.9%	
Maximum Green (s)	10.0	30.0	30.0	10.0	30.0		40.0	40.0		40.0	40.0	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	2.0	2.0	1.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	2.0	3.0	3.0	2.0	3.0		3.0	3.0		3.0	3.0	
Lead/Lag		Lead	Lead		Lead		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?		Yes	Yes		Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	2.0	3.0	3.0	2.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	None	Min	Min	None	Min		None	None		None	None	
Act Effct Green (s)	44.2	32.3	32.3	44.2	32.3		37.1	37.1		37.1	37.1	
Actuated g/C Ratio	0.50	0.37	0.37	0.50	0.37		0.42	0.42		0.42	0.42	
v/c Ratio	0.20	1.09	0.26	0.62	1.02		0.84	0.72		0.57	0.11	
Control Delay	13.8	91.9	9.8	22.2	70.8		34.2	24.1		33.1	4.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	13.8	91.9	9.8	22.2	70.8		34.2	24.1		33.1	4.8	
LOS	В	F	Α	C-	Е		С	С		С	Α	
Approach Delay		71.5			59.3			29.7			21.6	
Approach LOS		Ε			Ε			С			С	
90th %ile Green (s)	10.0	30.0	30.0	10.0	30.0		40.0	40.0		40.0	40.0	
90th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
70th %ile Green (s)	10.0	30.0	30.0	10.0	30.0		40.0	40.0		40.0	40.0	
70th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
50th %ile Green (s)	10.0	30.0	30.0	10.0	30.0		40.0	40.0		40.0	40.0	
50th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
30th %ile Green (s)	8.5	30.0	30.0	8.5	30.0		33.4	33.4		33.4	33.4	
30th %ile Term Code	Gap	Max	Max	Gap	Max		Gap	Gap		Gap	Gap	
10th %ile Green (s)	6.2	30.0	30.0	6.2	30.0		23.8	23.8		23.8	23.8	
10th %ile Term Code	Gap	Max	Max	Gap	Max		Gap	Gap		Gap	Gap	
Queue Length 50th (ft)	17	~508	25	67	~450		317	202		47	2	
Queue Length 95th (ft)	38	#724	73	119	#667		466	322		110	26	
Internal Link Dist (ft)		920			880			920			420	
Turn Bay Length (ft)	175		175	250						75		
Base Capacity (vph)	312	654	681	356	655		871	814		222	780	
Starvation Cap Reductn	0	0	0	0	0		0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0		0	0	
Reduced v/c Ratio	0.19	1.09	0.26	0.58	1.02		0.74	0.64		0.50	0.10	
Intersection Summary												

Area Type:

Cycle Length: 94

Other

Lanes, Volumes, Timings

1: Wells Avenue/#333 Nahanton Street & Nahanton Street

2015 Existing Conditions
Weekday Evening Peak Hour

Actuated Cycle Length: 88.4

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.09 Intersection Signal Delay: 49.9 Intersection Capacity Utilization 98.5%

Intersection LOS: D
ICU Level of Service F

Analysis Period (min) 15 90th %ile Actuated Cycle: 94 70th %ile Actuated Cycle: 94 50th %ile Actuated Cycle: 94 30th %ile Actuated Cycle: 85.9 10th %ile Actuated Cycle: 74

- * User Entered Value
- Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Wells Avenue/#333 Nahanton Street & Nahanton Street

\$ ø1	₩ _{ø2}	₽ _{ø3}
35 s	45 s	14s

Intersection										
	88.1									
Movement	EBL	EBT			WBT	WBR	SBL	CDD		
Vol, veh/h	407	862			513	28	34	SBR 318		
Conflicting Peds, #/hr	407	002			0	20 0	0	اد 0		
Sign Control	Free	Free			Free	Free				
RT Channelized	-						Stop	Stop		
		None			-	None	-	None		
Storage Length	225	-			-	-	0	-		
Veh in Median Storage, #		0			0	-	0	-		
Grade, %	-	0			0	-	0	-		
Peak Hour Factor	96	96			96	96	96	96		
Heavy Vehicles, %	1	0			2	4	0	3		
Mvmt Flow	424	898			534	29	35	331		
Major/Minor	Major1			N	Major2		Minor2			
Conflicting Flow All	564	0			_	0	2295	549		
Stage 1	-				_	-	549	-		
Stage 2	-	_			_	_	1746	_		
Critical Hdwy	4.11	_			_	_	6.4	6.23		
Critical Hdwy Stg 1	-	_			_	_	5.4	0.20		
Critical Hdwy Stg 2	_	_			_	_	5.4	_		
Follow-up Hdwy	2.209	_			_	_	3.5	3.327		
Pot Cap-1 Maneuver	1013	_			_	_	43	534		
Stage 1	1010	_			-	_	583	334		
Stage 2	-	_			-	-	156	_		
Platoon blocked, %	-	_			-	-	150	_		
Mov Cap-1 Maneuver	1013	_			-	-	~ 25	534		
Mov Cap-1 Maneuver	1013	-			-	-	~ 25 ~ 25	334		
	-	-			-	-		-		
Stage 1	-	-			-	-	583	-		
Stage 2	-	-			-	-	91	-		
Approach	EB				WB		SB			
HCM Control Delay, s	3.6				0		\$ 528.1			
HCM LOS							F			
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1						
Capacity (veh/h)	1013	-	-	- 180						
HCM Lane V/C Ratio	0.419	-	-	- 2.037						
HCM Control Delay (s)	11.1	-	-	-\$ 528.1						
HCM Lane LOS	В	-	-	- F						
HCM 95th %tile Q(veh)	2.1	-	-	- 28.2						
Notes										
~: Volume exceeds capa	city \$: De	elay exc	eeds 30	00s +: Com	putation	Not De	fined *: All	major volume	in platoon	
·	-	•		•				•	•	

BL				
BI				·
וח	EBR	NBL	NBT	SBT SBR
37		0	164	26 21
				0 0
				Free Free
ωþ	•			- None
0	None	_	-	
	_	_	n	0 -
	_	_		0 -
				92 92
				2 2
				28 23
70	U	O	110	20 20
or?		Major1		Major2
	40			- 0
	40	31	U	- 0
	-	-	_	
	6 22	- / 12	_	
	0.22	4.12	-	
	-	_	_	
	2 210	2 218	_	
			_	
	1031	1000	_	
	-	-	_	
555	-	_	_	
770	1021	1555	-	
	1031	1000	-	
	-	-	-	
	-	-	-	
000	-	-	-	
FB		NB		SB
				0
		•		·
^				
NBL	NBT EBLn1	SBT SBR		
-				
0				
			<u>.</u>	
			•	
	0 0 0 0 0 0 92 2 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4:	Wells	Avenue 8	& Southern	Site Driveway/#1	77
• •	* * 0110	, wonac		Ollo Dilivollayin i	

Intersection													
Int Delay, s/veh	1.9									***************************************			
Movement	EBL	EBT	EBR	WB	_ WBT	WBR	N	BL NI	вт	NBR	SBL	SBT	SBR
Vol, veh/h	17	0	0		1 0	12		0	95	1	1	23	2
Conflicting Peds, #/hr	0	0	0	1	0 (0		0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Sto	Stop		Fr	ee Fr	ee	Free	Free	Free	Free
RT Channelized	-	-	None			None		-	-	None	-	-	None
Storage Length	-	-	-			-		-	-	-	-	-	-
Veh in Median Storage, #	‡ -	0	-		- 0	-		-	0	-	-	0	-
Grade, %	-	0	-		- 0			-	0	-	-	0	-
Peak Hour Factor	92	92	92	9					92	92	92	92	92
Heavy Vehicles, %	2	2	2		2 2			2	2	2	2	2	2
Mvmt Flow	18	0	0		1 0	13		0 1	03	1	1	25	2
Major/Minor	Minor2			Minor	1		Мајо	or1			Major2		
Conflicting Flow All	138	132	26	13		104		27	0	0	104	0	0
Stage 1	28	28	-	10				-	_	_	_	_	_
Stage 2	110	104	_	2				-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.1			4.	12	-	-	4.12	_	_
Critical Hdwy Stg 1	6.12	5.52	_	6.1		-		-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.1	2 5.52	_		-	-	_	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.51	8 4.018	3.318	2.2	18	-	-	2.218	-	-
Pot Cap-1 Maneuver	833	759	1050	84	0 758	951	15	87	-	-	1488	-	-
Stage 1	989	872	-	90	2 809	-		-	-	-	-	-	-
Stage 2	895	809	_	98	9 871	_		-	-	-	-	-	-
Platoon blocked, %									-	-		-	-
Mov Cap-1 Maneuver	821	758	1050	83	9 757	951	15	87	-	-	1488	-	-
Mov Cap-2 Maneuver	821	758	_	83	9 757	_		-	-	-	-	-	-
Stage 1	989	871	-	90	2 809	-		-	-	-	-	-	-
Stage 2	883	809	-	98	8 870	-		-	-	-	-	-	-
Approach	EB			W	В			NB			SB		
HCM Control Delay, s	9.5			8.				0			0.3		
HCM LOS	A.0				Ä			Ū			0.0		
Minor Long/Major M.	NDI	NIDT	MDD	EBLn1WBLr	1 SBL	. SBT	SBR						
Minor Lane/Major Mvmt	NBL 1507	NBT	NDK				אטט						
Capacity (veh/h)	1587	-	-	821 94			-						
HCM Central Delay (a)	-	-	-	0.023 0.01			-						
HCM control Delay (s)	0		-	9.5 8			-						
HCM Lane LOS	A 0		-	A 0.1	A A O (-						
HCM 95th %tile Q(veh)	U	-	-	0.1	0 (, -	-						

						_		_			T	•
	<i>></i>		*	•	←	•	1	Ť	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኻ	*	7	ኻ	₽		ሻ	ĵ _a		ሻ	1>	
Volume (vph)	7 7	617	192	243	475	59	709	4	516	99	5	80
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	14	11	11	11	12	12	16	12	11	11
Grade (%)		3%			-3%			0%			0%	• •
Storage Length (ft)	175		175	250	0.0	0	0	• 75	125	75	0 / 0	0
Storage Lanes	1		1	1		0	1		1	1		0
Taper Length (ft)	25			25		· ·	25		•	25		ŭ
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850	.,,,,	0.983			0.851		1.00	0.858	1.00
Flt Protected	0.950		0.000	0.950	0.000		0.950	0.001		0.950	0.000	
Satd. Flow (prot)	1685	1809	1664	1753	1785	0	1805	1614	0	1787	1547	0
Flt Permitted	0.148	,,,,,	1001	0.121	1.00	Ū	0.699	1011	·	0.246	1011	·
Satd. Flow (perm)	262	1809	1664	*307	1785	0	*1818	1614	0	463	1547	0
Right Turn on Red	202	1000	Yes	001	1700	Yes	1010	1017	Yes	700	1041	Yes
Satd. Flow (RTOR)			157		8	103		*83	163		84	163
Link Speed (mph)		35	107		30			30			30	
Link Distance (ft)		1000			960			1000			500	
Travel Time (s)		19.5			21.8			22.7			11.4	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	2%	0.55	2%	1%	3%	0.33	0.33	25%	0.93	1%	0.93	2%
Adj. Flow (vph)	81	649	202	256	500	62	746	4	543	104	5	84
Shared Lane Traffic (%)	01	040	202	200	300	02	740	7	545	104	J	04
Lane Group Flow (vph)	81	649	202	256	562	0	746	547	0	104	89	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	LOIL	11	ragiit	LOIL	11	ragiii	LGIL	12	Mgm	Len	12	ragiit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.07	1.07	0.94	1.02	1.02	1.02	1.00	1.00	0.85	1.00	1.04	1.04
Turning Speed (mph)	15	1.07	9	15	1.02	9	15	1.00	9	1.00	1.04	9
Number of Detectors	1	1	1	1	1	J	1	2	3	1	2	J
Detector Template	Left			•	•		'	Thru		Left	Thru	
Leading Detector (ft)	20	50	50	50	50		50	100		20	100	
Trailing Detector (ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Position(ft)	0	0	0	Ő	Ö		0	0		0	Ő	
Detector 1 Size(ft)	20	50	50	50	50		50	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	0. LX	01 LX	O. 2.	OI LX	OI LX		OI LX	OI LX		OI LX	OI LX	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)	0.0	0.0	0.0	0.0	0.0		0.0	94		0.0	94	
Detector 2 Size(ft)								6			6	
Detector 2 Type								CI+Ex			CI+Ex	
Detector 2 Channel								01 · L			Ο1. ΓV	
Detector 2 Extend (s)								0.0			0.0	
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA		Perm	NA	
14111 1390	hiii.ht	14/7	1 01111	biii.br	11/7		i Gilli	INA		i Giiii	INA	

G:\Projects\840 - Newton (60 Wells)\Synchro\Report\Complete Calibrated\840 No-Build PM (Calibrated).syn MDM Transportation Consultants, Inc.

1: Wells Avenue/#333 Nahanton Street & Nahanton Street

	۶	→	*	•	4	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	3	1		3	1			2			2	
Permitted Phases	1		1	1			2			2		
Detector Phase	3	1	1	3	1		2	2		2	2	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	10.0	11.0	11.0	10.0	11.0		11.0	11.0		11.0	11.0	
Total Split (s)	10.0	36.0	36.0	10.0	36.0		44.0	44.0		44.0	44.0	
Total Split (%)	11.1%	40.0%	40.0%	11.1%	40.0%		48.9%	48.9%		48.9%	48.9%	
Maximum Green (s)	6.0	31.0	31.0	6.0	31.0		39.0	39.0		39.0	39.0	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	2.0	2.0	1.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	2.0	3.0	3.0	2.0	3.0		3.0	3.0		3.0	3.0	
Lead/Lag		Lead	Lead		Lead		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?		Yes	Yes		Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	2.0	3.0	3.0	2.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	None	Min	Min	None	Min		None	None		None	None	
Act Effct Green (s)	42.0	33.0	33.0	42.0	33.0		39.5	39.5		39.5	39.5	
Actuated g/C Ratio	0.47	0.37	0.37	0.47	0.37		0.45	0.45		0.45	0.45	
v/c Ratio	0.32	0.96	0.28	0.93	0.84		0.92	0.72		0.50	0.12	
Control Delay	15.9	55.8	6.8	57.7	38.6		41.6	22.8		27.9	4.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	15.9	55.8	6.8	57.7	38.6		41.6	22.8		27.9	4.2	
LOS	В	E	Α	Е	D		D	С		С	Α	
Approach Delay		41.7			44.6			33.7			17.0	
Approach LOS		D			D			С			В	
90th %ile Green (s)	6.0	31.0	31.0	6.0	31.0		39.0	39.0		39.0	39.0	
90th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
70th %ile Green (s)	6.0	31.0	31.0	6.0	31.0		39.0	39.0		39.0	39.0	
70th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
50th %ile Green (s)	6.0	31.0	31.0	6.0	31.0		39.0	39.0		39.0	39.0	
50th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
30th %ile Green (s)	6.0	31.0	31.0	6.0	31.0		39.0	39.0		39.0	39.0	
30th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
10th %ile Green (s)	6.0	31.0	31.0	6.0	31.0		31.6	31.6		31.6	31.6	
10th %ile Term Code	Max	Max	Max	Max	Max		Gap	Gap		Gap	Gap	
Queue Length 50th (ft)	24	359	16	83	286		378	205		40	2	
Queue Length 95th (ft)	48	#587	62	#222	#475		#613	329		95	27	
Internal Link Dist (ft)		920			880			920			420	
Turn Bay Length (ft)	175		175	250						75		
Base Capacity (vph)	253	675	719	276	671		843	792		214	762	
Starvation Cap Reductn	0	0	0	0	0		0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0		0	0	
Reduced v/c Ratio	0.32	0.96	0.28	0.93	0.84		0.88	0.69		0.49	0.12	
Intersection Summary												

Area Type:

Cycle Length: 90

Other

 $\label{lem:continuous} G:\Projects\840 - Newton (60 Wells)\Synchro\Report\Complete Calibrated\840 No-Build PM (Calibrated).syn MDM Transportation Consultants, Inc.$

Lanes, Volumes, Timings

1: Wells Avenue/#333 Nahanton Street & Nahanton Street

2020 No-Build Conditions
Weekday Evening Peak Hour

Actuated Cycle Length: 88.5

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.96 Intersection Signal Delay: 37.8

Intersection LOS: D
ICU Level of Service G

Intersection Capacity Utilization 103.8% Analysis Period (min) 15 90th %ile Actuated Cycle: 90 70th %ile Actuated Cycle: 90 50th %ile Actuated Cycle: 90 30th %ile Actuated Cycle: 90

10th %ile Actuated Cycle: 90

* User Entered Value

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Wells Avenue/#333 Nahanton Street & Nahanton Street

# a1	₫	₽ ø3
36 c	44 s	★ 10 s

	Þ		4	*	\ \	4
Lane Group	EBL	EBT	WBT	WBR	SBL	CDD
Lane Configurations	清	<u> </u>		WDK	SBL T	SBR
Volume (vph)	414	818	503	34	1 62	-
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	274 1900
Lane Width (ft)	1300	1900	1900	1900	1900	
Storage Length (ft)	225	12	14			16
Storage Lanes	1			0	0	0 1
Taper Length (ft)	25			i) 25	ı
Lane Util. Factor	1.00	1.00	1.00	1.00	25	4.00
Frt	1.00	1.00	1.00	1.00	1.00	1.00
Flt Protected	0.050			0.850	0.050	0.850
	0.950	4000	4007	4050	0.950	4
Satd. Flow (prot)	1728	1900	1987	1656	2046	1777
FIt Permitted	0.183	4000	400=		0.950	
Satd. Flow (perm)	333	1900	1987	1656	2046	1777
Right Turn on Red				Yes		Yes
Satd. Flow (RTOR)				35		221
Link Speed (mph)		35	30		30	
Link Distance (ft)		960	1000		500	
Travel Time (s)		18.7	22.7		11.4	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	1%	0%	2%	4%	0%	3%
Adj. Flow (vph)	431	852	524	35	65	285
Shared Lane Traffic (%)						
Lane Group Flow (vph)	431	852	524	35	65	285
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)	LGIL	11	11	ragnt	16	rigiil
Link Offset(ft)						
Crosswalk Width(ft)		0 16	0		0	
` ,		16	16		16	
Two way Left Turn Lane	4.04	4.00				
Headway Factor	1.04	1.00	0.92	0.92	0.85	0.85
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	1	1
Detector Template	Left	Thru	Thru	Right	Left	Right
Leading Detector (ft)	20	100	100	20	20	20
Trailing Detector (ft)	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	6	20	20	20
Detector 1 Type	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	,				m/(J. L.
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	0.0	94	94	0.0	0.0	0.0
Detector 2 Size(ft)		9 4 6	94 6			
Detector 2 Type						
		CI+Ex	Cl+Ex			
Detector 2 Channel		0.0	2.2			
Detector 2 Extend (s)		0.0	0.0		_	
Turn Type	pm+pt	NA	NA	pm+ov	Prot	pt+ov
Protected Phases	5	2	6	4	4	4 5

G:\Projects\840 - Newton (60 Wells)\Synchro\Report\Complete Calibrated\840 No-Build PM (Calibrated).syn MDM Transportation Consultants, Inc.

	•	→	4	•	-	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Permitted Phases	2		47.75	6		
Detector Phase	5	2	6	4	4	4 5
Switch Phase						
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0	
Minimum Split (s)	11.0	11.0	11.0	11.0	11.0	
Total Split (s)	22.0	57.0	35.0	13.0	13.0	
Total Split (%)	31.4%	81.4%	50.0%	18.6%	18.6%	
Maximum Green (s)	17.0	52.0	30.0	8.0	8.0	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
	5.0	5.0	5.0	5.0	5.0	
Total Lost Time (s)		5.0		5.0	5.0	
Lead/Lag	Lead		Lag Yes			
Lead-Lag Optimize?	Yes	2 A		ა ი	3.0	
Vehicle Extension (s)	3.0	3.0 Nana	3.0	3.0		
Recall Mode	None	None	None	Min	Min	07.4
Act Effct Green (s)	39.6	39.6	19.7	32.0	7.1	27.1
Actuated g/C Ratio	0.69	0.69	0.35	0.56	0.12	0.47
v/c Ratio	0.73	0.65	0.77	0.04	0.25	0.30
Control Delay	17.5	7.3	24.9	2.3	28.8	4.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	17.5	7.3	24.9	2.3	28.8	4.2
LOS	В	Α	С	Α	С	Α
Approach Delay		10.7	23.5		8.8	
Approach LOS		В	С		Α	
90th %ile Green (s)	17.0	52.0	30.0	8.0	8.0	
90th %ile Term Code	Max	Hold	Max	Max	Max	
70th %ile Green (s)	17.0	46.7	24.7	8.0	8.0	
70th %ile Term Code	Max	Hold	Gap	Max	Max	
50th %ile Green (s)	17.0	41.9	19.9	7.1	7.1	
50th %ile Term Code	Max	Hold	Gap	Gap	Gap	
30th %ile Green (s)	13.0	33.1	15.1	6.2	6.2	
30th %ile Term Code	Gap	Hold	Gap	Gap	Gap	
10th %ile Green (s)	10.0	26.4	11.4	6.0	6.0	
10th %ile Term Code	Gap	Hold	Gap	Min	Min	
Queue Length 50th (ft)	67	120	164	0	21	11
Queue Length 95th (ft)	#209	208	264	9	60	58
Internal Link Dist (ft)	11200	880	920	J	420	
Turn Bay Length (ft)	225	000	020		120	
Base Capacity (vph)	660	1682	1079	974	296	971
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
•	0	0	0	0	0	0
Storage Cap Reductn Reduced v/c Ratio	0.65	0.51	0.49	0.04	0.22	0.29
Intersection Summary		·				
Area Type:	Othor					

Area Type:

Other

Cycle Length: 70

Actuated Cycle Length: 57.1

2020 No-Build Conditions Weekday Evening Peak Hour

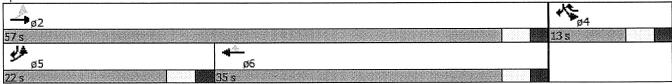
Lanes, Volumes, Timings

2: Nahanton Street & Winchester Street

Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.77 Intersection Signal Delay: 13.7 Intersection Capacity Utilization 66.9%


Intersection LOS: B
ICU Level of Service C

Analysis Period (min) 15
90th %ile Actuated Cycle: 70
70th %ile Actuated Cycle: 64.7
50th %ile Actuated Cycle: 59
30th %ile Actuated Cycle: 49.3
10th %ile Actuated Cycle: 42.4

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Nahanton Street & Winchester Street

Intersection							
Int Delay, s/veh	1.4						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	37	0	0	168	51	22	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized		None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	40	0	0	183	55	24	
Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	250	67	79	0	-	0	
Stage 1	67	-	-	-	-	-	
Stage 2	183	-	-	-	-	-	
Critical Hdwy	6.42	6.22	4.12	-	-	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	2.218	-	-	-	
Pot Cap-1 Maneuver	739	997	1519	-	-	-	
Stage 1	956	-	-	-	-	-	
Stage 2	848	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	739	997	1519	-	-	-	
Mov Cap-2 Maneuver	739	-	_	-	-	-	
Stage 1	956	-	-	-	-	-	
Stage 2	848	-,	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	10.2		0		0		
HCM LOS	В						
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR				
Capacity (veh/h)	1519	- 739					
HCM Lane V/C Ratio	-	- 0.054					
HCM Control Delay (s)	0	- 10.2					
HCM Lane LOS	A	- 10.2 - B	<u>. </u>				
HCM 95th %tile Q(veh)	0	- 0.2					
HOW BUIL WINE COLVEIL)	U	- 0.2	- -				

Intersection														
Int Delay, s/veh	1.6													
Movement	EBL	EBT	EBR	,	WBL	WBT	WBR		NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	17	0	0		1	0	12		0	98	1	1	48	2
Conflicting Peds, #/hr	0	0	0		0	0	0		0	0	0	0	0	0
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop		Free	Free	Free	Free	Free	Free
RT Channelized		·-	None		·-	·-	None .		-	-	None	-	_	None
Storage Length	-	_	-		_	-	-		-	-	-	-	_	_
Veh in Median Storage, #	-	0	-		-	0	-		-	0	-	-	0	_
Grade, %	_	0	-		-	0	-		_	0	_	-	0	_
Peak Hour Factor	92	92	92		92	92	92		92	92	92	92	92	92
Heavy Vehicles, %	2	2	2		2	2	2		2	2	2	2	2	2
Mvmt Flow	18	0	0		1	0	13		0	107	1	1	52	2
Major/Minor	Minor2			Mi	inor1			М	lajor1			Major2		
Conflicting Flow All	169	163	53		162	164	107		54	0	0	108	0	0
Stage 1	55	55	-		107	107	-		_	_	-		-	-
Stage 2	114	108	_		55	57	_		-	_	_	_	_	_
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22		4.12	_	_	4.12	_	_
Critical Hdwy Stg 1	6.12	5.52	-		6.12	5.52	-		-	_	_		_	_
Critical Hdwy Stg 2	6.12	5.52	_		6.12	5.52	-		_	_	_	_	_	_
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318	2	2.218	_	_	2.218	_	_
Pot Cap-1 Maneuver	795	729	1014		803	729	947		1551	_	_	1483	_	_
Stage 1	957	849	-		898	807	-		_	_	_		_	_
Stage 2	891	806	_		957	847	_		_	_	_	<u>-</u>	_	_
Platoon blocked, %	• • • • • • • • • • • • • • • • • • • •				00.	• • • • • • • • • • • • • • • • • • • •				_	_		_	_
Mov Cap-1 Maneuver	783	728	1014		802	728	947		1551	_	_	1483	_	_
Mov Cap-2 Maneuver	783	728	-		802	728	-		-	_	_		_	_
Stage 1	957	848	_		898	807	_		_	_	_		_	_
Stage 2	879	806	_		956	846	_		_	_	_		_	_
3														
Approach	EB				WB				NB			SE		
HCM Control Delay, s	9.7				8.9				0			0.1		
HCM LOS	Α.,				Α				U			0.1		
TIOM LOO	^				7.									
Minor Lane/Major Mvmt	NBL	NBT	NIDD	EBLn1W	Rin1	SBL	SBT	SBR						
Capacity (veh/h)	1551		MDI	783	934	1483								
HCM Lane V/C Ratio	1001	-	-				-	-						
	-	-	-				-	-						
HCM Control Delay (s) HCM Lane LOS	0	-	-	9.7	8.9	7.4	0	-						
	A	-	-	A	Α	A	Α	-						
HCM 95th %tile Q(veh)	0	-	-	0.1	0	0	-	-						

1: Wells Avenue/#333 Nahanton Street & Nahanton Street

	۶		*	•	4	•	4	†	<i>></i>	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	ተ	۴	ሻ	1→		ሻ	1>		ሻ	(Î	
Volume (vph)	77	617	200	250	475	59	750	4	550	99	5	80
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	14	11	11	11	12	12	16	12	11	11
Grade (%)		3%			-3%			0%			0%	
Storage Length (ft)	175		175	250		0	0		125	75		0
Storage Lanes	1		1	1		0	1		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.983			0.851			0.858	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1685	1809	1664	1753	1828	0	1805	1614	0	1787	1573	0
Flt Permitted	0.140			0.121			0.699			0.222		
Satd. Flow (perm)	248	1809	1664	*307	1828	0	*1818	1614	0	418	1573	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			164		8			*88			84	
Link Speed (mph)		35			30			30			30	
Link Distance (ft)		1000			960			1000			500	
Travel Time (s)		19.5			21.8			22.7			11.4	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	2%	0%	2%	1%	0%	2%	0%	25%	0%	1%	3%	0%
Adj. Flow (vph)	81	649	211	263	500	62	789	4	579	104	5	84
Shared Lane Traffic (%)												
Lane Group Flow (vph)	81	649	211	263	562	0	789	583	0	104	89	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		11			11			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	0.94	1.02	1.02	1.02	1.00	1.00	0.85	1.00	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1		1	2		1	2	
Detector Template	Left							Thru		Left	Thru	
Leading Detector (ft)	20	50	50	50	50		50	100		20	100	
Trailing Detector (ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Size(ft)	20	50	50	50	50		50	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)								94			94	
Detector 2 Size(ft)								6			6	
Detector 2 Type								Cl+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)								0.0			0.0	
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA		Perm	NA	

 $\label{lem:complete} G: \ensuremath{$\text{Newton (60 Wells)\school}} \ensuremath{$\text{Newton (60 Wells)\school}} \ensuremath{Nemonor} \ensuremath{Nemonor} \ensuremath{Nemonor} \ensuremath{Nemonor} \ensuremath{Nemonor} \ensuremath{Nemonor} \ensuremath{Nemonor} \ensuremath{Nemonor} \ensuremath{Nemonor} \ensuremath{Nemonor} \ensuremath{\text{Nemonor}$} \$

	≯		*	•	4	4	1	†	1	1	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	3	1		3	1			2			2	
Permitted Phases	1		1	1			2			2		
Detector Phase	3	1	1	3	1		2	2		2	2	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	10.0	11.0	11.0	10.0	11.0		11.0	11.0		11.0	11.0	
Total Split (s)	10.0	36.0	36.0	10.0	36.0		44.0	44.0		44.0	44.0	
Total Split (%)	11.1%	40.0%	40.0%	11.1%	40.0%		48.9%	48.9%		48.9%	48.9%	
Maximum Green (s)	6.0	31.0	31.0	6.0	31.0		39.0	39.0		39.0	39.0	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	2.0	2.0	1.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	2.0	3.0	3.0	2.0	3.0		3.0	3.0		3.0	3.0	
Lead/Lag	2.0	Lead	Lead	2.0	Lead		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?		Yes	Yes		Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	2.0	3.0	3.0	2.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	None	Min	Min	None	Min		None	None		None	None	
Act Effct Green (s)	42.0	33.0	33.0	42.0	33.0		40.9	40.9		40.9	40.9	
Actuated g/C Ratio	0.47	0.37	0.37	0.47	0.37		0.45	0.45		0.45	0.45	
v/c Ratio	0.33	0.98	0.30	0.47	0.83		0.45	0.75		0.55	0.43	
Control Delay	16.3	59.9	6.8	67.3	38.2		47.2	24.0		31.1	4.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	16.3	59.9	6.8	67.3	38.2		47.2	24.0		31.1	4.1	
LOS	В	55.5 E	0.0 A	67.5 E	50.2 D		77.2 D	24.0 C		01.1 C	4.1 A	
Approach Delay	D	44.2	А	_	47.5		D	37.3		J	18.7	
Approach LOS		D			77.0 D			07.0 D			В	
90th %ile Green (s)	6.0	31.0	31.0	6.0	31.0		39.0	39.0		39.0	39.0	
90th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
70th %ile Green (s)	6.0	31.0	31.0	6.0	31.0		39.0	39.0		39.0	39.0	
70th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
50th %ile Green (s)	6.0	31.0	31.0	6.0	31.0		39.0	39.0		39.0	39.0	
50th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
30th %ile Green (s)	6.0	31.0	31.0	6.0	31.0		39.0	39.0		39.0	39.0	
30th %ile Term Code	Max	Max	Max	Max	Max		Max	Max		Max	Max	
	6.0	31.0	31.0	6.0	31.0		38.6	38.6		38.6	38.6	
10th %ile Green (s) 10th %ile Term Code		Max	Max		Max		Gap	Gap		Gap		
	Max	359	17	Max	283		•	226		•	Gap	
Queue Length 50th (ft)	24			86 #222			417	364		41	2 27	
Queue Length 95th (ft)	48	#587	64	#233	#465		#668			103		
Internal Link Dist (ft)	475	920	475	050	880			920		75	420	
Turn Bay Length (ft)	175	004	175	250	070		000	704		75	700	
Base Capacity (vph)	243	664	714	271	676		829	784		190	763	
Starvation Cap Reductn	0	0	0	0	0		0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0		0	0	
Reduced v/c Ratio	0.33	0.98	0.30	0.97	0.83		0.95	0.74		0.55	0.12	
Intersection Summary										···		
Area Type:	Other											

Area Type:

Other

Cycle Length: 90

Lanes, Volumes, Timings

1: Wells Avenue/#333 Nahanton Street & Nahanton Street

2020 Build Conditions
Weekday Evening Peak Hour

Actuated Cycle Length: 89.9

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.98 Intersection Signal Delay: 40.7 Intersection Capacity Utilization 106.4%

Intersection LOS: D
ICU Level of Service G

Analysis Period (min) 15
90th %ile Actuated Cycle: 90
70th %ile Actuated Cycle: 90
50th %ile Actuated Cycle: 90
30th %ile Actuated Cycle: 90
10th %ile Actuated Cycle: 89.6
* User Entered Value

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 1: Wells Avenue/#333 Nahanton Street & Nahanton Street

opino ana i nascs.	1. Wells Avenderroed Nahamen Greet & Nahamen Greet	
	₩ ø2	₽ ø3
36 g	44.5	10 s

Z. Nariamon officer						j
	≯		4	•	-	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	<u> </u>	<u> </u>	<u> </u>		<u> </u>	
Volume (vph)	433	833	506	34	62	278
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1300	14	14	16	16
		12	14			
Storage Length (ft)	225			0	0	0
Storage Lanes	1			1	1	1
Taper Length (ft)	25	4.00	4.00	4.00	25	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt				0.850		0.850
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1711	1827	2007	1689	1843	1777
FIt Permitted	0.175				0.950	
Satd. Flow (perm)	315	1827	2007	1689	1843	1777
Right Turn on Red				Yes		Yes
Satd. Flow (RTOR)				35		183
Link Speed (mph)		35	30		30	
Link Distance (ft)		960	1000		500	
Travel Time (s)		18.7	22.7		11.4	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	2%	4%	1%	2%	11%	3%
Adj. Flow (vph)	446	859	522	35	64	287
Shared Lane Traffic (%)	440	003	522	50	04	201
• •	110	050	500	35	64	287
Lane Group Flow (vph)	446	859	522			
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		11	11		16	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.04	1.00	0.92	0.92	0.85	0.85
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	1	1
Detector Template	Left	Thru	Thru	Right	Left	Right
Leading Detector (ft)	20	100	100	20	20	20
Trailing Detector (ft)	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	6	20	20	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	OILLX	OILX	OILX	OILX	OILX	OILX
	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94	94			
Detector 2 Size(ft)		6	6			
Detector 2 Type		CI+Ex	CI+Ex			
Detector 2 Channel						
Detector 2 Extend (s)		0.0	0.0			
Turn Type	pm+pt	NA	NA	pm+ov	Prot	pt+ov
Protected Phases	5	2	6	4	4	4 5

 $\label{thm:complete} G: \ensuremath{$\text{Newton (60 Wells)}} Synchro\ensuremath{$\text{Report\complete Calibrated\ensuremath{$\text{840 Build PM (Calibrated).syn MDM Transportation Consultants, Inc.}} \\$

2: Nahanton Street & Winchester Street

	≯	-	4	<u></u>	\	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Permitted Phases	2			6		
Detector Phase	5	2	6	4	4	4 5
Switch Phase						
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0	
Minimum Split (s)	11.0	11.0	11.0	11.0	11.0	
Total Split (s)	21.0	49.0	28.0	11.0	11.0	
Total Split (%)	35.0%	81.7%	46.7%	18.3%	18.3%	
Maximum Green (s)	16.0	44.0	23.0	6.0	6.0	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	
Lead/Lag		5.0		5.0	J.U	
•	Lead		Lag			
Lead-Lag Optimize?	Yes	2.0	Yes	2.0	2.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	Min	Min	05.0
Act Effct Green (s)	37.0	37.0	17.8	29.0	6.1	25.3
Actuated g/C Ratio	0.69	0.69	0.33	0.54	0.11	0.47
v/c Ratio	0.76	0.68	0.78	0.04	0.30	0.31
Control Delay	19.1	7.7	25.0	2.5	28.6	5.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	19.1	7.7	25.0	2.5	28.6	5.0
LOS	В	Α	С	Α	С	Α
Approach Delay		11.6	23.6		9.3	
Approach LOS		В	С		Α	
90th %ile Green (s)	16.0	44.0	23.0	6.0	6.0	
90th %ile Term Code	Max	Hold	Max	Max	Max	
70th %ile Green (s)	16.0	44.0	23.0	6.0	6.0	
70th %ile Term Code	Max	Hold	Max	Max	Max	
50th %ile Green (s)	16.0	40.5	19.5	6.0	6.0	
50th %ile Term Code	Max	Hold	Gap	Max	Max	
30th %ile Green (s)	12.9	32.4	14.5	6.0	6.0	
30th %ile Term Code	Gap	Hold	Gap	Max	Max	
10th %ile Green (s)	9.9	25.8	10.9	6.0	6.0	
10th %ile Term Code	Gap	Hold	Gap	Max	Max	
Queue Length 50th (ft)	72	113	152	0	21	18
Queue Length 95th (ft)	#206	197	248	9	54	60
Internal Link Dist (ft)	11200	880	920	3	420	00
Turn Bay Length (ft)	225	000	020		120	
Base Capacity (vph)	645	1517	882	936	211	1006
Starvation Cap Reductn	043	0	0	0	0	0
•			0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn Reduced v/c Ratio	0.69	0.57	0.59	0.04	0.30	0.29
Heduced V/C Kallo	0.09	0.57	0.59	0.04	0.30	0.29
Intersection Summary		***************************************				
Area Type:	Other					

Area Type:

Other

Cycle Length: 60

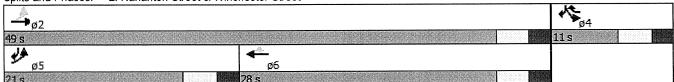
2020 Build Conditions

Lanes, Volumes, Timings Weekday Evening Peak Hour 2: Nahanton Street & Winchester Street

Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.78 Intersection Signal Delay: 14.3 Intersection Capacity Utilization 68.1%


Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15 90th %ile Actuated Cycle: 60 70th %ile Actuated Cycle: 60 50th %ile Actuated Cycle: 56.5 30th %ile Actuated Cycle: 48.4 10th %ile Actuated Cycle: 41.8

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Nahanton Street & Winchester Street

Intersection							
Int Delay, s/veh 2	.2						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	65	0	0	168	51	19	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	· •	None	-	None	-	None	
Storage Length	0	_	-	-	-	-	
Veh in Median Storage, #	0	_	-	0	0	-	
Grade, %	0	_	_	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	71	0	0	183	55	21	
Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	249	66	76	0	-	0	
Stage 1	66	-	-	-	-	-	
Stage 2	183	-	-	-	-	-	
Critical Hdwy	6.42	6.22	4.12	-	-	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	2.218	-	-	-	
Pot Cap-1 Maneuver	739	998	1523	-	-	-	
Stage 1	957	-	-	-	-	-	
Stage 2	848	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	739	998	1523	-	-	-	
Mov Cap-2 Maneuver	739	-	-	-	-	-	
Stage 1	957	-	-	-	-	-	
Stage 2	848	-	-	-	-	-	
A	ED		ND		00		
Approach	EB		NB		SB		
HCM Control Delay, s	10.4		0		0		
HCM LOS	В						
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR				
Capacity (veh/h)	1523	- 739					
HCM Lane V/C Ratio	-	- 0.096					
HCM Control Delay (s)	0	- 10.4					
HCM Lane LOS	Α	- B					
HCM 95th %tile Q(veh)	0	- 0.3					

HCM Lane V/C Ratio

HCM Control Delay (s)

HCM 95th %tile Q(veh)

HCM Lane LOS

ntersection								
nt Delay, s/veh 1	.2							
Movement	WBL	WBR		NBT	NBR	SBL	SBT	
Vol, veh/h	0	65		534	0	20	264	
Conflicting Peds, #/hr	0	0		0	0	0	0	
Sign Control	Stop	Stop		Free	Free	Free	Free	
RT Channelized	· <u>-</u>	None		-	None	-	None	
Storage Length	0	-		-	-	-	-	
Veh in Median Storage, #	0	-		0	-	-	0	
Grade, %	0	_		0	-	-	0	
Peak Hour Factor	92	92		92	92	92	92	
Heavy Vehicles, %	2	2		2	2	2	2	
Mvmt Flow	0	71		580	0	22	287	
NAcion/Minor	Minard			Major1		Major2		
Major/Minor	Minor1	E00		Major1 0	0	580	0	
Conflicting Flow All	910	580		U	-	500	U	
Stage 1	580	-		-	-	-	-	
Stage 2	330	- 0.00		-	-	4.12	-	
Critical Hdwy	6.42	6.22		-	-	4.12	-	
Critical Hdwy Stg 1	5.42	· -		-	-	-	-	
Critical Hdwy Stg 2	5.42	- 0.040		-	-	2.218	-	
Follow-up Hdwy	3.518	3.318		-	-	994	-	
Pot Cap-1 Maneuver	305	514		-	-	994	-	
Stage 1	560	-		-	-	-	-	
Stage 2	728	-		-	-	-	-	
Platoon blocked, %	007	E4.4		-	-	994	-	
Mov Cap-1 Maneuver	297	514		-	-	994	-	
Mov Cap-2 Maneuver	297	-		-	-	-	-	
Stage 1	560	-		-	-	-	-	
Stage 2	709	-		-	. -	-	-	
Approach	WB			NB		SB		
HCM Control Delay, s	13.1			0)	0.6		
HCM LOS	В							
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT				
Capacity (veh/h)	- 1101	- 514	994					
UCM Long V/C Potio	-	. 0 137		_				

- 0.137 0.022

В

0.5

8.7

Α

0.1

0

Α

- 13.1