Transportation Land Development Environmental Services

Vanasse Hangen Brustlin, Inc (VHB) has prepared responses to comments made by Fay Spofford & Thorndike (FST) in their peer review letter dated August 7, 2012. The August 7, 2012 FST letter provided comments on the February 2012 Traffic Impact and Access Study (TIAS) prepared for the Station at Riverside Redevelopment project which is located at the existing Riverside MBTA Station along Grove Street in Newton, Massachusetts. Generally speaking, FST concurred with the methodology and analyses presented in the TIAS, but had some comments, questions, and suggestions that warranted further evaluation and response. As such, VHB has prepared this memorandum which focuses exclusively on the questions, comments, and suggestions and does not reiterate discussion in areas of the TIAS where we are in general agreement. Because the comments in the FST letter were not numbered, a heading for each section has been provided for ease of reference.

FEBRUARY 2012 TRAFFIC IMPACT AND ACCESS STUDY (TIAS)

TRAFFIC DISTRIBUTION

<u>**Comment:**</u> (page 6 of 11) "While the <u>regional</u> traffic distribution pattern identified on Table 9 of the TIAS is reasonable, we conclude that the site-related traffic distributed to Grove Street-Auburn Street-Washington Street corridor should be increased. Site generated traffic is too strongly oriented to the regional highway system. This is based on both historic counts and confirmed by new counts FST conducted on June 21, 2012 pertaining to the Riverside Office driveways and MBTA driveway. We recommend re-analysis of 13 intersections, 11 intervening intersections with expected site-related traffic assuming increase of 60-85 additional trips per hour during peak hours compared to the volumes presented in the TIAS. These include:

- Grove Street at the Route 128 Northbound Ramps not signalized
- Grove Street at the Riverside MBTA Parking Lot Driveway- signalized
- Grove Street at the Riverside Office Building (south) and Apartment Driveways- signalized.

•

- Grove Street at Woodland Road- not signalized
- Grove Street at Central/ Street Auburn Street-signalized
- Commonwealth Avenue (Route 30) at Auburn Street-signalized
- Washington Street (Route 16) at Auburn Street-signalized
- Washington Street (Route 16) at Perkins Street and Massachusetts Turnpike (I-90) EB On-Ramp (two intersections)-signalized
- Washington Street (Route 16) at Massachusetts Turnpike (I-90) WB Off-Ramp-signalized

Conversely, traffic reductions of up to 60-85 site related vehicle trips per hour during the peak hours are expected at the Grove Street Exit 22 roundabouts and the site driveway intersection with the C-D Road."

<u>Response</u>: To assess the project impacts with modification to the site traffic distribution, VHB has reanalyzed the 13 intersections mentioned above with the recommended traffic distribution. The results of this assessment are outlined in Tables 1-4, which are described below:

- **Table 1** Comparison of signalized intersection between the February 2012 TIAS capacity analysis and capacity analysis with the recommended modifications to the trip distribution.
- **Table 2** Comparison of unsignalized intersection between the February 2012 TIAS capacity analysis and capacity analysis with the recommended modifications to the trip distribution.
- **Table 3** Comparison of February 2012 TIAS mitigated intersection capacity analysis and mitigated intersection capacity analysis with the recommended modifications to the trip distribution. These analyses were conducted for Option A and Option B-2.
- Table 4 Summary of capacity analysis for additional mitigated intersections.

All details of the revised assessment are included in the Appendix of this document.

Table 1 Signalized Intersection Capacity Analysis

¥		2022 No	-Build Co	onditions		2	022 Build	Conditions	s (2012 TIA	S)	2	022 Build	Condition	is (Update	d*)
				Vehicle	Queues				Vehicle	Queues				Vehicle	Queues
Location	v/c ^a	Delay ^b	LOS ^c	50th	95th	v/c	Delay	LOS	50th	95th	v/c	Delay	LOS	50th	95th
Grove Street at Riverside Office															
Building Center Driveway															
Weekday Morning															
Apartment Driveway WB LTR	0.20	28	С	5	23	0.32	29	С	15	42	0.21	31	С	6	23
Grove Street NB L	0.67	21	С	90	273	0.70	25	С	103	277	0.70	25	С	109	273
Grove Street NB TR	0.50	4	А	61	278	0.53	5	A	67	306	0.53	4	A	71	318
Grove Street SB LTR	0.66	18	В	113	373	0.73	22	С	143	486	0.72	20	В	155	524
Overall	0.63	13	В			0.68	15	В			0.68	14	В		
Weekday Evening								-							
Apartment Driveway WB LTR	0.35	30	С	1	16	0.37	32	С	1	16	0.34	32	С	1	16
Grove Street NB L	0.85	152	F	2	30	0.77	115	F	3	30	0.81	134	F	3	30
Grove Street NB TR	0.42	3	A	0	239	0.44	3	A	0	270	0.48	3	A	0	310
Grove Street SB LTR	0.46	5	A	0	314	0.48	5	A	0	351	0.49	5	A	0	373
Overall	0.48	6	Α			0.50	6	Α			0.48	6	А		
Grove Street at Central Street and															
Auburn Street															
Weekday Morning	•														
Central Street EB LTR	0.31	19	В	44	113	0.31	19	В	44	113	0.31	20	В	44	114
Auburn Street WB LTR	0.46	22	С	53	157	0.61	26	С	73	232	0.72	30	С	89	284
Grove Street NB LTR	0.56	14	В	111	303	0.58	14	В	115	315	0.61	15	В	124	338
Auburn Street SB LTR	0.69	18	В	118	387	0.71	18	В	122	401	0.72	19	В	124	408
Overall	0.61	17	В			0.67	18	В			0.72	20	В		
Weekday Evening															
Central Street EB LTR	0.30	19	В	44	120	0.30	19	В	44	120	0.30	19	В	44	120
Auburn Street WB LTR	0.57	24	С	74	217	0.66	27	С	86	261	0.75	32	С	99	303
Grove Street NB LTR	0.59	14	В	120	331	0.62	15	В	127	351	0.69	16	В	146	453
Auburn Street SB LTR	0.87	29	С	152	493	0.89	31	С	156	503	0.94	40	D	163	519
Overall	0.76	22	С			0.81	23	С			0.87	27	С		
* Analysis was conducted based on the	1	1	1	11 ГСТ											

* Analysis was conducted based on the redistribution recommended by FST.

Table 1 Signalized Intersection Capacity Analysis (Continued)

		2022 No	o-Build Co	onditions		2	022 Build (Conditions	s (2012 TIA	.S)	2	2022 Build	Conditior	is (Update	d*)
				Vehicle	Queues				Vehicle	Queues				Vehicle	Queues
Location	v/c ^a	Delay ^b	LOS c	50th	95th	v/c	Delay	LOS	50th	95th	v/c	Delay	LOS	50th	95th
Washington Street at Auburn Street															
Weekday Morning															
Auburn Street EB L	0.83	35	D	208	207	0.83	35	D	214	213	0.83	33	С	227	230
Auburn Street EB R	0.02	19	В	3	10	0.02	19	В	3	10	0.02	18	В	3	10
Washington Street NB LT	0.69	14	В	244	365	0.70	15	В	250	368	0.74	17	В	272	378
Washington Street SB TR	0.74	10	А	148	338	0.77	11	В	205	348	0.83	14	В	292	500
Overall	0.77	15	В			0.79	16	В			0.83	18	В		
Weekday Evening															
Auburn Street EB L	0.81	34	С	197	274	0.80	33	С	202	285	0.76	26	С	224	340
Auburn Street EB R	0.02	20	В	2	12	0.01	19	В	2	12	0.01	16	В	2	12
Washington Street NB LT	0.73	15	В	259	385	0.74	16	В	269	390	0.90	27	С	322	478
Washington Street SB TR	0.81	16	В	327	370	0.84	18	В	364	402	0.96	31	С	209	513
Overall	0.81	18	В			0.83	19	В			0.88	29	С		
Commonwealth Avenue at															
Auburn Street (East)															
Weekday Morning															
Auburn Street EB LTR	1.07	108	F	237	604	1.12	127	F	248	632	1.21	162	F	299	695
Auburn Street WB LTR	1.12	125	F	254	624	1.22	165	F	315	700	1.32	205	F	364	767
Commonwealth Avenue NB LTR	0.75	35	D	232	577	0.75	35	D	232	577	0.75	35	D	232	577
Commonwealth Avenue SB L	0.37	20	В	34	111	0.37	20	В	34	111	0.37	20	В	34	111
Commonwealth Avenue SB TR	0.53	19	В	147	415	0.53	19	В	147	415	0.53	19	В	147	415
Carriage Road NWB LTR	0.01	55	D	0	0	0.01	55	D	0	0	0.01	55	D	0	0
Overall	0.84	64	Е			0.87	78	Е			0.90	97	F		
Weekday Evening															
Auburn Street EB LTR	0.97	76	E	200	467	1.04	93	F	214	503	1.22	157	F	293	621
Auburn Street WB LTR	0.90	61	Е	186	467	1.06	100	F	220	558	1.06	98	F	230	577
Commonwealth Avenue NB L	0.85	44	D	230	607	0.85	44	D	230	607	0.85	44	D	230	607
Commonwealth Avenue NB TR	0.44	23	С	36	121	0.44	23	С	36	121	0.44	23	С	36	121
Commonwealth Avenue SB LTR	0.60	21	С	158	451	0.60	21	С	158	451	0.60	21	С	158	451
Carriage Road NWB LTR	0.75	131	F	10	24	0.79	145	F	10	24	0.79	145	F	10	24
Overall	0.88	47	D			0.91	59	E			0.96	75	E		

* Analysis was conducted based on the redistribution recommended by FST.

Table 1 Signalized Intersection Capacity Analysis (Continued)

			D-Build Co			-	022 Build	Condition	s (2012 TIA	.S)		2022 Build	Conditior	ns (Update	d*)
					Queues					Queues					Queues
Location	v/c ^a	Delay ^b	LOS c	50th	95th	v/c	Delay	LOS	50th	95th	v/c	Delay	LOS	50th	95th
Washington Street at Perkins Street															
Weekday Morning															
Washington Street EB TR	0.73	14	В	155	502	0.74	14	В	158	522	0.78	16	В	175	567
Perkins Street NB LTR	0.01	32	С	0	0	0.01	32	С	0	0	0.01	32	С	0	0
Washington Street SB T	0.01	26	С	2	4	0.01	26	С	2	4	0.01	26	С	2	3
Washington Street SB R	0.48	78	Е	119	150	0.49	78	E	120	149	0.50	76	E	118	144
Overall	0.59	46	D			0.60	47	D			0.62	46	D		
Weekday Evening	1.07	4.40	-		050	1.00	450	-	(0)	0/7	1.05	470	-		004
Washington Street EB TR	1.26	140	F	614	953	1.29	153	F	624	967	1.35	178	F	654	991
Perkins Street NB LTR	0.01	32	С	0	0	0.17	33	C	4	14	0.17	33	C	4	14
Washington Street SB T	0.03 0.62	21 32	C C	5 13	6 6	0.03 0.63	21 29	C C	5 11	6 23	0.03 0.64	21 28	C C	5 11	6 22
Washington Street SB R Overall	0.62 0.90	32 87	F	13 	0	0.63 0.93	29 92	F		23 	0.64 0.96	28 105	F		
Overall	0.70	07				0.75	72				0.70	105			
Washington Street at															
MassPike EB On-Ramp															
Weekday Morning															
Washington Street EB T	0.50	4	А	10	44	0.51	4	А	12	46	0.54	4	А	24	56
Washington Street SB L	0.23	21	С	63	65	0.23	20	С	63	63	0.22	20	В	63	57
Overall	0.38	8	А			0.38	8	А			0.40	8	Α		
Weekday Evening	0.45	,		01		0.11	,		01		0.71	7	•	22	45
Washington Street EB T	0.65	6	A	31	44	0.66	6	A	31	44	0.71	7	A	33	45
Washington Street SB L Overall	0.19 0.40	16 8	В А	64	33	0.18 0.41	16 8	В А	63	33	0.18 0.43	16 9	В А	63	33
Overall	0.40	0	A			0.41	0	А			0.43	9	А		
Washington Street at															
MassPike WB Off-Ramp															
Weekday Morning															
MassPike Off-Ramp (to Route 16 EB)	0.30	16	В	67	116	0.30	16	В	67	116	0.30	16	В	67	116
MassPike Off-Ramp (to Route 16 WB)	0.44	17	В	82	132	0.46	17	В	90	143	0.49	18	В	100	155
Washington Street WB (to Route 16 EB)	0.21	14	В	0	25	0.21	14	В	0	25	0.21	14	В	0	25
Washington Street WB (to Route 16 WB)	0.46	17	В	122	162	0.46	17	В	124	164	0.46	17	В	124	164
Overall	0.45	16	В			0.46	16	В			0.48	16	В		
Weekday Evening Mass Dike Off Damp (to Doute 14 EP)	0.20	13	В	40	108	0.20	10	В	63	108	0.20	10	В	60	100
MassPike Off-Ramp (to Route 16 EB) MassPike Off-Ramp (to Route 16 WB)	0.28 0.74	13 19	В	63 215	300	0.28 0.75	13 20	B	63 223	108 311	0.28 0.78	13 21	В С	63 235	108 328
Washington Street WB (to Route 16 EB)	0.74	19	B	0	21	0.75	20 17	B	223	21	0.78	17	B	235	320 21
Washington Street WB (to Route 16 UB)	0.65	23	C	176	222	0.65	23	C	178	224	0.65	23	C	178	224
Overall	0.00	20	B			0.00	20	B			0.00	20	č		
	ĺ														

volume to capacity ratio а

b

С

average delay in seconds per vehicle level of service 50th percentile queue length, measured in feet 95th percentile queue length, measured in feet d

е

5

Unsignalized Intersection Capacity Analysis Table 2

	Critical Side Street	Peak	2022	No-Buil	d Condi	tions	202	2 Build (2012		ons	202	2 Build ((Upda		ons
Location	Movement	Period	Dem ^a	v/c ^b	Del c	LOS d	Dem	v/c	Del	LOS	Dem	v/c	Del	LOS
Grove Street at Riverside Office Building (South Driveway)	WB LTR	Weekday Morning Weekday Evening	15 5	0.17 0.41	47 196	E F	15 5	0.21 0.56	60 305	F F	15 5	0.24 0.74	72 447	F F
Grove Street at Riverside Office Building (North Driveway)	EB LTR	Weekday Morning Weekday Evening	5 105	0.07 0.64	40 52	E F	5 105	0.09 0.76	49 77	E F	5 105	0.10 0.90	57 117	F F
Grove Street at Hancock Street	SB LR	Weekday Morning Weekday Evening	15 45	0.05 0.14	12 15	B B	25 50	0.09 0.16	13 16	B C	25 50	0.09 0.18	14 17	B C
Grove Street at Woodland Road	NB LTR	Weekday Morning Weekday Evening	475 540	1.05 1.08	78 85	F F	495 575	1.14 1.17	108 118	F F	525 630	1.20 1.28	131 159	F F

* Analysis was conducted based on the redistribution recommended by FST.

demand in vehicles per hour for the most critical street approach or lane group

a b d e L T

demand in vehicles per hour for the most critical street approach or lane group volume-to-capacity ratio for the critical movement delay of critical approach only level of service of the critical movement The traffic counts did not show any vehicles exiting the Parish of the Messiah eastbound driveway. Critical movement becomes Commonwealth Avenue northbound left turn. left through right

R

Mitigated Intersection Capacity Analysis Comparison – Option B-2 vs. Option A Table 3

				ess – Option				th Mitigatio Road Acce (Updated)	n Condition ess – Optior				vith Mitigatior oad Access - (2012 TIAS)					vith Mitigation bad Access - (Updated)		
				Vehicle (· • · ·	Vehicle		,	.	· ·		Queues		<u> </u>			Queues
Location	v/c ^a	Delay ^b	LOSC	50th ^d	95th ^e	v/c	Delay	LOS	50th	95th	v/c	Delay	LOS	50th	95th	v/c	Delay	LOS	50th	95th
Grove Street at Riverside MBTA Driveway f Weekday Morning																				
Grove Street EB L	0.17	Λ	А	8	21	0.17	4	А	8	23	0.17	4	٨	8	23	0.16	3	А	7	16
Grove Street EB T	0.17	4 7	A	° 132	288	0.17	4	A	o 144	23 324	0.17	4	A	o 134	312	0.18	3 7	A	131	227
Grove Street WB T	0.73	10	A	86	200 164	0.74	o 10	A	90	324 175	0.73	8	A	86	172	0.72	8	A	85	144
Grove Street WB R	0.05	4	A	0	8	0.03	4	A A	90 0	9	0.48	0	A	0	8	0.48	0	A	0	9
MBTA Driveway SB LR		4		0			4	A		9	0.00	19	B	49	156	1	4	A	0	7
MBTA Driveway SB L	 0.27	18	 B	13	41	 0.39	 19	B	22	58			D			 0.48	 19	C	20	68
MBTA Driveway SB R	0.27	10	B	0	28	0.39	19	B	0	27						0.48	19	B	20	19
	0.07 0.66	14 9	A	-		0.07	9				0.66	8	 A			0.03 0.68	8	A	ů.	
Overall Veekday Evening	0.00	9	А			0.08	9	А			0.00	ð	А			0.08	ð	А		
Grove Street EB L	0.45	10	р	10	20	0.42	10	В	10	34	0.52	11	р	10	27	0.40	11	В	10	20
Grove Street EB T	0.45 0.42	10 4	B A	13 63	38 104	0.43 0.43	10 5	A	13 68	34 113	0.52	11 5	B	13 63	37 104	0.48 0.43	11 5	A	12 63	30 104
Grove Street WB T	0.42	4 23	C A		449	0.43	25	C A			0.43	22	A	231	449	0.43	22			449
		23 4	A	231 0	449		25 4	A	241 0	461 9	0.87	22 4			449 7	0.88	4	C A	231 0	449 9
Grove Street WB R	0.05			0	-	0.06		А					A	0	,			A	U U	,
MBTA Driveway SB LR											0.72	32	С	60	153					
MBTA Driveway SB L	0.54	25	С	43	83	0.73	34	С	66	141						0.72	32	С	68	152
MBTA Driveway SB R	0.55 0.75	17 15	В	68	135	0.55 0.76	17 17	В В	69	135			 B			0.07	13 16	В	0	24
Overall	0.75	10	В			0.70	17	D			0.82	16	D			0.82	10	В		
Grove Street at the Route 128 NB																				
Ramps ^g Weekday Morning																				
Grove Street EB LT	0.60	9	А		0	0.59	8	٨		0	0.58	8	٨		187	0.56	8	А		175
Grove Street WB T	0.80	28	C		0 332	0.39	26	C A		306	0.58	16	B		157	0.50	15	B		175
Grove Street WB R	0.82	12	B		332 116	0.80	20 11	B		300 19	0.02	10	B		137	0.00	15	B		149
Route 128 NB Off-Ramp LT	0.54	21	Б С		149	0.14	19	B		139	0.13	25	D C		193	0.13	23	C		179
Route 128 NB Off-Ramp R	0.62	12	B			0.60	19	B		139	0.60	25 14	D		193	0.60	23 14	B		179
C-D Road SB LR					116	1		D			0.00	8			24	0.00	8	A		24
		 16	 D				 15	B			0.18	。 13	B				。 13	B		
Overall Veekday Evening	0.82	10	В			0.80	10	Б			0.08	13	Б			0.66	13	Б		
	0.22	F	٨		0	0.22	E	٨		0	0.21	F	٨		70	0.20	F	٨		44
Grove Street EB LT Grove Street WB T	0.33 0.95	5 38	A D		0 676	0.32 0.94	5 24	A D		0 623	0.31 0.71	5 16	A B		70 222	0.30 0.70	5 15	A B		66 213
	,					0.94	24	D					D					D		
Grove Street WB R	0.42 0.29	13 9	D A		64 41	0.41	2	Ď		62 40	0.36 0.31	11 10	D A		54 47	0.35 0.30	10 9	D A		53
Route 128 NB Off-Ramp LT	1	У 0	A		41	7	9 0	A		40 67		10 8	A		47	0.30	У 0	A		46 77
Route 128 NB Off-Ramp R	0.42	8	А		68	0.41	8	A		0/	0.43	0	A		78	1	8 10	A		
C-D Road SB LR											0.55	20	В		114	0.54	19	В		113
Overall	0.95	20	С			0.94	19	В			0.71	12	В			0.70	11	В		
Analysis was conducted based on the volume to capacity ratio. average delay in seconds per v level of service. 50th percentile queue length, m 95th percentile queue length, m Grove Street at the Riverside M Grove Street at the Route 128 I	ehicle . easured in feet easured in feet BTA Driveway	s proposed to	be signalize	d under 2022 I	Build with Mi	itigation condi	tions.													

	2	022 Build (Condition	s (2012 TI	AS)	202	22 Build wi	th Mitigati (2012 TIAS		ons		2022	Build Con (updated)			2022	2 Build wit	h Mitigat (updated		itions
				Vehicle	Queues				Vehicle	Queues				Vehicle	Queues				Vehicle	Queues
Location	v/c ^a	Delay ^b	LOS c	50th	95th	v/c	Delay	LOS	50th	95th	v/c	Delay	LOS	50th	95th	v/c	Delay	LOS	50th	95th
Washington Street at Perkins Street																				
Weekday Morning																				
Washington Street EB TR	0.74	14	В	158	522	0.73	12	В	105	227	0.73	12	В	105	227	0.73	12	В	105	227
Perkins Street NB LTR	0.01	32	С	0	0	0.01	32	С	0	0	0.01	32	С	0	0	0.01	32	С	0	0
Washington Street SB T	0.01	26	С	2	4	0.01	23	С	2	3	0.01	23	С	2	3	0.01	23	С	2	3
Washington Street SB R	0.49	78	E	120	149	0.49	18	В	25	18	0.49	18	В	25	18	0.49	18	В	25	18
Overall	0.60	47	D			0.59	15	В			0.59	15	В			0.59	15	В		
Weekday Evening																				
Washington Street EB TR	1.29	153	F	624	967	1.15	91	F	644	793	1.35	178	F	654	991	1.07	65	Е	691	848
Perkins Street NB LTR	0.17	33	С	4	14	0.17	33	С	4	15	0.17	33	С	4	14	0.19	37	D	4	16
Washington Street SB T	0.03	21	С	5	6	0.03	25	С	7	9	0.03	21	С	5	6	0.04	26	С	6	9
Washington Street SB R	0.63	29	С	11	23	0.63	40	D	0	0	0.64	28	С	11	22	0.64	18	В	25	1
Overall	0.93	92	F			0.89	66	Е			0.96	105	F			0.87	42	D		
Commonwealth Avenue at																				
Auburn Street (East)																				
Weekday Morning	1.10	107	-	0.40	(00						1.01	4 (0	-	000	(05	0.00	<i>,</i> ,	-		(0.1
Auburn Street EB LTR	1.12	127	F	248	632						1.21	162	F	299	695	0.92	64	E	244	604
Auburn Street WB LTR	1.22	165	F	315	700						1.32	205	F	364	767	1.04	91	F	289	687
Commonwealth Avenue NB LTR	0.75	35	D	232	577						0.75	35	D	232	577	0.86	49	D	262	646
Commonwealth Avenue SB L	0.37	20	В	34	111						0.37	20	В	34	111	0.43	25	С	41	122
Commonwealth Avenue SB TR	0.53	19	В	147	415						0.53	19	В	147	415	0.59	23	С	177	457
Carriage Road NWB LTR	0.01	55	D	0	0						0.01	55	D	0	0	0.01	55	D	0	0
Overall	0.87	78	E								0.90	97	F			0.90	54	D		
Weekday Evening			_										_					_		
Auburn Street EB LTR	1.04	93	F	214	503						1.22	157	F	293	621	1.09	107	F	256	589
Auburn Street WB LTR	1.06	100	F	220	558						1.06	98	F	230	577	0.96	70	E	220	548
Commonwealth Avenue NB L	0.85	44	D	230	607						0.85	44	D	230	607	0.90	53	D	240	631
Commonwealth Avenue NB TR	0.44	23	С	36	121						0.44	23	С	36	121	0.47	25	С	39	125
Commonwealth Avenue SB LTR	0.60	21	С	158	451						0.60	21	C	158	451	0.63	23	С	169	466
Carriage Road NWB LTR	0.79	145	F	10	24						0.79	145	F	10	24	0.79	145	F	10	24
Overall	0.91	59	E								0.96	75	E			0.96	60	E		

Signalized Intersection Capacity Analysis – Additional Mitigated Intersections Table 4

I Analysis was conducted based on the redistribution recommended by FST. volume to capacity ratio average delay in seconds per vehicle level of service 50th percentile queue length, measured in feet 95th percentile queue length, measured in feet

а

b

С

d

е

Comment: (page 6 of 20 Technical Memorandum) Overall, based on TIAS data, FST estimates that approximately 80-85 vehicle trips and approximately 800 daily site-generated trips were assumed to use the Grove Street corridor to the north of the site. Based on actual measured turning movement at the existing site driveways the Applicant should assume 145-165 total vehicle trips per hour will be added during peak hours. This assumes approximately 29% of total site-generated traffic may use this corridor, rather than 14-16% as indicated in the TIAS. With the alternate distribution, consistent with the Table 9 TIAS distribution pattern, Grove Street peak hours would increase by from 65-80 vehicle trips per hour to a new total of up to 145-165 vehicle trips per hour. Impacts on study area intersections between the site and MassPike Exit 16 should be re-evaluated. Alternate mitigation should be proposed, if necessary. Mitigation proposed should preferably be non-structural to preserve the neighborhood character of include ways to keep site generated volumes within 10% of those projected in the TIAS, consistent with Newton's recent zoning change initiative. Affected locations are identical to those identified in the comment above.

<u>Response</u>: As outlined in the response to comments above, a supplemental set of analyses has been conducted which considers the FST recommended traffic distribution to the east of the site. This assessment was conducted as a sensitivity analysis to determine the difference in traffic operations between VHB's trip distribution from the February 2012 TIAS and FST's recommendations. Under this assessment, 13 intersections where revaluated and the results are summarized in Tables 1-4 above. As demonstrated in the tables, the change in operation that would result at each location by a modification in the project traffic distribution is relatively minor. However, to address even minor changes in operational conditions as a result of the distribution modification, VHB is recommending the following addition to the Proponent's mitigation program (which is demonstrated in Table 4):

- Washington Street at Perkins Street. This intersections consists of a three-way signalized intersection under MassDOT jurisdiction This traffic signal is part of a traffic signal system in the vicinity of the Route 16 and MassPike interchange and timing and phasing changes are proposed here similar to other location within this system.
- Auburn Street at Commonwealth Avenue (eastern location); This intersection consists of a four-way signalized intersection under City of Newton jurisdiction. As outlined in Table 1, this intersection will operate at marginal levels in the future with and without this project. However, to attempt to add some efficiency to this location, the Proponent has determined that signal timing/phasing optimization would offer some improvement at this intersection, bringing the overall intersection back to LOS D during the weekday morning peak hour and LOS E during the weekday evening peak hour period.

<u>Comment</u>: (page 9 of 20 Technical Memorandum) "We conclude that the structural mitigation measures proposed with Options A and B-2 are generally adequate. For site generated traffic destined to and from the MassPike to the east of Exit 16, the regional highway system reflects a less likely route choice. These motorists are more likely to favor use the Washington Street-Auburn Street-Grove Street corridor via the MBTA secondary driveway for cost and time saving reasons:

<u>Response</u>: As a result of this comment and other similar comments in the Peer Review materials, VHB has prepared a supplemental analysis which considers traffic distribution modifications and updates to the traffic mitigation program. Details of this assessment are provided in the response to comments above.

<u>*Comment:*</u> (Page 5 of 20 Technical Memorandum) "Data provided in the TIAS indicates that for the segment of site generated trip generally headed to and from the east on the MassPike (I-90), accessing Exit 16 via Grove/Auburn/Washington corridor is typically the fastest path. Additionally, site trips headed to and from

the MassPike would need to pay a toll in each direction. Further explanation why nearly all of this segment of the site generated trips would avoid this northerly route must be provided.

<u>Response</u>: As a result of this comment and other similar comments in the Peer Review materials, VHB has prepared a supplemental analysis which considers traffic distribution modifications and updates to the traffic mitigation program. Details of this assessment are provided in the response to comments above.

Pedestrians and Bicycle Accommodation

<u>Comment</u>: (page 7 of 11)"Pedestrian and bicycle access features of Options A and B-2 should be adjusted at the roundabouts and the Grove Street at MBTA site entrance during the design phase to reduce the potential hazardous pedestrian crossing maneuvers.

- Roundabouts should be designed to maximize deflection to the minimum entering speed that FHWA will allow for anticipated design vehicle. All exit traffic should be required to yield to Grove Street traffic at the west Exit 22; bicyclist coming from the Newton Lower Falls direction will have a safer merge opportunity.
- For Safety reasons, all pedestrian crosswalks should be located to the north side of the interchange to and from the Lower Fall s area, as that is where the sidewalks are proposed and pedestrians can cross one lane at a time between refuge areas."

Cross walk on the south and east sides of the East Roundabouts should be eliminated. Pedestrian demands on the east side of Grove Street are very low and expected to remain low and would not meet demands for installation of a crosswalk at either location. Pedestrians who live in the condominium complex, should they choose to cross Grove Street would need to use the new marked shoulder area on the east side of Grove Street shared by bikes to cross a the Grove Street signal with the MBTA Driveway. Unlike the No-Build, pedestrians to and from the condominium complex would be able to cross Grove Street at the future MBTA Grove Street traffic signal that will have pedestrian actuation. Because large trees would be adversely affected, it is not anticipated that a sidewalk is warranted on the east side of Grove Street in the No-Build or Build conditions between Exit 22 and the MBTA site driveway. To the north of the MBTA site, however, an ADA compliant sidewalk on the east side of Grove Street. This action should be considered as a potential mitigation measure, working to retain all trees and using pervious sidewalk materials to accommodate tree roots. A crosswalk at Grove Street and the MBTA site drive should be considered to provide Lower Falls bicyclists coming from the south and residents who may be walking on the east side of Grove Street with a push button crossing opportunity to enter the site.

<u>Response</u>: Drawings of the proposed roundabouts provided in the February 2012 TIAS were conceptual in nature. As suggested, we intend to maximize the deflection on all approaches to the roundabouts as the design review process proceeds. Also as noted, we recommend that all exit traffic be placed under YIELD condition although MassDOT and FHWA will have final say in all treatments as they hold jurisdiction over the ramp locations.

As suggested, the proposed sidewalks located along the southeast and southwest sides of the intersection have been further considered. Based on the recommendations, VHB offers the following:

- The proposed sidewalk and pedestrian crossing on the south side of Grove Street at the Northbound Ramp intersection (across NB ramp to the bridge structure) was primarily added to the plan to accommodate bicyclists heading in an easterly direction across the bridge to Grove Street eastbound. It has been VHB's experience designing many of these types of roundabouts that some bicyclists are not comfortable using the travel lanes within the roundabout to traverse the intersection. The intention of including this section was predominately for this purpose although it would be available for pedestrian activity as well. For the purposes of this document, we have removed this section of sidewalk to be responsive to the comment but we believe, during design review, that MassDOT (who has jurisdiction over this area), will likely require that we bring the improvement back onto the plan.
- On the east side of the intersection, the crosswalk is proposed to provide a designated area for condominium oriented pedestrians to cross Grove Street to gain access to Lower Falls, the Hotel Indigo and restaurant, and the MBTA Station. While we do not anticipate high levels of pedestrian activity from the condominium complex (Woodland Grove Condominiums) and the Lower Falls/Hotel Indigo (restaurant) and the proposed redevelopment project, there will certainly be occasional pedestrian activity between these uses as there is today. It is not practical or safe to assume that pedestrians from the condo complex will find their way to the MBTA site Driveway traffic signal for crossings when no pedestrian accommodation is available. This is particularly true if they are headed to the Hotel Indigo or the restaurant located within this facility. Furthermore, the suggestion that these pedestrians can use the 4-foot shoulder or bike lane is not something that we would recommend. Therefore, establishing some form of crossing in close proximity to the Indigo is a reasonable compromise. While pedestrian volume will likely be low, we believe it is in the public's best interest to provide a means of crossing so that access can be gained to the Lower Falls, Hotel Indigo and the Station at Riverside Redevelopment project in a manageable way. To improve on the existing proposed crosswalk network, the Proponent will consider the addition of Rectangular Rapid Flashing Beacons for this location. Discussion and ultimately approval by MassDOT and potentially FHWA will be required.

Refer to Figures 19 and 20 attached for a demonstration of the changes proposed to the traffic and pedestrian plan.

<u>**Comment:**</u> (page 13 of 20 Technical Memorandum) "FST questions whether the crosswalk on the south side of the east roundabout makes sense, as the sidewalk dead-ends abruptly on both ends, and crosswalk warrants are unlikely to be met for crossing at either of its end points.

Response: Refer to response to comment above.

<u>Comment:</u> (page 14 of 20 Technical Memorandum) "With Options A and B-2, Indigo Hotel access modifications and proposed to allow trucks at the front of the site to perform backing maneuvers on site rather than off-site onto Grove Street, as the existing geometric design necessitates. It would further be beneficial to enhance pedestrian safety on the west side of Grove Street by providing, if possible, some rear access to the Indigo Hotel to reduce conflicting movements between Hotel vehicles and future pedestrians and bicyclists.

<u>Response</u>: Modifications to the Hotel Indigo are being proposed separately from the Station at Riverside Project. As the commenter notes, modification to the delivery is proposed to better accommodate the loading operations with as little influence on Grove Street as possible.

In the rear of the site, the Proponent has evaluated potential vehicular and pedestrian connections between the Hotel Indigo and the Station at Riverside site. Currently there is no vehicular connection proposed as the Indigo property has limited frontage along the existing CD Road and ultimately the proposed ramp from the CD Road to the site. As a ramp from the CD road into the site, there is really no opportunity to make a vehicular connection between the hotel and the ramp and the Hotel Indigo in a safe manner that MassDOT would be likely to approve. However, as defined in the plans for the site (copy attached in Appendix), the Proponent is proposing a pedestrian sidewalk connection between the Hotel Indigo with the proposed Office/Residential/Retail/Community Center/MBTA Platform through an extensive network of sidewalk and crosswalk connections.

<u>**Comment:**</u> (page 15 of 30 Technical Memorandum) "Proceeding northerly on Grove Street, while 4 foots shoulder is acceptable minimal bicycle accommodation, we would recommend 5-foot bike lanes in both directions with two 11-foot travel lanes as bike lanes could then provide access between Lower Falls neighborhood and the secondary MBTA access.

<u>Response</u>: Consistent with the directives by the City throughout the development of this project, the width of improvement along Grove Street has been minimized to remain consistent with the current character. Also as requested, bicycle accommodation has been maintained as part of this plan within the currently proposed roadway configuration. Expanding the roadway by 2 feet to increase the bike accommodation by one foot in each direction does not appear necessary.

<u>Comment:</u> (page 15 of 20) "The walking environment for pedestrians crossing the two-lane northbound offramp and Grove Street approaches to the east Grove single lane roundabout is a concern. A potential "double jeopardy" crosswalk hazard is proposed in the TIAS under Options A and B-2 at the two-lane approach just east of the east Grove roundabout. FST recommends that the Applicant consider eliminating this crossing at the east Grove roundabout to eliminate the potential hazard and we do not believe that crosswalk warrants will be met. People who live in the condominiums on the corner should cross at the proposed traffic signal at the intersection of Grove Street and the MBTA site drive."

Response: While we do not anticipate high levels of pedestrian activity from the condominium complex and the Hotel Indigo (restaurant) and the proposed redevelopment project, there will certainly be occasional pedestrian activity between these uses as there is today. It is not practical or safe to assume that pedestrians from the condo complex will find their way to the MBTA Site Driveway traffic signal for crossings when no pedestrian accommodation is available. This is particularly true if they are headed to the Hotel Indigo restaurant. Furthermore, the suggestion that these pedestrians can use the 4-foot shoulder or bike lane is not something that we would recommend. Therefore, establishing some form of crossing in close proximity to the Indigo is a reasonable compromise. While warrants may not be met, as discussed in detail in a previous comment response, it is in the public's best interest to provide a means of crossing so that access can be gained to the Lower Falls, Hotel Indigo and the Station at Riverside Redevelopment project. To improve on the existing proposed crosswalk network, the introduction of a Rectangular Rapid Flashing Beacons (RRFB) or similar will be considered for this location as design development is progressed. Discussion and ultimately approval by MassDOT and potentially FHWA will be required.

PARKING

Comment: (page 8 of 11) "The site's parking strategy pertaining to individual site user groups and shared parking, as presented in the TIAS, is not clearly defined and needs to be. As presented in the TIAS, the MBTA

garage and 11 surface parking spaces represent the supply of parking that will be available to satisfy future retail and community space parking demands. Unanswered questions include:

- Where exactly will retail and community space parking employees and visitors park? It is not clear whether retail and community building parking demands will remove commuter spaces and require parking fees or whether the 11 spaces will be time period limited or reserved for retail or community building employees.
- How will retail and community building parking spaces be managed?
- What are the potential non-specific shared parking arrangements cited in the TIAS
- Will the office use parking supply and a portion of the residential parking supply be available for shared parking arrangements? If so, during what times of the day?

These questions must be answered to evaluate whether the proposed site parking supply is adequate as proposed."

<u>Response</u>: First, it is important to note that the proposed MBTA garage will provide a total of 1,005 parking spaces, which replicates the existing 960 commuter spaces and provides an additional 45 spaces. It is anticipated that these 45 spaces will be available for use by the retail space and the community center. Since the preparation of the February TIAS, the Proponent has substantially advanced the site plan and as part of the local Zoning Board application, a detailed parking justification assessment for all parking on site has been prepared. Refer to the Appendix for a copy of the full parking justification assessment which provides responses to several of the comments and questions above.

In addition to that document, we offer the following:

- The community center and retail parking for the site is expected to take place in the 11 surface parking spaces and the 45 additional parking spaces provided within the MBTA parking garage.
- While specific details of the operations associated with the parking controls have yet to be determined, we anticipate that a "voucher" (or similar form of validation) type of system will be provided for people oriented to the retail and/or the community center to allow them to avoid the MBTA parking fee.
- As indicated in the parking justification memorandum, existing parking supply by the MBTA is generally underutilized with 300 <u>+</u> spaces available on non-game days and therefore we expect parking to be available within the garage for retail and community opportunities on typical days and evenings.

In addition, the uses on site including the retail, community center, and perhaps even the office space are unique in consideration of parking supply. While the parking memorandum that was completed to justify the proposed parking supply relied on typical standards for parking and the potential for shared parking opportunities, the analysis is likely very conservative given the nature of the retail that is proposed on site. For the purposes of traffic projections and parking requirement, the retail portion of the project has been treated as "normal" shopping center or destination style retail which is not what is intended on site. The retail will be small individual uses that will be largely complementary to the office, residential, and MBTA uses on site. Types of uses that may be introduced would likely include: café, news shop, dry cleaner, bank, ATM, restaurant, or similar. These types of uses in this TOD type of setting would draw heavily from patrons of the MBTA,

residents who will live in the residential units and workers who reside in the office building. As a result, the demand for exclusive parking for the retail portion of the site is very likely overstated by treating the retail as standard destination type of retail.

<u>Comment:</u> (page 17 of 20) *"We therefore conclude that if the MBTA garage is to accommodate 1,005 MBTA users:*

- The office component has a potential shortfall of 28 parking spaces;
- The retail component has a potential shortfall of 73 parking spaces;
- The Community Center has a potential shortfall of 39 parking spaces;
- The residential component has a potential surplus of 61 parking spaces at peak demands.

Overall parking controls must be clearly defined to identify an appropriate shared parking strategy. At this time, it is unclear to us how an effective shared parking arrangement will be implemented to accommodate shortfalls in office, retail, and Community Center parking demands that occur simultaneously with the MBTA's peak parking demands. Are the retail and Community Center users going to have "free" parking, or are only the office and residential users going to have free parking? Can the Applicant cite any examples of comparable developments where users have been willing to pay \$6 per day or more to shop at retail sites in lieu of free parking.

On Red Sox game days, as recommended in the TIAS, the Proponent should work with site users to provide an efficient way to accommodate vehicles. Particularly on weekends, and to a lesser extent during weekdays, the Proponent should identify whether an "events only" shared parking arrangement could be acceptable to office tenants to accommodate a portion or all parking demands that presently overflow into nearby Newton neighborhoods.

<u>Response</u>: A copy of the full parking justification assessment which provides response to several of the comments and questions above and response to comment above. To summarize some of the key points from that document, VHB offers the following:

- Potential shortfall of 28 spaces for the office component: As stated in FST's comment letter, the potential shortfall of 28 spaces for the office component is based on the 5% transit credit for office trip generation that was assumed in the February 2012 TIAS. It should be noted that the transit credit was only assumed to be 5% to provide a conservative assessment of the increase in vehicular traffic on the adjacent roadways. A study published in the ITE Compendium of Technical Papers titled *The Effect of Transit Service on Trips Generated by Suburban Development* concluded that "suburban office development located within 500 feet of a rail station can expect commuter trip transit mode shares of between 20 and 25 percent". If we assumed 18% transit use by office commuters, which would be appropriate for this site, the proposed parking supply would be adequate.
- It should be noted that the latest site plan provides 8,000 sf of community space compared to the 12,000 sf analyzed as part of the February 2012 TIAS, which represents a 33% reduction in area. As noted in FST's comments, parking for a recreational community center typically peaks between 6:00 PM and 8:00 PM. At this time, a substantial portion of the commuters parked in the garage will have left, which will increase the supply of available parking under normal conditions.
- The results of the parking justification assessment provided in the Appendix generally indicate that there are typically 300 <u>+</u> spaces available in the MBTA parking lot at 4:45 PM

on weekdays. These spaces will be available for the retail and community space on typical weekdays.

In addition, it should be noted that the City will be requiring the preparation of a detailed parking management plan for the project. Further details about accommodation of parking demands for each use will be provided in that document.

ACCESS

<u>**Comment:**</u> (page 9 of 11)"Grove Street physical alterations allow for full access of the future MBTA entrance. The proposed intersection treatment provides the greatest flexibility for access whether Option A or Option B-2 is accepted by MassDOT and FHWA. Nonetheless, we recommend the southbound site approach to Grove Street be designed with two lanes, rather than one lane with Option B-2, as proposed with Options A or F. A single southbound lane with maximum storage of 12 vehicles at 25 feet per car, is likely to congest the up toward the MBTA garage very quickly, thereby blocking the garage entrance or even the on-site northbound lane to the garage. Additionally, we recommend that the site/Grove Street signal be coordinated with the signal at the Riverside Equity site that is less than a quarter mile away."

<u>Response</u>: As suggested, the egress movement from the site has been revised to include two lanes southbound from an area just south of the MBTA garage exit to Grove Street. We anticipate maintaining this two lane configuration under either option A or B-2 moving forward. During the formal design review process of the traffic signal at the Grove Street MBTA driveway, coordination between this proposed traffic signal and the existing signal to the east at the Riverside Office Park will be considered and implemented to the extent that it makes sense and is feasible to do so.

<u>Comment</u>: (Page 11 of 11)"Generally, Option B-2 traffic operational features are preferable to Option A features, with on important exception. The left turn site line with Option B-2 could conceivably be jeopardized if snow banks or landscaping exceed 3.5 feet in height along the northbound C-D Road or the right side of the island on the left turn approach to the intersection. The identified sight line with Option B-2 must be addressed"

<u>Response</u>: During normal conditions, adequate sight distance will be available at this location and safe operation would be expected. As the design development progresses, the Proponent will assess various treatments in this area to minimize or potentially eliminate the potential sight distance concern during large snow accumulation events. Measures to be considered will include but will not be limited to the following:

- Eliminating any landscaping in this area
- Review of the potential for grading in the island to create a minor depression that would be lower than the roadway.
- Evaluate "hard surface" type of treatments that can be plowed on a regular basis along with the access roadways.
- Minimize or eliminate signage along the south side of the roadway near stop bar to allow for free plowing of shoulder etc.

In addition to any treatments that are incorporated in the design, the Proponent will work with MassDOT to inform plow operators of the importance of maintaining clear limited scale or no snow

banks in the critical area, similar to other locations throughout the commonwealth where similar conditions exist.

<u>Comment:</u> (page 7 of 20 Technical Memorandum) "The proposed unsignalized left turn movement, as illustrated in the TIAS with Option B-2 has a potential sight line issue during winter storm events if the height of snow banks to the left of the left turn approach and ramp exceeds 3.5 feet.

Response: Refer to response to comment above.

Roundabouts

<u>Comment</u>: (page 11 of 20 Technical Memorandum) "The Applicant should provide an Auto Turn or equivalent analysis to show how the three roundabouts will operate with their largest design trucks for the most restrictive movements (i.e. U-turns) allowed in the roundabouts under Options A and B-2. This is important, as the larger the U-turn design vehicle, the larger the diameter of the roundabout, or conversely, smaller diameters can be tolerated if truck U-turns are not permitted. As illustrated, the roundabouts accommodate 30-foot trucks..."

<u>Response</u>: As requested, VHB has prepared Auto Turn analyses of each of the proposed roundabouts with the design vehicle that has been used. Please refer to the Appendix for figures that display the wheel turning paths at both Ramp interchange roundabouts and the internal site roundabout. As demonstrated, the ramp roundabouts have been designed to accommodate a WB-67. The internal site roundabout has been designed to accommodate a WB-67. The internal site roundabout has been designed to accommodate a WB-67. The orthogen of the roundabouts under Options A and B-2 presented in the February 2012 TIAS result in the WB-67 driving over the curbing of the internal island to complete a U-turn maneuver. However, as shown in Figures 13 and 14 in the Appendix, it is possible to make minor modifications to the geometry of the roundabouts to fully accommodate a U-turn performed by a WB-67. It should be noted that MassDOT ultimately has control over the final design of both of the ramp roundabouts. Further discussions will be held with MassDOT during the design review process to determine if they see a need to accommodate this movement.

<u>**Comment:**</u> (Page 11 of 20 Technical Memorandum) "The I-95 and southbound and northbound off ramp approaches to the west and east Grove roundabouts should be designed to address crossing movements of cyclists and pedestrians to and from the Newton Lower Falls neighborhood. Within the context of the largest design vehicle restrictions, we recommend that east and west Grove Street roundabout approach deflections be maximized to the extent allowed by FHWA and MassDOT within the context of the design vehicles being processed. When two lane approaches are provided, as is done at the east and west roundabout approaches from the interstate, both lanes should operate under yield control to Grove Street northbound traffic.

<u>Response</u>: Drawings of the proposed roundabouts provided in the February 2012 TIAS were conceptual in nature. As suggested, we intend to maximize the deflection on all approaches to the roundabouts as the design review process proceeds. Also as noted, on all two lane approaches to the roundabouts, it is our intention to recommend "Yield" controls although MassDOT and FHWA will have final say in all treatments as they hold jurisdiction over the ramp locations.

Attachments

Operational Analyses

Signalized Intersection Analysis Unsignalized Intersection Analysis Site Access Analysis Mitigated Signalized Intersection Analysis

Traffic and Pedestrian Plans

Parking Assessment

AutoTURN Truck Turning Movement Analysis

Operational Analyses Signalized Intersection Analysis Unsignalized Intersection Analysis Site Access Analysis Mitigated Signalized Intersection Analysis

	٦	-	\mathbf{r}	•	+	•	•	t	1	×	Ļ	1		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	ø3	
Lane Configurations					\$		٦	¢Î			\$			
Volume (vph)	0	0	0	10	0	15	280	630	0	5	490	15		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Lane Width (ft)	12	12	12	12	12	12	11	13	12	12	12	12		
Storage Length (ft)	0		0	0		0	100		0	0		0		
Storage Lanes	0		0	0		0	1		0	0		0		
Taper Length (ft)	25 0	0	25	25 0	1710	25	25	1044	25	25 0	1055	25 0		
Satd. Flow (prot) Flt Permitted	0	0	0	U	1713 0.980	0	1728 0.950	1944	0	0	1855 0.994	0		
Satd. Flow (perm)	0	0	0	0	1713	0	1728	1944	0	0	1844	0		
Right Turn on Red	Ū	U	Yes	U	1715	Yes	1720	1711	Yes	U	1011	Yes		
Satd. Flow (RTOR)			100		25	100			100		2	100		
Link Speed (mph)		30			30			30			30			
Link Distance (ft)		123			166			282			224			
Travel Time (s)		2.8			3.8			6.4			5.1			
Peak Hour Factor	0.92	0.92	0.92	0.59	0.59	0.59	0.82	0.82	0.82	0.96	0.96	0.96		
Heavy Vehicles (%)	2%	2%	2%	0%	0%	0%	1%	1%	1%	2%	2%	2%		
Adj. Flow (vph)	0	0	0	17	0	25	341	768	0	5	510	16		
Shared Lane Traffic (%)														
Lane Group Flow (vph)	0	0	0	0	42	0	341	768	0	0	531	0		
Turn Type				Perm			Prot			Perm				
Protected Phases					4		1	6			2		3	
Permitted Phases				4						2				
Detector Phase				4	4		1	6		2	2			
Switch Phase				(0	(0		(0	(0		(0	(0		10.0	
Minimum Initial (s)				6.0	6.0		6.0	6.0		6.0	6.0		12.0	
Minimum Split (s)	0.0	0.0	0.0	11.0	11.0	0.0	11.0	15.0	0.0	15.0	15.0	0.0	20.0	
Total Split (s)	0.0	0.0	0.0	14.0	14.0	0.0	34.0	39.0	0.0	39.0	39.0	0.0	20.0	
Total Split (%) Maximum Green (s)	0.0%	0.0%	0.0%	13.1% 10.0	13.1% 10.0	0.0%	31.8% 30.0	36.4% 35.0	0.0%	36.4% 35.0	36.4% 35.0	0.0%	19% 16.0	
Yellow Time (s)				3.0	3.0		30.0	33.0		35.0	3.0		3.0	
All-Red Time (s)				1.0	1.0		1.0	1.0		1.0	1.0		1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		
Lead/Lag	4.0	4.0	4.0	Lag	Lag	4.0	Lead	4.0	4.0	Lag	Lag	+.U	Lead	
Lead-Lag Optimize?				Yes	Yes		Yes			Yes	Yes		Yes	
Vehicle Extension (s)				2.0	2.0		2.0	2.0		2.0	2.0		2.0	
Recall Mode				None	None		None	Min		Min	Min		None	
Walk Time (s)													5.0	
Flash Dont Walk (s)													11.0	
Pedestrian Calls (#/hr)													5	
Act Effct Green (s)					7.5		18.6	51.9			25.6			
Actuated g/C Ratio					0.12		0.30	0.85			0.42			
v/c Ratio					0.18		0.65	0.47			0.69			
Control Delay					24.3		29.4	5.5			24.6			
Queue Delay					0.0		0.0	0.0			0.0			
Total Delay					24.3		29.4	5.5			24.6			
LOS Anneach Delau					C		С	A			C			
Approach Delay Approach LOS					24.3 C			12.8 B			24.6 C			
Queue Length 50th (ft)					6		109	71			155			
Queue Length 95th (ft)					23		273	318			#524			
Internal Link Dist (ft)		43			86		275	202			144			
Turn Bay Length (ft)		10			00		100	202						
Base Capacity (vph)					355		1014	1800			1228			
Starvation Cap Reductn					0		0	0			0			
Spillback Cap Reductn					0		0	0			0			
Storage Cap Reductn					0		0	0			0			
Reduced v/c Ratio					0.12		0.34	0.43			0.43			
Intersection Summary														
Area Type:	Other													
Cycle Length: 107	Other													
Actuated Cycle Length: 61.	4													
Natural Cycle: 80														
Control Type: Actuated-Uni	coordinated													
Maximum v/c Ratio: 0.69	_ so, amatou													
Intersection Signal Delay: 1	16.8			In	tersection	LOS: B								
Intersection Capacity Utiliza					U Level of)							
Analysis Period (min) 15														
# 95th percentile volume	exceeds capac	ity, queue	may be lo	nger.										
Queue shown is maximi			,											
	2													
Splits and Phases: 12: C	Office Center Dri	ive & Grov	ve Street											
4												3	1	+-

▲ 01	↓ ø2	₩ _{ø3}	★ ₀₄
34 s	39 s	20 s	14 s
† ø6			
39 s			

	۶	-	\mathbf{r}	1	-	•	1	Ť	1	5	Ŧ	-	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations					\$		٢	4Î			\$		
Volume (vph)	0	0	0	10	0	15	280	630	0	5	490	15	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width	12	12	12	12	12	12	11	13	12	12	12	12	
Total Lost time (s)					4.0		4.0	4.0			4.0		
Lane Util. Factor					1.00		1.00	1.00			1.00		
Frt					0.92		1.00	1.00			1.00		
Flt Protected					0.98		0.95	1.00			1.00		
Satd. Flow (prot)					1713		1728	1944			1854		
Flt Permitted					0.98		0.95	1.00			0.99		
Satd. Flow (perm)					1713		1728	1944			1844		
Peak-hour factor, PHF	0.92	0.92	0.92	0.59	0.59	0.59	0.82	0.82	0.82	0.96	0.96	0.96	
Adj. Flow (vph)	0	0	0	17	0	25	341	768	0	5	510	16	
RTOR Reduction (vph)	0	0	0	0	24	0	0	0	0	0	1	0	
Lane Group Flow (vph)	0	0	0	0	18	0	341	768	0	0	530	0	
Heavy Vehicles (%)	2%	2%	2%	0%	0%	0%	1%	1%	1%	2%	2%	2%	
Turn Type				Perm			Prot			Perm			
Protected Phases					4		1	6			2		
Permitted Phases				4						2			
Actuated Green, G (s)					3.3		18.6	49.0			26.4		
Effective Green, g (s)					3.3		18.6	49.0			26.4		
Actuated g/C Ratio					0.05		0.28	0.74			0.40		
Clearance Time (s)					4.0		4.0	4.0			4.0		
Vehicle Extension (s)					2.0		2.0	2.0			2.0		
Lane Grp Cap (vph)					85		486	1439			735		
v/s Ratio Prot							c0.20	0.40					
v/s Ratio Perm					0.01						c0.29		
v/c Ratio					0.21		0.70	0.53			0.72		
Uniform Delay, d1					30.2		21.3	3.7			16.8		
Progression Factor					1.00		1.00	1.00			1.00		
Incremental Delay, d2					0.5		3.7	0.2			3.0		
Delay (s)					30.7		25.0	3.9			19.8		
Level of Service					С		С	А			В		
Approach Delay (s)		0.0			30.7			10.4			19.8		
Approach LOS		А			С			В			В		
Intersection Summary													
HCM Average Control Delay			13.9	HC	CM Level o	of Service			В				
HCM Volume to Capacity ratio			0.68										
Actuated Cycle Length (s)			66.2		im of lost t				17.9				
Intersection Capacity Utilization			75.1%	IC	U Level of	Service			D				
Analysis Period (min)			15										
c Critical Lane Group													

	٦	+	*	4	+	•	•	1	*	1	ţ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	ø2
Lane Configurations		\$			\$			4			\$		
Volume (vph)	20	115	15	125	50	150	15	395	135	110	360	15	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	12 0	16 2090	12 0	12 0	15 1923	12 0	12 0	16 2060	12 0	12 0	16 2059	12 0	
Satd. Flow (prot) Flt Permitted	0	0.932	U	U	0.811	0	0	0.981	0	U	0.736	0	
Satd. Flow (perm)	0	1961	0	0	1590	0	0	2022	0	0	1533	0	
Right Turn on Red			Yes			Yes			Yes			Yes	
Satd. Flow (RTOR)		7			54			27			3		
Link Speed (mph)		30			30			30			30		
Link Distance (ft)		598			316			168			222		
Travel Time (s)	0.04	13.6	0.04	0.00	7.2 0.92	0.02	0.89	3.8 0.89	0.00	0.90	5.0 0.90	0.90	
Peak Hour Factor Heavy Vehicles (%)	0.86 1%	0.86 1%	0.86 1%	0.92 0%	0.92	0.92 0%	0.89	0.89	0.89 1%	3%	3%	3%	
Adj. Flow (vph)	23	134	17	136	54	163	17	444	152	122	400	17	
Shared Lane Traffic (%)													
Lane Group Flow (vph)	0	174	0	0	353	0	0	613	0	0	539	0	
Turn Type	Perm			Perm			Perm			Perm			
Protected Phases		3			3			1			1		2
Permitted Phases	3	-		3	-		1	4		1	4		
Detector Phase Switch Phase	3	3		3	3		1	1		1	1		
Switch Phase Minimum Initial (s)	17.0	17.0		17.0	17.0		30.0	30.0		30.0	30.0		15.0
Minimum Split (s)	22.3	22.3		22.3	22.3		35.2	30.0		35.2	35.2		17.0
Total Split (s)	22.3	22.3	0.0	22.3	22.3	0.0	35.2	35.2	0.0	35.2	35.2	0.0	17.0
Total Split (%)	29.9%	29.9%	0.0%	29.9%	29.9%	0.0%	47.2%	47.2%	0.0%	47.2%	47.2%	0.0%	23%
Maximum Green (s)	17.0	17.0		17.0	17.0		30.0	30.0		30.0	30.0		15.0
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0		2.0
All-Red Time (s)	2.3	2.3		2.3	2.3		2.2	2.2		2.2	2.2		0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.3	5.3	4.0	5.3	5.3	4.0	5.2 Lead	5.2 Lead	4.0	5.2 Lead	5.2 Lead	4.0	log
Lead/Lag Lead-Lag Optimize?							Yes	Yes		Yes	Yes		Lag Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0		3.0
Recall Mode	Max	Max		Max	Max		Max	Max		Max	Max		None
Walk Time (s)													7.0
Flash Dont Walk (s)													8.0
Pedestrian Calls (#/hr)		47.0			47.0								5
Act Effct Green (s) Actuated g/C Ratio		17.2 0.28			17.2 0.28			30.3 0.50			30.3 0.50		
v/c Ratio		0.28			0.28			0.60			0.50		
Control Delay		19.9			29.0			14.9			20.5		
Queue Delay		0.0			0.0			0.0			0.0		
Total Delay		19.9			29.0			14.9			20.5		
LOS		В			С			В			С		
Approach Delay		19.9			29.0			14.9			20.5		
Approach LOS		B			C 89			B			C 124		
Queue Length 50th (ft) Queue Length 95th (ft)		44 114			#284			124 338			#408		
Internal Link Dist (ft)		518			236			88			142		
Turn Bay Length (ft)													
Base Capacity (vph)		559			487			1020			765		
Starvation Cap Reductn		0			0			0			0		
Spillback Cap Reductn		0			0			0			0		
Storage Cap Reductn Reduced v/c Ratio		0 0.31			0 72			0 0.60			0 0.70		
		0.51			0.72			0.00			0.70		
Intersection Summary	Othor												
Area Type: Cycle Length: 74.5	Other												
Actuated Cycle Length: 60.9													
Natural Cycle: 90													
Control Type: Semi Act-Unco	oord												
Maximum v/c Ratio: 0.72													
Intersection Signal Delay: 20.					itersection		2						
Intersection Capacity Utilizati	ion 106.2%			IC	CU Level o	f Service	j						
Analysis Period (min) 15 # 95th percentile volume ex	xceeds capac	tty queue	may he l	onder									
Queue shown is maximum			ing be it	sigor.									
	,												
Splits and Phases: 16: Cer	ntral Street &	Auburn S	treet					× -					
\$1 01								#1 02	2				\$ ₀3
35.2 s								17 s					22.3 s

	۶	-	\mathbf{r}	∢	←	•	•	1	1	1	Ŧ	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			4			4			4		
Volume (vph)	20	115	15	125	50	150	15	395	135	110	360	15	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width	12	16	12	12	15	12	12	16	12	12	16	12	
Total Lost time (s)		5.3			5.3			5.2			5.2		
Lane Util. Factor		1.00			1.00			1.00			1.00		
Frt		0.99			0.94			0.97			1.00		
Flt Protected		0.99			0.98			1.00			0.99		
Satd. Flow (prot)		2090			1923			2058			2058		
Flt Permitted		0.93			0.81			0.98			0.74		
Satd. Flow (perm)		1961			1589			2022			1532		
Peak-hour factor, PHF	0.86	0.86	0.86	0.92	0.92	0.92	0.89	0.89	0.89	0.90	0.90	0.90	
Adj. Flow (vph)	23	134	17	136	54	163	17	444	152	122	400	17	
RTOR Reduction (vph)	0	5	0	0	39	0	0	14	0	0	2	0	
Lane Group Flow (vph)	0	169	0	0	314	0	0	599	0	0	537	0	
Heavy Vehicles (%)	1%	1%	1%	0%	0%	0%	1%	1%	1%	3%	3%	3%	
Turn Type	Perm			Perm			Perm			Perm			
Protected Phases		3			3			1			1		
Permitted Phases	3			3			1			1			
Actuated Green, G (s)		17.2			17.2			30.3			30.3		
Effective Green, g (s)		17.2			17.2			30.3			30.3		
Actuated g/C Ratio		0.28			0.28			0.48			0.48		
Clearance Time (s)		5.3			5.3			5.2			5.2		
Vehicle Extension (s)		3.0			3.0			3.0			3.0		
Lane Grp Cap (vph)		540			437			980			743		
v/s Ratio Prot		0.00						0.00			0.05		
v/s Ratio Perm		0.09			c0.20			0.30			c0.35		
v/c Ratio		0.31			0.72			0.61			0.72		
Uniform Delay, d1		18.0 1.00			20.5 1.00			11.8 1.00			12.8 1.00		
Progression Factor Incremental Delay, d2		1.00			9.7			2.8			1.00 6.0		
Delay (s)		1.5			30.2			2.0			18.8		
Level of Service		19.0 B			30.2 C			14.0 B			10.0 B		
Approach Delay (s)		19.5			30.2			14.6			18.8		
Approach LOS		17.J B			50.2 C			14.0 B			B		
Intersection Summary													
HCM Average Control Delay			19.8	H	CM Level o	of Service			В				
HCM Volume to Capacity ratio			0.72										
Actuated Cycle Length (s)			62.5	SL	ım of lost t	ime (s)			15.0				
Intersection Capacity Utilization			106.2%	IC	U Level of	Service			G				
Analysis Period (min)			15										
c Critical Lane Group													

	۶	+	*	4	t	•	<	1	1	*	L,	ţ	1	Ł	4		
Lane Group	EBL	EBT	EBR2	WBL	WBT	WBR	NBL	NBT	NBR	SBL2	SBL	SBT	SBR	NWL	NWR2	ø4	
Lane Configurations		\$			4			4			A	4Î		Y			
Volume (vph)	15	310	90	10	270	175	35	435	5	140	0	450	30	0	15		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Storage Length (ft)	0			0		0	0		0		30		0	0			
Storage Lanes	0			0		0	0		0		1		0	1			
Taper Length (ft)	25			25		25	25		25		25		25	25			
Satd. Flow (prot)	0	1823	0	0	1747	0	0	1818	0	0	1736	1810	0	1611	0		
Flt Permitted		0.886			0.958			0.932			0.349						
Satd. Flow (perm)	0	1618	0	0	1675	0	0	1701	0	0	638	1810	0	1611	0		
Right Turn on Red			Yes			Yes							Yes	(00	Yes		
Satd. Flow (RTOR)		9			21							3		630			
Link Speed (mph)		30			30			30				30		30			
Link Distance (ft)		1184			376			1200				268		491			
Travel Time (s)	0.02	26.9	0.02	0.00	8.5	0.00	0.02	27.3	0.00	0.02	0.02	6.1	0.00	11.2	0.92		
Peak Hour Factor	0.92 1%	0.92	0.92 1%	0.88 3%	0.88 3%	0.88 3%	0.92 4%	0.92 4%	0.92 4%	0.92 4%	0.92 4%	0.92 4%	0.92 4%	0.71 0%	2%		
Heavy Vehicles (%)		1% 337	98		370	3% 199	4%	470		4 %	4%	4%	4%	0%	2%		
Adj. Flow (vph)	16	337	90	11	307	199	30	473	5	152	U	409	33	0	10		
Shared Lane Traffic (%)	0	451	0	0	E17	0	0	E14	0	0	150	E 2 2	0	14	0		
Lane Group Flow (vph) Turn Type	Perm	451	U	Perm	517	U	Perm	516	U	custom	152 D.P+P	522	U	16	U		
Protected Phases	1.6111	3		1 enn	3		1 enn	2		Custoni	D.P+P	12		5		4	
Protected Phases Permitted Phases	3	3		3	ა		2	2		1	2	12		Э		4	
Detector Phase	3	3		3	3		2	2		1	2	12		5			
Switch Phase	3	3		ა	3		2	2		1	1	12		Э			
Minimum Initial (s)	10.0	10.0		10.0	10.0		15.0	15.0		10.0	10.0			4.0		15.0	
Minimum Split (s)	10.0	10.0		10.0	10.0		21.0	21.0		10.0	10.0			4.0 9.0		27.0	
Total Split (s)	15.0 30.0	15.0 30.0	0.0	15.0 30.0	30.0	0.0	21.0 51.0	21.0 51.0	0.0	15.0	15.0	66.0	0.0	9.0 9.0	0.0	27.0	
Total Split (%)	22.7%	22.7%	0.0%	22.7%	22.7%	0.0%	38.6%	38.6%	0.0%	11.4%	11.4%	50.0%	0.0%	9.0 6.8%	0.0%	27.0	
Maximum Green (s)	22.7%	22.7%	0.0%	22.7%	22.7%	0.0%	36.6% 45.0	45.0	0.0%	10.0	10.0	00.0%	0.0%	4.0	0.0%	20%	
Yellow Time (s)	25.0 4.0	25.0 4.0		4.0	4.0		45.0	45.0		4.0	4.0			4.0		4.0	
All-Red Time (s)	4.0	4.0		4.0	4.0		2.0	2.0		4.0	4.0			4.0		2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	6.0	6.0	4.0	5.0	5.0	5.0	4.0	5.0	4.0		
Lead/Lag	Lead	Lead	4.0	Lead	Lead	4.0		Lag	4.0	Lead	Lead	5.0	4.0	5.0	4.0	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Lag Yes	Yes		Yes	Yes					Yes	
Vehicle Extension (s)	4.0	4.0		4.0	4.0		5.0	5.0		4.0	4.0			3.0		5.0	
Recall Mode	Max	Max		Max	Max		Max	Max		Max	Max			None		None	
Walk Time (s)	IVICIA	IVIGA		INGA	IVIGA		INGA	IVIGA		IVIUA	IVIGA			None		7.0	
Flash Dont Walk (s)																8.0	
Pedestrian Calls (#/hr)																5	
Act Effct Green (s)		25.3			25.3			45.5			56.6	61.7		4.0		Ū	
Actuated g/C Ratio		0.24			0.24			0.44			0.55	0.59		0.04			
v/c Ratio		1.12			1.22			0.69			0.33	0.48		0.02			
Control Delay		120.5			152.5			31.7			13.9	16.0		0.1			
Queue Delay		0.0			0.0			0.0			0.0	0.0		0.0			
Total Delay		120.5			152.5			31.7			13.9	16.0		0.1			
LOS		F			F			С			В	В		А			
Approach Delay		120.5			152.5			31.7				15.5		0.1			
Approach LOS		F			F			С				В		А			
Queue Length 50th (ft)		~299			~364			232			34	147		0			
Queue Length 95th (ft)		#695			#767			#577			111	415		0			
Internal Link Dist (ft)		1104			296			1120				188		411			
Turn Bay Length (ft)											30						
Base Capacity (vph)		401			424			746			455	1077		668			
Starvation Cap Reductn		0			0			0			0	0		0			
Spillback Cap Reductn		0			0			0			0	0		0			
Storage Cap Reductn		0			0			0			0	0		0			
Reduced v/c Ratio		1.12			1.22			0.69			0.33	0.48		0.02			
Intersection Summary																	
Area Type:	Other																
Cycle Length: 132																	
Actuated Cycle Length: 103.8	}																
Natural Cycle: 150																	
Control Type: Semi Act-Unco	ord																
Maximum v/c Ratio: 1.22																	
Intersection Signal Delay: 73.					tersection												
Intersection Capacity Utilization				IC	CU Level of	f Service (3										
Analysis Period (min) 15																	
 Volume exceeds capacity 			infinite.														
Queue shown is maximum	n after two cy	cles.															
# 95th percentile volume ex			may be lo	onger.													
Queue shown is maximum	n after two cy	cles.															
California Dharris 10.4	Charles Charles	Com	un alti- A														
	ourn Street &	Commony	vealth Ave	enue				1.	A								
≹ r ₀1 \$1	ø2							4	🖡 ø3					1 ø4			↑ _{ø5}
15 s 51 s								3	0 s				27	7 s			98

	≯	-	\mathbf{i}	∢	←	•	۸.	1	۲	1	L.	Ļ	∢	•	4	
Movement	EBL	EBT	EBR2	WBL	WBT	WBR	NBL	NBT	NBR	SBL2	SBL	SBT	SBR	NWL	NWR2	
Lane Configurations		¢			\$			\$			Ľ.	¢,		Y		
Volume (vph)	15	310	90	10	270	175	35	435	5	140	0	450	30	0	15	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		5.0			5.0			6.0			5.0	5.0		5.0		
Lane Util. Factor		1.00			1.00			1.00			1.00	1.00		1.00		
Frt		0.97			0.95			1.00			1.00	0.99		0.86		
Flt Protected		1.00			1.00			1.00			0.95	1.00		1.00		
Satd. Flow (prot)		1823			1747			1818			1736	1810		1611		
Flt Permitted		0.89			0.96			0.93			0.35	1.00		1.00		
Satd. Flow (perm)		1617			1675			1701			638	1810		1611		
Peak-hour factor, PHF	0.92	0.92	0.92	0.88	0.88	0.88	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.71	0.92	
Adj. Flow (vph)	16	337	98	11	307	199	38	473	5	152	0	489	33	0	16	
RTOR Reduction (vph)	0	7	0	0	16	0	0	0	0	0	0	1	0	16	0	
Lane Group Flow (vph)	0	444	0	0	501	0	0	516	0	0	152	521	0	0	0	
Heavy Vehicles (%)	1%	1%	1%	3%	3%	3%	4%	4%	4%	4%	4%	4%	4%	0%	2%	
Turn Type	Perm			Perm			Perm			custom	D.P+P					
Protected Phases		3			3			2			1	12		5		
Permitted Phases	3			3			2			1	2					
Actuated Green, G (s)		25.3			25.3			45.5			55.6	60.6		1.4		
Effective Green, g (s)		25.3			25.3			45.5			55.6	60.6		1.4		
Actuated g/C Ratio		0.23			0.23			0.41			0.50	0.54		0.01		
Clearance Time (s)		5.0			5.0			6.0			5.0			5.0		
Vehicle Extension (s)		4.0			4.0			5.0			4.0			3.0		
Lane Grp Cap (vph)		366			379			692			416	981		20		
//s Ratio Prot											0.03	c0.29		c0.00		
/s Ratio Perm		0.27			c0.30			c0.30			0.15					
//c Ratio		1.21			1.32			0.75			0.37	0.53		0.01		
Jniform Delay, d1		43.2			43.2			28.2			17.1	16.5		54.5		
Progression Factor		1.00			1.00			1.00			1.00	1.00		1.00		
ncremental Delay, d2		118.6			162.0			7.2			2.5	2.1		0.2		
Delay (s)		161.8			205.2			35.4			19.6	18.5		54.7		
Level of Service		F			F			D			В	В		D		
Approach Delay (s)		161.8			205.2			35.4				18.7		54.7		
Approach LOS		F			F			D				В		D		
ntersection Summary																
HCM Average Control Delay			97.0	HO	CM Level o	of Service			F							
HCM Volume to Capacity ratio			0.90													
Actuated Cycle Length (s)			111.8	SL	im of lost t	ime (s)			29.5							
Intersection Capacity Utilization			100.5%	IC	U Level of	Service			G							
Analysis Period (min)			15													

c Critical Lane Group

	۶	7	1	Ť	ţ	4	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	ø3
Lane Configurations	1	1		- ↑ 1 1 1 1 1 1 1 1 1 1 1 1 1	1	2011	
Volume (vph)	365	10	0	1235	1015	390	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	0	50	0			0	
Storage Lanes	1	1	0			0	
Taper Length (ft)	25	25	25			25	
Satd. Flow (prot)	1805	1615	0	3539	3424	0	
Flt Permitted	0.950						
Satd. Flow (perm)	1805	1615	0	3539	3424	0	
Right Turn on Red		Yes				Yes	
Satd. Flow (RTOR)		5			66		
Link Speed (mph)	10			30	30		
Link Distance (ft)	1445			1829	884		
Travel Time (s)	98.5			41.6	20.1		
Peak Hour Factor	0.71	0.71	0.89	0.89	0.91	0.91	
Heavy Vehicles (%)	0%	0%	2%	2%	1%	1%	
Adj. Flow (vph)	514	14	0	1388	1115	429	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	514	14	0	1388	1544	0	
Turn Type		Perm	Perm				
Protected Phases	4			2	2		3
Permitted Phases		4	2				
Detector Phase	4	4	2	2	2		
Switch Phase							
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0		1.0
Minimum Split (s)	20.8	20.8	21.3	21.3	21.3		26.0
Total Split (s)	30.0	30.0	24.0	24.0	24.0	0.0	26.0
Total Split (%)	37.5%	37.5%	30.0%	30.0%	30.0%	0.0%	33%
Maximum Green (s)	25.2	25.2	18.7	18.7	18.7		24.0
Yellow Time (s)	3.8	3.8	4.2	4.2	4.2		2.0
All-Red Time (s)	1.0	1.0	1.1	1.1	1.1	0.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.8	4.8	5.3	5.3	5.3	4.0	
Lead/Lag	Lag	Lag					Lead
Lead-Lag Optimize?	Yes	Yes		~ ~			Yes
Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0		2.0
Recall Mode	None	None	C-Max	C-Max	C-Max		None
Walk Time (s)							7.0
Flash Dont Walk (s)							17.0 0
Pedestrian Calls (#/hr)	27.2	27.3		42.6	124		0
Act Effct Green (s)	27.3 0.34	27.3 0.34		42.6 0.53	42.6 0.53		
Actuated g/C Ratio	0.34	0.34		0.53	0.53		
v/c Ratio Control Delay	0.83	0.03		0.74	0.83		
Queue Delay	36.8 0.0	0.0		0.0	0.0		
Total Delay	36.8	12.8		18.2	14.9		
LOS	30.8 D	12.8 B		18.2 B	14.9 B		
Approach Delay	36.1	D		D 18.2	ь 14.9		
Approach LOS	30.1 D			16.2 B	14.9 B		
Queue Length 50th (ft)	227	3		272	292		
Queue Length 95th (ft)	230	10		378	#500		
Internal Link Dist (ft)	1365	10		1749	804		
Turn Bay Length (ft)	1000	50		., .,	501		
Base Capacity (vph)	635	571		1886	1855		
Starvation Cap Reductn	033	0		0	0		
Spillback Cap Reductn	0	0		0	0		
Storage Cap Reductn	0	0		0	0		
Reduced v/c Ratio	0.81	0.02		0.74	0.83		
	0.01	0.02		0.74	0.00		
Intersection Summary							
Area Type:	Other						
Cycle Length: 80							
Actuated Cycle Length: 80	to phase 2.1	NDCD CH	art of Cross	n			
Offset: 75 (94%), Referenced	to phase 2:1	VR2B' 245	art of Gree	n			
Natural Cycle: 130	dinotod						
Control Type: Actuated-Coord	unated						
Maximum v/c Ratio: 0.83	6			1	torcostion		
Intersection Signal Delay: 19.					tersection		
Intersection Capacity Utilization	01 09.2%			10	CU Level of	I Service C	
Analysis Period (min) 15	anada ana	the group	o mouster l	opgor			
# 95th percentile volume ex Queue shown is maximum	ceeus capac	uny, queue	e may bê l	unger.			
	i aitei two Cy	UIC3.					
Splits and Phases 26. Auto	urn Stroot P	Washing	iton Street				
Splits and Phases: 26: Aub	ourn Street &	vvashingt	ion Street				
\$ ↑ _{ø2}				<u>*1</u>	ø3		
· · · · · · · · · · · · · · · · · · ·					~~		

2

	≯	\mathbf{i}	1	1	ţ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1		41	1	
Volume (vph)	365	10	0	1235	1015	390
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.8	4.8		5.3	5.3	
Lane Util. Factor	1.00	1.00		0.95	0.95	
Frt	1.00	0.85		1.00	0.96	
Flt Protected	0.95	1.00		1.00	1.00	
Satd. Flow (prot)	1805	1615		3539	3425	
Flt Permitted	0.95	1.00		1.00	1.00	
Satd. Flow (perm)	1805	1615		3539	3425	
Peak-hour factor, PHF	0.71	0.71	0.89	0.89	0.91	0.91
Adj. Flow (vph)	514	14	0	1388	1115	429
RTOR Reduction (vph)	0	3	0	0	31	0
Lane Group Flow (vph)	514	11	0	1388	1513	0
Heavy Vehicles (%)	0%	0%	2%	2%	1%	1%
Turn Type		Perm	Perm			
Protected Phases	4			2	2	
Permitted Phases		4	2			
Actuated Green, G (s)	27.3	27.3		42.6	42.6	
Effective Green, g (s)	27.3	27.3		42.6	42.6	
Actuated g/C Ratio	0.34	0.34		0.53	0.53	
Clearance Time (s)	4.8	4.8		5.3	5.3	
Vehicle Extension (s)	2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	616	551		1885	1824	
v/s Ratio Prot	c0.28			0.39	c0.44	
v/s Ratio Perm		0.01				
v/c Ratio	0.83	0.02		0.74	0.83	
Uniform Delay, d1	24.3	17.5		14.4	15.7	
Progression Factor	1.00	1.00		1.00	0.62	
Incremental Delay, d2	9.1	0.0		2.6	3.9	
Delay (s)	33.4	17.5		17.0	13.6	
Level of Service	С	В		В	В	
Approach Delay (s)	33.0			17.0	13.6	
Approach LOS	С			В	В	
Intersection Summary						
HCM Average Control Delay			17.9	H	CM Level o	of Service
HCM Volume to Capacity ratio			0.83			
Actuated Cycle Length (s)			80.0		um of lost t	
Intersection Capacity Utilization			69.2%	IC	U Level of	Service
Analysis Period (min)			15			
c Critical Lane Group						

c Critical Lane Group

Lanes, Volumes, Timings 27: Washington Street & Perkins Street

	≯	-	\mathbf{r}	1	+	×	•	1	1	1	ţ	~		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	ø6	ø9
ane Configurations		A						\$			Ą	11		
/olume (vph)	0	1320	5	0	0	0	0	0	10	0	5	1330		
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
atd. Flow (prot)	0	3606	0	0	0	0	0	1644	0	0	1900	2842		
It Permitted atd. Flow (perm)	0	3606	0	0	0	0	0	1644	0	0	1900	2842		
ight Turn on Red	0	3000	Yes	U	U	Yes	U	1044	Yes	U	1900	Z64Z Yes		
atd. Flow (RTOR)			103			103		623	103			1430		
ink Speed (mph)		30			30			30			30	1100		
ink Distance (ft)		884			163			529			423			
ravel Time (s)		20.1			3.7			12.0			9.6			
eak Hour Factor	0.97	0.97	0.97	0.92	0.92	0.92	0.75	0.75	0.75	0.93	0.93	0.93		
eavy Vehicles (%)	0%	0%	0%	2%	2%	2%	0%	0%	0%	0%	0%	0%		
vdj. Flow (vph) Shared Lane Traffic (%)	0	1361	5	0	0	0	0	0	13	0	5	1430		
ane Group Flow (vph)	0	1366	0	0	0	0	0	13	0	0	5	1430		
Turn Type		1000	0	0	Ū	Ū	Perm		Ū	Perm	0	custom		
Protected Phases		2						3			4	4 6	6	9
ermitted Phases							3			4				
etector Phase		2					3	3		4	4	46		
Switch Phase		()					F 0	5.0		()	(0		()	1.0
Ainimum Initial (s) Ainimum Split (s)		6.0 11.2					5.0 9.8	5.0 9.8		6.0 11.0	6.0 11.0		6.0 11.2	1.0 22.0
fotal Split (s)	0.0	27.0	0.0	0.0	0.0	0.0	9.8	9.8	0.0	14.0	14.0	41.0	27.0	22.0
otal Split (%)	0.0%	33.8%	0.0%	0.0%	0.0%	0.0%	21.3%	21.3%	0.0%	17.5%	17.5%	51.3%	34%	22.0
Maximum Green (s)		21.8					12.2	12.2		9.0	9.0		21.8	20.0
(ellow Time (s)		4.2					3.8	3.8		4.0	4.0		4.2	2.0
All-Red Time (s)		1.0					1.0	1.0		1.0	1.0		1.0	0.0
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	4.0	5.2	4.0	4.0	4.0	4.0	4.8	4.8	4.0	5.0	5.0	5.0		
ead/Lag ead-Lag Optimize?							Lead Yes	Lead Yes		Lag Yes	Lag Yes			
/ehicle Extension (s)		2.0					2.0	2.0		2.0	2.0		2.0	2.0
Recall Mode		C-Max					None	None		None	None		C-Max	None
Valk Time (s)														7.0
lash Dont Walk (s)														13.0
Pedestrian Calls (#/hr)														0
Act Effct Green (s)		38.8						8.9			17.2	61.3		
Actuated g/C Ratio /c Ratio		0.48 0.78						0.11 0.02			0.22 0.01	0.77 0.57		
Control Delay		19.7						0.02			20.4	4.8		
Queue Delay		0.0						0.0			0.0	0.1		
Total Delay		19.7						0.0			20.4	4.8		
.0S		В						А			С	А		
Approach Delay		19.7						0.0			4.9			
pproach LOS		B						A			A			
Queue Length 50th (ft)		175						0			2 m2	118 144		
Queue Length 95th (ft)		#567 804			83			449			m3 343	144		
urn Bay Length (ft)		004			05			447			343			
ase Capacity (vph)		1751						779			409	2512		
tarvation Cap Reductn		0						0			0	183		
pillback Cap Reductn		0						0			0	0		
torage Cap Reductn		0						0			0	0		
duced v/c Ratio		0.78						0.02			0.01	0.61		
ersection Summary														
	Other													
ycle Length: 80														
ctuated Cycle Length: 80	nhoos of	EDT and (CDD Ch	t of Creat										
Offset: 74 (93%), Referenced to Jatural Cycle: 80	o priase 2:t		.SBK, Stat	t of Green										
Control Type: Actuated-Coordir	nated													
laximum v/c Ratio: 0.78	atou													
tersection Signal Delay: 12.0				Int	tersection	LOS: B								
ntersection Capacity Utilization	1 58.9%				U Level of		В							
Analysis Period (min) 15														
95th percentile volume exce			may be lo	nger.										
Queue shown is maximum a			un ale	alamet										
Volume for 95th percentile	queue is m	netered by	upstream	signal.										
alite and Dhacos: 27: Wash	In min m Circ	at 0 Dark	no Chront											

Splits and Phases: 27: Washington Street & Perkins Street #27 #29 #27 #29 **1** 🔶 🔶 02 ø9 #27

 $\label{eq:local_$

HCM Signalized Intersection Capacity Analysis 27: Washington Street & Perkins Street

	≯	-	\mathbf{r}	•	←	•	1	1	1	1	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		≜ †⊅						4			ب ا	11
Volume (vph)	0	1320	5	0	0	0	0	0	10	0	5	1330
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.2						4.8			5.0	5.0
Lane Util. Factor		0.95						1.00			1.00	0.88
Frt		1.00						0.86			1.00	0.85
Flt Protected		1.00						1.00			1.00	1.00
Satd. Flow (prot)		3608						1644			1900	2842
Flt Permitted		1.00						1.00			1.00	1.00
Satd. Flow (perm)		3608						1644			1900	2842
Peak-hour factor, PHF	0.97	0.97	0.97	0.92	0.92	0.92	0.75	0.75	0.75	0.93	0.93	0.93
Adj. Flow (vph)	0	1361	5	0	0	0	0	0	13	0	5	1430
RTOR Reduction (vph)	0	0	0	0	0	0	0	12	0	0	0	338
Lane Group Flow (vph)	0	1366	0	0	0	0	0	1	0	0	5	1092
Heavy Vehicles (%)	0%	0%	0%	2%	2%	2%	0%	0%	0%	0%	0%	0%
Turn Type							Perm			Perm		custom
Protected Phases		2						3			4	4 6
Permitted Phases							3			4		
Actuated Green, G (s)		38.9						8.9			17.2	61.1
Effective Green, g (s)		38.9						8.9			17.2	61.1
Actuated g/C Ratio		0.49						0.11			0.21	0.76
Clearance Time (s)		5.2						4.8			5.0	
Vehicle Extension (s)		2.0						2.0			2.0	
Lane Grp Cap (vph)		1754						183			409	2171
v/s Ratio Prot		c0.38						c0.00			0.00	c0.38
v/s Ratio Perm												
v/c Ratio		0.78						0.01			0.01	0.50
Uniform Delay, d1		17.0						31.6			24.7	3.6
Progression Factor		0.80						1.00			1.06	20.83
Incremental Delay, d2		2.2						0.0			0.0	0.1
Delay (s)		15.8						31.6			26.2	75.6
Level of Service		В						С			С	E
Approach Delay (s)		15.8			0.0			31.6			75.4	
Approach LOS		В			А			С			E	
Intersection Summary												
HCM Average Control Delay			46.3	H	CM Level	of Service			D			
HCM Volume to Capacity ratio			0.62									
Actuated Cycle Length (s)			80.0		um of lost				15.0			
Intersection Capacity Utilization			58.9%	IC	U Level of	Service			В			
Analysis Period (min)			15									
c Critical Lano Croup												

c Critical Lane Group

	_#	-*	\mathbf{r}	1	۲	*	1	í,	4	~
Lane Group	EBL	EBR	EBR2	NBL	NBR	NWL	NWR	SWL2	SWL	SWR
Lane Configurations		1	11					ኘካ	ሻሻ	
Volume (vph)	0	205	710	0	0	0	0	655	625	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	1615	2842	0	0	0	0	3502	3502	0
Flt Permitted								0.950	0.950	
Satd. Flow (perm)	0	1615	2842	0	0	0	0	3502	3502	0
Right Turn on Red			Yes				Yes	Yes		Yes
Satd. Flow (RTOR)			225					744		
Link Speed (mph)	30			30		30			30	
Link Distance (ft)	462			423		194			297	
Travel Time (s)	10.5	6.04	0.01	9.6	0.00	4.4	0.00	0.00	6.8	0.00
Peak Hour Factor	0.96	0.96	0.96	0.92	0.92	0.92	0.92	0.88	0.88	0.88
Heavy Vehicles (%)	0%	0%	0%	2%	2%	2%	2%	0%	0%	0%
Adj. Flow (vph)	0	214	740	0	0	0	0	744	710	0
Shared Lane Traffic (%)	,		7.10	0	•	•	•		74.0	
Lane Group Flow (vph)	0	214	740	0	0	0	0	744	710	0
Turn Type		custom	custom					custom		
Protected Phases		2	2					1	1	
Permitted Phases		2	2					1		
Detector Phase		2	2					1	1	
Switch Phase										
Minimum Initial (s)		6.0	6.0					6.0	6.0	
Minimum Split (s)		11.0	11.0					11.0	11.0	
Total Split (s)	0.0	40.0	40.0	0.0	0.0	0.0	0.0	40.0	40.0	0.0
Total Split (%)	0.0%	50.0%	50.0%	0.0%	0.0%	0.0%	0.0%	50.0%	50.0%	0.0%
Maximum Green (s)		35.0	35.0					35.0	35.0	
Yellow Time (s)		4.0	4.0					4.0	4.0	
All-Red Time (s)		1.0	1.0					1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	5.0	5.0	4.0	4.0	4.0	4.0	5.0	5.0	4.0
Lead/Lag		Lag	Lag					Lead	Lead	
Lead-Lag Optimize?		Yes	Yes					Yes	Yes	
Vehicle Extension (s)		3.0	3.0					3.0	3.0	
Recall Mode		Max	Max					C-Max	C-Max	
Act Effct Green (s)		35.0	35.0					35.0	35.0	
Actuated g/C Ratio		0.44	0.44					0.44	0.44	
v/c Ratio		0.30	0.54					0.38	0.46	
Control Delay		16.1	12.8					1.8	17.1	
Queue Delay		0.0	0.0					0.0	0.0	
Total Delay		16.1	12.8					1.8	17.1	
LOS		В	В					A	В	
Approach Delay		_	_						9.3	
Approach LOS									A	
Queue Length 50th (ft)		67	100					0	124	
Queue Length 95th (ft)		116	155					25	164	
Internal Link Dist (ft)	382	110	100	343		114		20	217	
Turn Bay Length (ft)	302			575		114			217	
Base Capacity (vph)		707	1370					1951	1532	
Starvation Cap Reductn		0	0					0	0	
Spillback Cap Reductn		0	0					0	0	
Storage Cap Reductin		0	0					0	0	
Reduced v/c Ratio		0.30	0.54					0.38	0.46	
Reduced MC Kallo		0.30	0.54					0.38	0.40	
Intersection Summary										
Area Type:	Other									
Cycle Length: 80										
Actuated Cycle Length: 80										
Offset: 7 (9%), Referenced to	phase 1:SW	/L, Start o	f Green							
Natural Cycle: 40		,								
Control Type: Actuated-Coord	dinated									
Maximum v/c Ratio: 0.54										
Intersection Signal Delay: 11.	0			Int	ersection	LOS: B				
Intersection Capacity Utilization						f Service F	1			
Analysis Period (min) 15				.0						
,										
Splits and Phases: 28: I-90	WR Off-Rar	nn & Was	hington Str	oot						
1			nington St	CCI						
4 01								-	🛋 ø2	
40 s								2	10 s	

	_	-*	\mathbf{r}	1	۲	•	ť	6	4	~
Movement	EBL	EBR	EBR2	NBL	NBR	NWL	NWR	SWL2	SWL	SWR
Lane Configurations		1	11					ካካ	ኘካ	
Volume (vph)	0	205	710	0	0	0	0	655	625	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0	5.0					5.0	5.0	.,
Lane Util, Factor		1.00	0.88					0.97	0.97	
Frt		0.85	0.85					1.00	1.00	
Flt Protected		1.00	1.00					0.95	0.95	
Satd. Flow (prot)		1615	2842					3502	3502	
Flt Permitted		1.00	1.00					0.95	0.95	
Satd. Flow (perm)		1615	2842					3502	3502	
\ (0.96	0.96	0.96	0.00	0.00	0.92	0.00	0.88		0.88
Peak-hour factor, PHF				0.92	0.92		0.92		0.88	
Adj. Flow (vph)	0	214	740	0	0	0	0	744	710	0
RTOR Reduction (vph)	0	0	127	0	0	0	0	419	0	0
Lane Group Flow (vph)	0	214	613	0	0	0	0	326	710	0
Heavy Vehicles (%)	0%	0%	0%	2%	2%	2%	2%	0%	0%	0%
Turn Type		custom	custom					custom		
Protected Phases		2	2					1	1	
Permitted Phases		2	2					1		
Actuated Green, G (s)		35.0	35.0					35.0	35.0	
Effective Green, g (s)		35.0	35.0					35.0	35.0	
Actuated g/C Ratio		0.44	0.44					0.44	0.44	
Clearance Time (s)		5.0	5.0					5.0	5.0	
Vehicle Extension (s)		3.0	3.0					3.0	3.0	
Lane Grp Cap (vph)		707	1243					1532	1532	
v/s Ratio Prot		0.13	c0.22					0.09	c0.20	
v/s Ratio Perm		0.15	CU.22					0.07	0.20	
v/c Ratio		0.30	0.49					0.21	0.46	
		14.6	16.1					14.0	15.9	
Uniform Delay, d1										
Progression Factor		1.00	1.00					1.00	1.00	
Incremental Delay, d2		1.1	1.4					0.3	1.0	
Delay (s)		15.7	17.5					14.3	16.9	
Level of Service		В	В					В	В	
Approach Delay (s)	17.1			0.0		0.0			15.5	
Approach LOS	В			А		А			В	
Intersection Summary										
HCM Average Control Delay			16.2	H	CM Level of	of Service			В	
HCM Volume to Capacity ratio			0.48							
Actuated Cycle Length (s)			80.0	Si	um of lost t	time (s)			10.0	
Intersection Capacity Utilization			Err%		U Level of				Н	
Analysis Period (min)			15							
c Critical Lano Croup			15							

c Critical Lane Group

	≯	-	*	4	+	•	•	Ť	1	1	Ŧ	1					
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	ø3	ø4	ø6	ø9	
Lane Configurations		^									† †						
Volume (vph)	0	915	0	0	0	0	0	0	0	0	285	0					
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900					
Satd. Flow (prot)	0	3610	0	0	0	0	0	0	0	0	3610	0					
Flt Permitted Satd. Flow (perm)	0	3610	0	0	0	0	0	0	0	0	3610	0					
Right Turn on Red	0	3010	Yes	U	0	Yes	0	0	Yes	Yes	3010	Yes					
Satd. Flow (RTOR)			103			103			103	103		103					
Link Speed (mph)		30			30			30			30						
Link Distance (ft)		163			219			298			150						
Travel Time (s)		3.7			5.0			6.8			3.4						
Peak Hour Factor	0.97	0.97	0.97	0.92	0.92	0.92	0.92	0.92	0.92	0.93	0.93	0.93					
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%					
Adj. Flow (vph) Shared Lane Traffic (%)	0	943	0	0	0	0	0	0	0	0	306	0					
Lane Group Flow (vph)	0	943	0	0	0	0	0	0	0	0	306	0					
Turn Type		710	0	0	0	0	Ū	Ū	Ū	0	000	Ū					
Protected Phases		2									349		3	4	6	9	
Permitted Phases																	
Detector Phase		2									34						
Switch Phase		(0											5.0		()		
Minimum Initial (s)		6.0											5.0	6.0	6.0	1.0 22.0	
Minimum Split (s) Total Split (s)	0.0	11.2 27.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	53.0	0.0	9.8 17.0	11.0 14.0	11.2 27.0	22.0	
Total Split (%)	0.0%	33.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	66.3%	0.0%	21%	14.0	34%	22.0	
Maximum Green (s)	0.070	21.8	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	00.070	0.070	12.2	9.0	21.8	20.0	
Yellow Time (s)		4.2											3.8	4.0	4.2	2.0	
All-Red Time (s)		1.0											1.0	1.0	1.0	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
Total Lost Time (s)	4.0	5.2	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.8	4.0					
Lead/Lag													Lead	Lag			
Lead-Lag Optimize? Vehicle Extension (s)		2.0											Yes 2.0	Yes 2.0	2.0	2.0	
Recall Mode		C-Max											None	None	C-Max	None	
Walk Time (s)		O Max											None	None	O Max	7.0	
Flash Dont Walk (s)																13.0	
Pedestrian Calls (#/hr)																0	
Act Effct Green (s)		38.8									31.2						
Actuated g/C Ratio		0.48									0.39						
v/c Ratio Control Delay		0.54 5.5									0.22 18.3						
Queue Delay		0.5									0.0						
Total Delay		6.0									18.3						
LOS		A									В						
Approach Delay		6.0									18.3						
Approach LOS		А									В						
Queue Length 50th (ft)		24									63						
Queue Length 95th (ft)		#56			100			010			57						
Internal Link Dist (ft) Turn Bay Length (ft)		83			139			218			70						
Base Capacity (vph)		1753									1335						
Starvation Cap Reductn		387									0						
Spillback Cap Reductn		0									0						
Storage Cap Reductn		0									0						
Reduced v/c Ratio		0.69									0.23						
Intersection Summary																	
/	Other																
Cycle Length: 80																	
Actuated Cycle Length: 80																	
Offset: 74 (93%), Referenced to	o phase 2:E	EBT and 6	SBR, Sta	rt of Greer	ı												
Natural Cycle: 80																	
Control Type: Actuated-Coordir Maximum v/c Ratio: 0.76	nated																
Intersection Signal Delay: 9.0				In	tersection	1 <u>05</u> · <u>A</u>											
Intersection Capacity Utilization	141.5%					f Service A	A										
Analysis Period (min) 15					5 200010	. 50. noo r											
 95th percentile volume exce Queue shown is maximum a 			may be lo	nger.													
Splits and Phases: 29: Wash	ington Stre	eet & I-90 I	EB On Rai	np	1#00						#07 #	20				#17 #20	
#27 #29					#29						#27 #				L	#27 #29	
→ → ø2					↓ ø	9					- 1	ø 3				\$~ ↓ @4	1
27 s					22 s						17 :					14 s	
#27 لد																	
₹ _ø6																	
27.8																	

	≯	-	\mathbf{r}	1	←	•	1	1	1	1	Ļ	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		^									† †		
Volume (vph)	0	915	0	0	0	0	0	0	0	0	285	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		5.2									4.8		
Lane Util. Factor		0.95									0.95		
Frt		1.00									1.00		
Flt Protected		1.00									1.00		
Satd. Flow (prot)		3610									3610		
Flt Permitted		1.00									1.00		
Satd. Flow (perm)		3610									3610		
Peak-hour factor, PHF	0.97	0.97	0.97	0.92	0.92	0.92	0.92	0.92	0.92	0.93	0.93	0.93	
Adj. Flow (vph)	0	943	0	0	0	0	0	0	0	0	306	0	
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0	
Lane Group Flow (vph)	0	943	0	0	0	0	0	0	0	0	306	0	
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Turn Type													
Protected Phases		2									349		
Permitted Phases													
Actuated Green, G (s)		38.9									30.9		
Effective Green, g (s)		38.9									30.9		
Actuated g/C Ratio		0.49									0.39		
Clearance Time (s)		5.2											
Vehicle Extension (s)		2.0											
Lane Grp Cap (vph)		1755									1394		
v/s Ratio Prot		c0.26									c0.08		
v/s Ratio Perm													
v/c Ratio		0.54									0.22		
Uniform Delay, d1		14.3									16.5		
Progression Factor		0.24									1.19		
Incremental Delay, d2		0.8									0.0		
Delay (s)		4.1									19.7		
Level of Service		А									В		
Approach Delay (s)		4.1			0.0			0.0			19.7		
Approach LOS		А			А			А			В		
Intersection Summary													
HCM Average Control Delay			7.9	H	CM Level of	of Service			А				
HCM Volume to Capacity ratio			0.40										
Actuated Cycle Length (s)			80.0	Si	um of lost	time (s)			10.0				
Intersection Capacity Utilization			41.5%	IC	U Level of	Service			А				
Analysis Period (min)			15										

c Critical Lane Group

	≯	+	*	4	Ļ	•	•	Ť	1	*	ţ	~		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	ø3	
Lane Configurations					\$		٦	4Î			\$			
Volume (vph)	0	0	0	5	0	5	15	620	5	10	550	5		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Lane Width (ft)	12 0	12	12 0	12 0	12	12 0	11 100	13	12 0	12 0	12	12 0		
Storage Length (ft) Storage Lanes	0		0	0		0	100		0	0		0		
Taper Length (ft)	25		25	25		25	25		25	25		25		
Satd. Flow (prot)	0	0	0	0	1728	0	1728	1942	0	0	1877	0		
Flt Permitted					0.976		0.950				0.989			
Satd. Flow (perm)	0	0	0	0	1728	0	1728	1942	0	0	1859	0		
Right Turn on Red			Yes			Yes			Yes			Yes		
Satd. Flow (RTOR)					7			1						
Link Speed (mph)		30			30			30			30			
Link Distance (ft)		123 2.8			166			282			224			
Travel Time (s) Peak Hour Factor	0.92	0.92	0.92	0.67	3.8 0.67	0.67	0.89	6.4 0.89	0.89	0.91	5.1 0.91	0.91		
Heavy Vehicles (%)	2%	2%	2%	0.07	0.07	0.07	1%	1%	1%	1%	1%	1%		
Adj. Flow (vph)	2 /0	2/0	0	7	0	7	17	697	6	11	604	5		
Shared Lane Traffic (%)	Ū	0	0	,	0	,	17	077	0		001	5		
Lane Group Flow (vph)	0	0	0	0	14	0	17	703	0	0	620	0		
Turn Type				Perm			Prot			Perm				
Protected Phases					4		1	6			2		3	
Permitted Phases				4						2				
Detector Phase				4	4		1	6		2	2			
Switch Phase														
Minimum Initial (s)				6.0	6.0		6.0	6.0		6.0	6.0		12.0	
Minimum Split (s)				11.0	11.0		11.0	15.0		15.0	15.0		20.0	
Total Split (s)	0.0	0.0	0.0	14.0	14.0	0.0	34.0	39.0	0.0	39.0	39.0	0.0	20.0	
Total Split (%) Maximum Green (s)	0.0%	0.0%	0.0%	13.1%	13.1% 10.0	0.0%	31.8%	36.4% 35.0	0.0%	36.4%	36.4% 35.0	0.0%	19% 16.0	
Yellow Time (s)				10.0 3.0	3.0		30.0 3.0	35.0		35.0 3.0	35.0		3.0	
All-Red Time (s)				1.0	1.0		1.0	1.0		1.0	1.0		1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		
Lead/Lag				Lag	Lag		Lead			Lag	Lag		Lead	
Lead-Lag Optimize?				Yes	Yes		Yes			Yes	Yes		Yes	
Vehicle Extension (s)				2.0	2.0		2.0	2.0		2.0	2.0		2.0	
Recall Mode				None	None		None	Min		Min	Min		None	
Walk Time (s)													5.0	
Flash Dont Walk (s)													11.0	
Pedestrian Calls (#/hr)					(0		(0	45.2			44.1		5	
Act Effct Green (s) Actuated g/C Ratio					6.9 0.14		6.9 0.14	45.2 0.92			44.1 0.90			
v/c Ratio					0.14		0.14	0.92			0.90			
Control Delay					21.1		25.9	3.9			6.1			
Queue Delay					0.0		0.0	0.0			0.0			
Total Delay					21.1		25.9	3.9			6.1			
LOS					С		С	А			А			
Approach Delay					21.1			4.4			6.1			
Approach LOS					С			А			А			
Queue Length 50th (ft)					1		3	0			0			
Queue Length 95th (ft)					16		30	310			373			
Internal Link Dist (ft)		43			86		100	202			144			
Turn Bay Length (ft) Base Capacity (uph)					408		100 1207	1847			1659			
Base Capacity (vph) Starvation Cap Reductn					408		1207	1847			1659			
Spillback Cap Reductn					0		0	0			0			
Storage Cap Reductn					0		0	0			0			
Reduced v/c Ratio					0.03		0.01	0.38			0.37			
Intersection Summary	Othor													
	Other													
Cycle Length: 107 Actuated Cycle Length: 48.9														
Natural Cycle: 70														
Control Type: Actuated-Uncoor	dinated													
Maximum v/c Ratio: 0.39	anatou													
Intersection Signal Delay: 5.4				In	tersection	LOS: A								
Intersection Capacity Utilization	n 48.9%				CU Level of		Ą							
Analysis Period (min) 15														
Splits and Phases: 12: Office	e Center Dri	ve & Grov	ve Street											
A												2		+-

▲ 01	₽ ₽ 2	∦ ≹ ø3	★ _{ø4}
34 s	39 s	20 s	14 s
† ø6			
39 s			

	۶	-	\mathbf{r}	1	-	•	1	Ť	1	1	Ŧ	1		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations					4		٦	4Î			4			
Volume (vph)	0	0	0	5	0	5	15	620	5	10	550	5		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Lane Width	12	12	12	12	12	12	11	13	12	12	12	12		
Total Lost time (s)					4.0		4.0	4.0			4.0			
Lane Util. Factor					1.00		1.00	1.00			1.00			
Frt					0.93		1.00	1.00			1.00			
Flt Protected					0.98		0.95	1.00			1.00			
Satd. Flow (prot)					1729		1728	1941			1877			
Flt Permitted					0.98		0.95	1.00			0.99			
Satd. Flow (perm)					1729		1728	1941			1858			
Peak-hour factor, PHF	0.92	0.92	0.92	0.67	0.67	0.67	0.89	0.89	0.89	0.91	0.91	0.91		
Adj. Flow (vph)	0	0	0	7	0	7	17	697	6	11	604	5		
RTOR Reduction (vph)	0	0	0	0	7	0	0	0	0	0	0	0		
Lane Group Flow (vph)	0	0	0	0	7	0	17	703	0	0	620	0		
Heavy Vehicles (%)	2%	2%	2%	0%	0%	0%	1%	1%	1%	1%	1%	1%		
Turn Type				Perm			Prot			Perm				
Protected Phases					4		1	6			2			
Permitted Phases				4						2				
Actuated Green, G (s)					0.7		0.7	44.6			39.9			
Effective Green, g (s)					0.7		0.7	44.6			39.9			
Actuated g/C Ratio					0.01		0.01	0.76			0.68			
Clearance Time (s)					4.0		4.0	4.0			4.0			
Vehicle Extension (s)					2.0		2.0	2.0			2.0			
Lane Grp Cap (vph)					21		21	1467			1257			
v/s Ratio Prot							0.01	c0.36						
v/s Ratio Perm					0.00						0.33			
v/c Ratio					0.34		0.81	0.48			0.49			
Uniform Delay, d1					28.9		29.1	2.8			4.6			
Progression Factor					1.00		1.00	1.00			1.00			
Incremental Delay, d2					3.5		104.9	0.1			0.1			
Delay (s)					32.4		133.9	2.8			4.8			
Level of Service					С		F	A			А			
Approach Delay (s)		0.0			32.4			5.9			4.8			
Approach LOS		А			С			А			А			
Intersection Summary													 	
HCM Average Control Delay			5.7	H	CM Level o	of Service			A					
HCM Volume to Capacity ratio			0.48											
Actuated Cycle Length (s)			59.0	Su	um of lost t	ime (s)			13.7					
Intersection Capacity Utilization			48.9%		U Level of				А					
Analysis Period (min)			15											
c Critical Lane Group														

	٦	+	\mathbf{F}	4	+	×	•	1	1	1	ŧ	~		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	ø2	
Lane Configurations		\$			\$			4			\$			
Volume (vph)	10	140	10	120	100	105	15	440	165	155	385	10		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Lane Width (ft)	12 0	16 2128	12 0	12 0	15 1964	12 0	12 0	16 2033	12 0	12 0	16 2096	12 0		
Satd. Flow (prot) Flt Permitted	U	0.972	U	U	0.816	0	0	0.983	0	U	0.607	0		
Satd. Flow (perm)	0	2074	0	0	1632	0	0	2001	0	0	1290	0		
Right Turn on Red			Yes			Yes			Yes			Yes		
Satd. Flow (RTOR)		4			30			29			2			
Link Speed (mph)		30			30			30			30			
Link Distance (ft)		598			316			168			222			
Travel Time (s)	0.92	13.6 0.92	0.92	0.91	7.2 0.91	0.91	0.91	3.8 0.91	0.91	0.93	5.0 0.93	0.93		
Peak Hour Factor Heavy Vehicles (%)	0.92	0.92	0.92	0.91	0.91	0.91	2%	2%	2%	0.93	0.93	0.93		
Adj. Flow (vph)	11	152	11	132	110	115	16	484	181	167	414	11		
Shared Lane Traffic (%)														
Lane Group Flow (vph)	0	174	0	0	357	0	0	681	0	0	592	0		
Turn Type	Perm			Perm			Perm			Perm				
Protected Phases		3		_	3			1			1		2	
Permitted Phases	3	2		3	-		1	4		1	4			
Detector Phase	3	3		3	3		1	1		1	1			
Switch Phase Minimum Initial (s)	17.0	17.0		17.0	17.0		30.0	30.0		30.0	30.0		15.0	
Minimum Initial (S) Minimum Split (S)	22.3	22.3		22.3	22.3		30.0	30.0		30.0	30.0		15.0	
Total Split (s)	22.3	22.3	0.0	22.3	22.3	0.0	35.2	35.2	0.0	35.2	35.2	0.0	17.0	
Total Split (%)	29.9%	29.9%	0.0%	29.9%	29.9%	0.0%	47.2%	47.2%	0.0%	47.2%	47.2%	0.0%	23%	
Maximum Green (s)	17.0	17.0		17.0	17.0		30.0	30.0		30.0	30.0		15.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0		2.0	
All-Red Time (s)	2.3	2.3		2.3	2.3		2.2	2.2		2.2	2.2		0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	5.3	5.3	4.0	5.3	5.3	4.0	5.2	5.2	4.0	5.2	5.2	4.0	1.00	
Lead/Lag Lead-Lag Optimize?							Lead Yes	Lead Yes		Lead Yes	Lead Yes		Lag Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0		3.0	
Recall Mode	Max	Max		Max	Max		Max	Max		Max	Max		None	
Walk Time (s)													7.0	
Flash Dont Walk (s)													8.0	
Pedestrian Calls (#/hr)													5	
Act Effct Green (s)		17.2			17.2			30.3			30.3			
Actuated g/C Ratio v/c Ratio		0.28 0.30			0.28 0.74			0.50 0.67			0.50 0.92			
Control Delay		19.9			31.5			17.1			39.2			
Queue Delay		0.0			0.0			0.0			0.0			
Total Delay		19.9			31.5			17.1			39.2			
LOS		В			С			В			D			
Approach Delay		19.9			31.5			17.1			39.2			
Approach LOS		В			С			В			D			
Queue Length 50th (ft)		44			99 #202			146			163			
Queue Length 95th (ft) Internal Link Dist (ft)		120 518			#303 236			#453 88			#519 142			
Turn Bay Length (ft)		510			200			00			142			
Base Capacity (vph)		588			482			1011			643			
Starvation Cap Reductn		0			0			0			0			
Spillback Cap Reductn		0			0			0			0			
Storage Cap Reductn		0			0			0			0			
Reduced v/c Ratio		0.30			0.74			0.67			0.92			
Intersection Summary														
Area Type:	Other													
Cycle Length: 74.5														
Actuated Cycle Length: 60.9														
Natural Cycle: 100 Control Type: Semi Act-Unco	ord													
Maximum v/c Ratio: 0.92														
Intersection Signal Delay: 27.				In	tersection	LOS: C								
Intersection Capacity Utilizati					CU Level o		-							
Analysis Period (min) 15														
# 95th percentile volume ex			may be lo	onger.										
Queue shown is maximum	n atter two cy	cles.												
Splits and Phases: 16: Cer	ntral Street &	Auburn S	treet											
-itt.								ړو ا∯≹					\$ _3	
▼1 ø1 35.2 s								.⊼.∎ ø2 17.∘	2				22.3 s	
00.2 0								11-5					122.U Ö	

	≯	-	\mathbf{r}	∢	-	•	•	1	1	1	Ŧ	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			\$			4			4		
Volume (vph)	10	140	10	120	100	105	15	440	165	155	385	10	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width	12	16	12	12	15	12	12	16	12	12	16	12	
Total Lost time (s)		5.3			5.3			5.2			5.2		
Lane Util, Factor		1.00			1.00			1.00			1.00		
Frt		0.99			0.96			0.96			1.00		
Flt Protected		1.00			0.98			1.00			0.99		
Satd. Flow (prot)		2128			1963			2033			2097		
Flt Permitted		0.97			0.82			0.98			0.61		
Satd. Flow (perm)		2076			1631			2001			1291		
Peak-hour factor, PHF	0.92	0.92	0.92	0.91	0.91	0.91	0.91	0.91	0.91	0.93	0.93	0.93	
Adj. Flow (vph)	11	152	11	132	110	115	16	484	181	167	414	11	
RTOR Reduction (vph)	0	3	0	0	22	0	0	15	0	0	1	0	
Lane Group Flow (vph)	0	171	0	0	335	0	0	666	0	0	591	0	
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	2%	2%	2%	1%	1%	1%	
Turn Type	Perm			Perm			Perm			Perm			
Protected Phases		3			3			1			1		
Permitted Phases	3			3			1			1			
Actuated Green, G (s)		17.2			17.2			30.3			30.3		
Effective Green, g (s)		17.2			17.2			30.3			30.3		
Actuated g/C Ratio		0.28			0.28			0.48			0.48		
Clearance Time (s)		5.3			5.3			5.2			5.2		
Vehicle Extension (s)		3.0			3.0			3.0			3.0		
Lane Grp Cap (vph)		571			449			970			626		
v/s Ratio Prot													
v/s Ratio Perm		0.08			c0.21			0.33			c0.46		
v/c Ratio		0.30			0.75			0.69			0.94		
Uniform Delay, d1		17.9			20.7			12.4			15.3		
Progression Factor		1.00			1.00			1.00			1.00		
Incremental Delay, d2		1.3			10.8			4.0			24.6		
Delay (s)		19.2			31.5			16.4			39.9		
Level of Service		В			С			В			D		
Approach Delay (s)		19.2			31.5			16.4			39.9		
Approach LOS		В			С			В			D		
Intersection Summary													
HCM Average Control Delay			27.3	HO	CM Level of	of Service			С				
HCM Volume to Capacity ratio			0.87										
Actuated Cycle Length (s)			62.5	Su	im of lost	time (s)			15.0				
Intersection Capacity Utilization			113.5%	IC	U Level of	Service			Н				
Analysis Period (min)			15										
c Critical Lane Group													

Lanes, Volumes, Timings
13: Auburn Street & Commonwealth Avenue

	٦	→	$\mathbf{\hat{z}}$	4	+	×	•	Ť	1	1	L,	ţ	~	≮	*	4		
Lane Group	EBL	EBT	EBR2	WBL	WBT	WBR	NBL	NBT	NBR	SBL2	SBL	SBT	SBR	NWL	NWR	NWR2	ø4	
Lane Configurations		4			4			4			2	4î		Y				
Volume (vph)	20	300	90	10	225	165	30	435	10	155	0	505	20	5	5	5		
Ideal Flow (vphpl) Storage Length (ft)	1900 0	1900	1900	1900 0	1900	1900 0	1900 0	1900	1900 0	1900	1900 30	1900	1900 0	1900 0	1900 0	1900		
Storage Lanes	0			0		0	0		0		1		0	1	0			
Taper Length (ft)	25			25		25	25		25		25		25	25	25			
Satd. Flow (prot)	0	1821	0	0	1774	0	0	1852	0	0	1770	1852	0	1704	0	0		
Flt Permitted	0	0.889	0	0	0.956	0	0	0.939	0	0	0.303	1050	0	0.981	0	0		
Satd. Flow (perm) Right Turn on Red	0	1622	0 Yes	0	1698	0 Yes	0	1744	0	0	564	1852	0 Yes	1704	0	0 Yes		
Satd. Flow (RTOR)		10	163		26	163						2	163	5		163		
Link Speed (mph)		30			30			30				30		30				
Link Distance (ft)		1184			376			1200				268		491				
Travel Time (s)		26.9			8.5			27.3				6.1		11.2				
Peak Hour Factor	0.82	0.82	0.82	0.86	0.86	0.86	0.92	0.92	0.92	0.95	0.95	0.95	0.95	0.55 0%	0.55	0.92 2%		
Heavy Vehicles (%) Adj. Flow (vph)	1% 24	1% 366	1% 110	1% 12	1% 262	1% 192	2% 33	2% 473	2% 11	2% 163	2% 0	2% 532	2% 21	0% 9	0% 9	2% 5		
Shared Lane Traffic (%)	24	300	110	12	202	172	33	475		105	0	552	21	7	7	5		
Lane Group Flow (vph)	0	500	0	0	466	0	0	517	0	0	163	553	0	23	0	0		
Turn Type	Perm			Perm			Perm			D.P+P	D.P+P							
Protected Phases		3			3			2		1	1	12		5			4	
Permitted Phases	3	-		3	-		2	-		2	2			-				
Detector Phase Switch Phase	3	3		3	3		2	2		1	1	12		5				
Switch Phase Minimum Initial (s)	10.0	10.0		10.0	10.0		15.0	15.0		10.0	10.0			4.0			15.0	
Minimum Split (s)	15.0	15.0		15.0	15.0		21.0	21.0		15.0	15.0			9.0			27.0	
Total Split (s)	30.0	30.0	0.0	30.0	30.0	0.0	41.0	41.0	0.0	15.0	15.0	56.0	0.0	9.0	0.0	0.0	27.0	
Total Split (%)	24.6%	24.6%	0.0%	24.6%	24.6%	0.0%	33.6%	33.6%	0.0%	12.3%	12.3%	45.9%	0.0%	7.4%	0.0%	0.0%	22%	
Maximum Green (s)	25.0	25.0		25.0	25.0		35.0	35.0		10.0	10.0			4.0			21.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0			4.0			4.0	
All-Red Time (s) Lost Time Adjust (s)	1.0 0.0	1.0 0.0	0.0	1.0 0.0	1.0 0.0	0.0	2.0 0.0	2.0 0.0	0.0	1.0 0.0	1.0 0.0	0.0	0.0	1.0 0.0	0.0	0.0	2.0	
Total Lost Time (s)	0.0 5.0	5.0	4.0	5.0	5.0	4.0	6.0	6.0	4.0	5.0	5.0	5.0	4.0	5.0	4.0	4.0		
Lead/Lag	Lead	Lead	1.0	Lead	Lead	1.0	Lag	Lag	1.0	Lead	Lead	0.0	1.0	0.0	1.0	1.0	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes						Yes	
Vehicle Extension (s)	4.0	4.0		4.0	4.0		5.0	5.0		4.0	4.0			3.0			5.0	
Recall Mode	Max	Max		Max	Max		Max	Max		Max	Max			None			None	
Walk Time (s)																	7.0 8.0	
Flash Dont Walk (s) Pedestrian Calls (#/hr)																	0.0 5	
Act Effct Green (s)		25.3			25.3			35.5			46.6	51.7		4.1			0	
Actuated g/C Ratio		0.27			0.27			0.38			0.50	0.55		0.04				
v/c Ratio		1.12			0.97			0.78			0.40	0.54		0.29				
Control Delay		113.8			70.2			37.8			16.2	18.3		50.4				
Queue Delay Total Delay		0.0 113.8			0.0 70.2			0.0 37.8			0.0 16.2	0.0 18.3		0.0 50.4				
LOS		F			70.2 E			37.8 D			10.2 B	10.3 B		50.4 D				
Approach Delay		113.8			70.2			37.8			D	17.8		50.4				
Approach LOS		F			E			D				В		D				
Queue Length 50th (ft)		~293			230			230			36	158		10				
Queue Length 95th (ft)		#621			#577			#607			121	451		24				
Internal Link Dist (ft) Turn Bay Length (ft)		1104			296			1120			30	188		411				
Base Capacity (vph)		446			478			660			411	1021		79				
Starvation Cap Reductn		0			0			000			0	0		0				
Spillback Cap Reductn		0			0			0			0	0		0				
Storage Cap Reductn		0			0			0			0	0		0				
Reduced v/c Ratio		1.12			0.97			0.78			0.40	0.54		0.29				
Intersection Summary																		
	Other																	
Cycle Length: 122																		
Actuated Cycle Length: 93.8																		
Natural Cycle: 150 Control Type: Actuated-Uncod	ordinated																	
Maximum v/c Ratio: 1.12	orunnateu																	
Intersection Signal Delay: 55.	4			In	tersection	LOS: E												
Intersection Capacity Utilization					U Level of		3											
Analysis Period (min) 15																		
 Volume exceeds capacity 			infinite.															
Queue shown is maximum # 95th percentile volume ex			may bo k	naor														
Queue shown is maximum			may be lo	nyei.														
Splits and Phases: 13: Aub		Commony	vealth Ave	enue														
l → ₀1 1	f ø2						ŀ	∽ ₀₅	*	ø3					🍂 🕺			
15 s 41								98	30 \$						27 s			

	≯	-	\mathbf{i}	4	-	•	1	1	۲	1	L.	Ŧ	~	*	*	4	
Movement	EBL	EBT	EBR2	WBL	WBT	WBR	NBL	NBT	NBR	SBL2	SBL	SBT	SBR	NWL	NWR	NWR2	
Lane Configurations		\$			\$			4			ä	f,		Y			
Volume (vph)	20	300	90	10	225	165	30	435	10	155	0	505	20	5	5	5	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		5.0			5.0			6.0			5.0	5.0		5.0			
Lane Util. Factor		1.00			1.00			1.00			1.00	1.00		1.00			
Frt		0.97			0.94			1.00			1.00	0.99		0.92			
Flt Protected		1.00			1.00			1.00			0.95	1.00		0.98			
Satd. Flow (prot)		1821			1774			1851			1770	1852		1703			
Flt Permitted		0.89			0.96			0.94			0.30	1.00		0.98			
Satd. Flow (perm)		1622			1698			1745			565	1852		1703			
Peak-hour factor, PHF	0.82	0.82	0.82	0.86	0.86	0.86	0.92	0.92	0.92	0.95	0.95	0.95	0.95	0.55	0.55	0.92	
Adj. Flow (vph)	24	366	110	12	262	192	33	473	11	163	0	532	21	9	9	5	
RTOR Reduction (vph)	0	8	0	0	20	0	0	0	0	0	0	1	0	5	0	0	
Lane Group Flow (vph)	0	492	0	0	446	0	0	517	0	0	163	552	0	18	0	0	
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	2%	2%	2%	2%	2%	2%	2%	0%	0%	2%	
Turn Type	Perm			Perm			Perm			D.P+P	D.P+P						
Protected Phases		3			3			2		1	1	12		5			
Permitted Phases	3			3			2			2	2						
Actuated Green, G (s)		25.3			25.3			35.5			45.6	50.6		1.4			
Effective Green, g (s)		25.3			25.3			35.5			45.6	50.6		1.4			
Actuated g/C Ratio		0.25			0.25			0.35			0.45	0.50		0.01			
Clearance Time (s)		5.0			5.0			6.0			5.0			5.0			
Vehicle Extension (s)		4.0			4.0			5.0			4.0			3.0			
Lane Grp Cap (vph)		404			422			609			373	921		23			
v/s Ratio Prot											0.04	c0.30		c0.01			
v/s Ratio Perm		c0.30			0.26			c0.30			0.15						
v/c Ratio		1.22			1.06			0.85			0.44	0.60		0.79			
Uniform Delay, d1		38.2			38.2			30.6			18.9	18.3		50.0			
Progression Factor		1.00			1.00			1.00			1.00	1.00		1.00			
Incremental Delay, d2		119.1			60.0			13.8			3.7	2.9		94.5			
Delay (s)		157.3			98.2			44.4			22.6	21.2		144.5			
Level of Service		F			F			D			С	С		F			
Approach Delay (s)		157.3			98.2			44.4				21.5		144.5			
Approach LOS		F			F			D				С		F			
Intersection Summary																	
HCM Average Control Delay			74.7	H	CM Level o	of Service			E								
HCM Volume to Capacity ratio			0.96														
Actuated Cycle Length (s)			101.7	Su	um of lost t	ime (s)			29.4								
Intersection Capacity Utilization			104.9%	IC	U Level of	Service			G								
Analysis Period (min)			15														
0.000																	

	٦	*	•	Ť	ţ	4	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	ø3
Lane Configurations	٢	1		-{th	≜ †≽		
Volume (vph)	460	10	5	1320	1095	485	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	0	50	0			0	
Storage Lanes Taper Length (ft)	1 25	1 25	0 25			0 25	
Satd. Flow (prot)	1805	1615	25	3610	3410	23	
Flt Permitted	0.950	1015	0	0.884	3410	0	
Satd. Flow (perm)	1805	1615	0	3191	3410	0	
Right Turn on Red		Yes				Yes	
Satd. Flow (RTOR)		4			86		
Link Speed (mph)	10			30	30		
Link Distance (ft)	1445			1829	884		
Travel Time (s)	98.5	0.00	0.93	41.6	20.1	0.95	
Peak Hour Factor Heavy Vehicles (%)	0.88 0%	0.88 0%	0.93	0.93 0%	0.95 1%	0.95	
Adj. Flow (vph)	523	11	5	1419	1153	511	
Shared Lane Traffic (%)	525		5	1417	1155	511	
Lane Group Flow (vph)	523	11	0	1424	1664	0	
Turn Type		Perm	Perm			-	
Protected Phases	4			2	2		3
Permitted Phases		4	2				
Detector Phase	4	4	2	2	2		
Switch Phase							
Minimum Initial (s)	6.0 20.8	6.0 20.8	6.0 21.3	6.0 21.3	6.0 21.3		1.0 26.0
Minimum Split (s) Total Split (s)	20.8	20.8	21.3	21.3	21.3	0.0	26.0
Total Split (%)	33.8%	33.8%	33.8%	33.8%	33.8%	0.0%	33%
Maximum Green (s)	22.2	22.2	21.7	21.7	21.7	0.070	24.0
Yellow Time (s)	3.8	3.8	4.2	4.2	4.2		2.0
All-Red Time (s)	1.0	1.0	1.1	1.1	1.1		0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.8	4.8	5.3	5.3	5.3	4.0	
Lead/Lag	Lag	Lag					Lead
Lead-Lag Optimize?	Yes	Yes	0.0				Yes
Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0		2.0
Recall Mode Walk Time (s)	None	None	C-Max	C-Max	C-Max		None 7.0
Flash Dont Walk (s)							17.0
Pedestrian Calls (#/hr)							0
Act Effct Green (s)	30.3	30.3		39.6	39.6		Ū
Actuated g/C Ratio	0.38	0.38		0.50	0.50		
v/c Ratio	0.77	0.02		0.90	0.96		
Control Delay	30.9	13.3		28.0	30.7		
Queue Delay	0.0	0.0		0.0	0.0		
Total Delay	30.9	13.3		28.0	30.7		
LOS Approach Dolou	C 20.6	В		C 20.0	C		
Approach Delay	30.6 C			28.0 C	30.7 C		
Approach LOS Queue Length 50th (ft)	224	2		322	209		
Queue Length 95th (ft)	#340	12		#478	#513		
Internal Link Dist (ft)	1365	12		1749	#313 804		
Turn Bay Length (ft)		50					
Base Capacity (vph)	683	614		1581	1732		
Starvation Cap Reductn	0	0		0	0		
Spillback Cap Reductn	0	0		0	0		
Storage Cap Reductn	0	0		0	0		
Reduced v/c Ratio	0.77	0.02		0.90	0.96		
Intersection Summary							
	Other						
Cycle Length: 80							
Actuated Cycle Length: 80							
Offset: 30 (38%), Referenced	to phase 2:1	VBSB, Sta	art of Gree	n			
Natural Cycle: 150							
Control Type: Actuated-Coord	inated						
Maximum v/c Ratio: 0.96	4			J	torcoolie	105-0	
Intersection Signal Delay: 29.6					tersection		
Intersection Capacity Utilization Analysis Period (min) 15	11 / 9. / %				CU Level of	Service D	
# 95th percentile volume exc	ceeds canac	tity, queue	may be l	onaer			
Queue shown is maximum	after two cv	cles.					
Splits and Phases: 26: Aub	urn Street &	Washingt	on Street				
↓↑ ₀2		5			ي 👫	_	
▼1 ø2					л.≞ ø;	3	

20

	≯	\mathbf{i}	1	1	ţ	
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1		41	41¢	
Volume (vph)	460	10	5	1320	1095	485
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.8	4.8		5.3	5.3	
Lane Util. Factor	1.00	1.00		0.95	0.95	
Frt	1.00	0.85		1.00	0.95	
Flt Protected	0.95	1.00		1.00	1.00	
Satd. Flow (prot)	1805	1615		3609	3410	
Flt Permitted	0.95	1.00		0.88	1.00	
Satd. Flow (perm)	1805	1615		3192	3410	
Peak-hour factor, PHF	0.88	0.88	0.93	0.93	0.95	0.95
Adj. Flow (vph)	523	11	5	1419	1153	511
RTOR Reduction (vph)	0	2	0	0	43	0
Lane Group Flow (vph)	523	9	0	1424	1621	0
Heavy Vehicles (%)	0%	0%	0%	0%	1%	1%
Turn Type		Perm	Perm			
Protected Phases	4			2	2	
Permitted Phases		4	2			
Actuated Green, G (s)	30.3	30.3		39.6	39.6	
Effective Green, g (s)	30.3	30.3		39.6	39.6	
Actuated g/C Ratio	0.38	0.38		0.50	0.50	
Clearance Time (s)	4.8	4.8		5.3	5.3	
Vehicle Extension (s)	2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	684	612		1580	1688	
v/s Ratio Prot	c0.29				c0.48	
v/s Ratio Perm		0.01		0.45		
v/c Ratio	0.76	0.01		0.90	0.96	
Uniform Delay, d1	21.7	15.5		18.4	19.4	
Progression Factor	1.00	1.00		1.00	1.00	
Incremental Delay, d2	4.6	0.0		8.7	11.1	
Delay (s)	26.3	15.5		27.1	30.6	
Level of Service	С	В		С	С	
Approach Delay (s)	26.1			27.1	30.6	
Approach LOS	С			С	С	
Intersection Summary						
HCM Average Control Delay			28.6	H	CM Level c	of Service
HCM Volume to Capacity ratio			0.88			
Actuated Cycle Length (s)			80.0		um of lost t	
Intersection Capacity Utilization			79.7%	IC	CU Level of	Service
Analysis Period (min)			15			
c Critical Lane Group						

	٦	+	*	4	t	×	•	Ť	1	*	ţ	~			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	ø6	ø9	
Lane Configurations		≜ †⊅						4			र्स	11			
Volume (vph)	0	1830	5	0	0	0	5	0	10	0	15	1755			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Satd. Flow (prot)	0	3610	0	0	0	0	0	1698	0	0	1900	2842			
Flt Permitted								0.303							
Satd. Flow (perm)	0	3610	0	0	0	0	0	523	0	0	1900	2842			
Right Turn on Red			Yes			Yes		47	Yes			Yes			
Satd. Flow (RTOR)		20			20			17			20	1828			
Link Speed (mph) Link Distance (ft)		30 884			30 163			30 529			30 423				
Travel Time (s)		884 20.1			3.7			529 12.0			423 9.6				
Peak Hour Factor	0.93	0.93	0.93	0.92	0.92	0.92	0.60	0.60	0.60	0.96	9.0 0.96	0.96			
Heavy Vehicles (%)	0.93	0.93	0.93	2%	2%	2%	0.00	0.00	0.00	0.90	0.90	0.90			
Adj. Flow (vph)	0/0	1968	5	270	2 /0	270	8	078	17	0 /0	16	1828			
Shared Lane Traffic (%)	0	1700	5	0	U	U	0	U	17	0	10	1020			
Lane Group Flow (vph)	0	1973	0	0	0	0	0	25	0	0	16	1828			
Turn Type		1770	Ū	0	Ū	Ū	Perm	20		Perm		custom			
Protected Phases		2						3			4	4 6	6	9	
Permitted Phases		_					3	-		4			-		
Detector Phase		2					3	3		4	4	46			
Switch Phase															
Minimum Initial (s)		6.0					5.0	5.0		6.0	6.0		6.0	1.0	
Minimum Split (s)		11.2					9.8	9.8		11.0	11.0		11.2	22.0	
Total Split (s)	0.0	24.0	0.0	0.0	0.0	0.0	17.0	17.0	0.0	17.0	17.0	41.0	24.0	22.0	
Total Split (%)	0.0%	30.0%	0.0%	0.0%	0.0%	0.0%	21.3%	21.3%	0.0%	21.3%	21.3%	51.3%	30%	28%	
Maximum Green (s)		18.8					12.2	12.2		12.0	12.0		18.8	20.0	
Yellow Time (s)		4.2					3.8	3.8		4.0	4.0		4.2	2.0	
All-Red Time (s)		1.0					1.0	1.0		1.0	1.0		1.0	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	4.0	5.2	4.0	4.0	4.0	4.0	4.8	4.8	4.0	5.0	5.0	5.0			
Lead/Lag							Lead	Lead		Lag	Lag				
Lead-Lag Optimize?							Yes	Yes		Yes	Yes				
Vehicle Extension (s)		2.0					2.0	2.0		2.0	2.0		2.0	2.0	
Recall Mode		C-Max					None	None		None	None		C-Max	None	
Walk Time (s)														7.0	
Flash Dont Walk (s)														13.0 0	
Pedestrian Calls (#/hr)		32.4						8.7			23.8	61.5		0	
Act Effct Green (s) Actuated g/C Ratio		52.4 0.40						0.7			23.8	01.5			
v/c Ratio		1.35						0.35			0.03	0.70			
Control Delay		181.8						32.3			16.3	2.5			
Queue Delay		47.7						0.0			0.0	0.2			
Total Delay		229.4						32.3			16.3	2.7			
LOS		F						С			В	A			
Approach Delay		229.4						32.3			2.8				
Approach LOS		F						С			А				
Queue Length 50th (ft)		~654						4			5	11			
Queue Length 95th (ft)		m#991						14			m6	22			
Internal Link Dist (ft)		804			83			449			343				
Turn Bay Length (ft)															
Base Capacity (vph)		1464						94			566	2607			
Starvation Cap Reductn		0						0			0	208			
Spillback Cap Reductn		107						0			0	0			
Storage Cap Reductn		0						0			0	0			
Reduced v/c Ratio		1.45						0.27			0.03	0.76			
Intersection Summary															
	Other														
Cycle Length: 80															
Actuated Cycle Length: 80															
Offset: 36 (45%), Referenced	to phase 2:E	EBT and 6	:SBR, Star	rt of Greer	1										
Natural Cycle: 120															
Control Type: Actuated-Coord	inated														
Maximum v/c Ratio: 1.35															
Intersection Signal Delay: 119					tersection										
Intersection Capacity Utilization	n 73.7%			IC	U Level o	f Service	D								
Analysis Period (min) 15															
 Volume exceeds capacity, 			infinite.												
Queue shown is maximum															
# 95th percentile volume exc	ceeds capac	tty, queue	may be lo	nger.											

4 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. M Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: #27 #29 27: Washington Street & Perkins Street #27 #29 ▲ ↓ ₂3 #27 #29 ٠ → a2 ø9 #27 J øθ

	≯	-	\mathbf{r}	•	←	•	1	1	1	1	Ŧ	-	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		≜ †⊅						\$			با	11	
Volume (vph)	0	1830	5	0	0	0	5	0	10	0	15	1755	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		5.2						4.8			5.0	5.0	
Lane Util. Factor		0.95						1.00			1.00	0.88	
Frt		1.00						0.91			1.00	0.85	
Flt Protected		1.00						0.98			1.00	1.00	
Satd. Flow (prot)		3609						1698			1900	2842	
Flt Permitted		1.00						0.30			1.00	1.00	
Satd. Flow (perm)		3609						524			1900	2842	
Peak-hour factor, PHF	0.93	0.93	0.93	0.92	0.92	0.92	0.60	0.60	0.60	0.96	0.96	0.96	
Adj. Flow (vph)	0	1968	5	0	0	0	8	0	17	0	16	1828	
RTOR Reduction (vph)	0	0	0	0	0	0	0	15	0	0	0	427	
Lane Group Flow (vph)	0	1973	0	0	0	0	0	10	0	0	16	1401	
Heavy Vehicles (%)	0%	0%	0%	2%	2%	2%	0%	0%	0%	0%	0%	0%	
Turn Type							Perm			Perm		custom	
Protected Phases		2						3			4	46	
Permitted Phases							3			4			
Actuated Green, G (s)		32.5						8.7			23.8	61.3	
Effective Green, g (s)		32.5						8.7			23.8	61.3	
Actuated g/C Ratio		0.41						0.11			0.30	0.77	
Clearance Time (s)		5.2						4.8			5.0		
Vehicle Extension (s)		2.0						2.0			2.0		
Lane Grp Cap (vph)		1466						57			565	2178	
v/s Ratio Prot		c0.55									0.01	c0.49	
v/s Ratio Perm								c0.02					
v/c Ratio		1.35						0.17			0.03	0.64	
Uniform Delay, d1		23.8						32.4			19.9	4.3	
Progression Factor		0.83						1.00			1.07	6.43	
Incremental Delay, d2		158.0						0.5			0.0	0.3	
Delay (s)		177.7						32.9			21.3	28.0	
Level of Service		F						С			С	С	
Approach Delay (s)		177.7			0.0			32.9			28.0		
Approach LOS		F			А			С			С		
Intersection Summary													
HCM Average Control Delay			104.9	H	CM Level	of Service			F				
HCM Volume to Capacity ratio			0.96										
Actuated Cycle Length (s)			80.0		um of lost				15.0				
Intersection Capacity Utilization			73.7%	IC	U Level of	f Service			D				
Analysis Period (min)			15										
a Critical Lana Craun													

			\mathbf{r}	•	۲	*	۲	6	4	*
Lane Group	EBL	EBR	EBR2	NBL	NBR	NWL	NWR	SWL2	SWL	SWR
Lane Configurations	EDL	EBR		INDL	NDK	INVVL	INVIK	<u></u> ካካ	500L	JANK
Volume (vph)	0	205	1035	0	0	0	0	330	735	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	1615	2842	0	0	0	0	3502	3502	0
Flt Permitted								0.950	0.950	
Satd. Flow (perm)	0	1615	2842	0	0	0	0	3502	3502	0
Right Turn on Red			Yes				Yes	Yes		Yes
Satd. Flow (RTOR)	20		90	20		20		384	20	
Link Speed (mph)	30			30 423		30 194			30 297	
Link Distance (ft) Travel Time (s)	462 10.5			423 9.6		194 4.4			297	
Peak Hour Factor	0.90	0.90	0.90	9.6 0.92	0.92	4.4 0.92	0.92	0.86	6.8 0.86	0.86
Heavy Vehicles (%)	0.90	0.90	0.90	2%	2%	2%	2%	0.86	0.86	0.86
Adj. Flow (vph)	0 /8	228	1150	2 /8	270	270	2 /0	384	855	0 / 0
Shared Lane Traffic (%)	0	220	1100	0	0	0	U	304	000	0
Lane Group Flow (vph)	0	228	1150	0	0	0	0	384	855	0
Turn Type		custom	custom	-	-			custom		
Protected Phases		2	2					1	1	
Permitted Phases		2	2					1		
Detector Phase		2	2					1	1	
Switch Phase										
Minimum Initial (s)		6.0	6.0					6.0	6.0	
Minimum Split (s)		11.0	11.0					11.0	11.0	
Total Split (s)	0.0	45.0	45.0	0.0	0.0	0.0	0.0	35.0	35.0	0.0
Total Split (%)	0.0%	56.3%	56.3%	0.0%	0.0%	0.0%	0.0%	43.8%	43.8%	0.0%
Maximum Green (s)		40.0	40.0					30.0	30.0	
Yellow Time (s)		4.0	4.0					4.0	4.0	
All-Red Time (s)		1.0	1.0					1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	5.0	5.0	4.0	4.0	4.0	4.0	5.0	5.0	4.0
Lead/Lag		Lag	Lag					Lead	Lead	
Lead-Lag Optimize?		Yes	Yes					Yes	Yes	
Vehicle Extension (s)		3.0	3.0					3.0	3.0	
Recall Mode		Max	Max					C-Max	C-Max	
Act Effct Green (s)		40.0	40.0					30.0	30.0	
Actuated g/C Ratio		0.50	0.50					0.38	0.38	
v/c Ratio		0.28	0.78					0.25	0.65	
Control Delay		12.8	19.8					2.4	23.5	
Queue Delay		0.0	0.0					0.0	0.0	
Total Delay		12.8	19.8					2.4	23.5	
LOS Approach Dolou		В	В					А	C	
Approach Delay									17.0	
Approach LOS		12	0.05					0	B	
Queue Length 50th (ft)		63	235					0	178	
Queue Length 95th (ft)	202	108	328	242		114		21	224	
Internal Link Dist (ft)	382			343		114			217	
Turn Bay Length (ft)		000	1/44					1650	1010	
Base Capacity (vph)		808	1466					1553	1313	
Starvation Cap Reductn		0	0					0 0	0	
Spillback Cap Reductn Storage Cap Reductn		0	0					0	0	
Reduced v/c Ratio		0.28	0.78					0.25	0.65	
Intersection Summary										
Area Type:	Other									
Cycle Length: 80										
Actuated Cycle Length: 80										
Offset: 57 (71%), Reference	ed to phase 1:	SWL, Star	t of Green							
Natural Cycle: 55										
Control Type: Actuated-Coo	ordinated									
Maximum v/c Ratio: 0.78										
Intersection Signal Delay: 1					ersection					
Intersection Capacity Utiliza	ation Err%					f Service H				
Analysis Period (min) 15										
Splits and Phases: 28: I-	90 WB Off-Rar	np & Was	hington Str	eet						
4 01										
V 0]							45 8	ø2		
300							43 \$			

		-*	\mathbf{r}	1	۲	*	ť	í,	¥	~
Movement	EBL	EBR	EBR2	NBL	NBR	NWL	NWR	SWL2	SWL	SWR
Lane Configurations		1	11					ኘ	ኘካ	
Volume (vph)	0	205	1035	0	0	0	0	330	735	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0	5.0					5.0	5.0	
Lane Util. Factor		1.00	0.88					0.97	0.97	
Frt		0.85	0.85					1.00	1.00	
Flt Protected		1.00	1.00					0.95	0.95	
Satd. Flow (prot)		1615	2842					3502	3502	
Flt Permitted		1.00	1.00					0.95	0.95	
Satd. Flow (perm)		1615	2842					3502	3502	
Peak-hour factor, PHF	0.90	0.90	0.90	0.92	0.92	0.92	0.92	0.86	0.86	0.86
Adj. Flow (vph)	0.90	228	1150	0.92	0.92	0.92	0.92	384	855	0.00
RTOR Reduction (vph)	0	0	45	0	0	0	0	240	0	0
Lane Group Flow (vph)	0	228	1105	0	0	0	0	144	855	0
Heavy Vehicles (%)	0%	0%	0%	2%	2%	2%	2%	0%	0%	0%
Turn Type			custom					custom		
Protected Phases		2	2					1	1	
Permitted Phases		2	2					1		
Actuated Green, G (s)		40.0	40.0					30.0	30.0	
Effective Green, g (s)		40.0	40.0					30.0	30.0	
Actuated g/C Ratio		0.50	0.50					0.38	0.38	
Clearance Time (s)		5.0	5.0					5.0	5.0	
Vehicle Extension (s)		3.0	3.0					3.0	3.0	
Lane Grp Cap (vph)		808	1421					1313	1313	
v/s Ratio Prot		0.14	c0.39					0.04	c0.24	
v/s Ratio Perm										
v/c Ratio		0.28	0.78					0.11	0.65	
Uniform Delay, d1		11.6	16.4					16.3	20.7	
Progression Factor		1.00	1.00					1.00	1.00	
Incremental Delay, d2		0.9	4.2					0.2	2.5	
Delay (s)		12.5	20.6					16.5	23.2	
Level of Service		12.0 B	20.0 C					B	C	
Approach Delay (s)	19.3	D	U	0.0		0.0		D	21.1	
Approach LOS	17.3 B			0.0 A		0.0 A			21.1 C	
Approach EOS	D			А		~			U	
Intersection Summary										
HCM Average Control Delay			20.1	H	CM Level of	of Service			С	
HCM Volume to Capacity ratio			0.72							
Actuated Cycle Length (s)			80.0	Su	um of lost t	time (s)			10.0	
Intersection Capacity Utilization			Err%	IC	U Level of	Service			Н	
Analysis Period (min)			15							
c Critical Lano Group										

	٦	+	*	4	Ļ	•	•	1	1	1	ţ	~					
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	ø3	ø4	ø6	ø9	
Lane Configurations		† †									† †						
Volume (vph)	0	965	0	0	0	0	0	0	0	0	295	0					
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900					
Satd. Flow (prot)	0	3610	0	0	0	0	0	0	0	0	3610	0					
Flt Permitted																	
Satd. Flow (perm)	0	3610	0	0	0	0	0	0	0	0	3610	0					
Right Turn on Red			Yes			Yes			Yes	Yes		Yes					
Satd. Flow (RTOR)																	
Link Speed (mph)		30			30			30			30						
ink Distance (ft)		163			219			298			150						
Fravel Time (s)		3.7			5.0			6.8			3.4						
Peak Hour Factor	0.93	0.93	0.93	0.92	0.92	0.92	0.92	0.92	0.92	0.96	0.96	0.96					
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%					
Adj. Flow (vph)	0	1038	0	0	0	0	0	0	0	0	307	0					
Shared Lane Traffic (%)																	
ane Group Flow (vph)	0	1038	0	0	0	0	0	0	0	0	307	0					
urn Type																	
Protected Phases		2									349		3	4	6	9	
Permitted Phases																	
Detector Phase		2									34						
Switch Phase																	
/linimum Initial (s)		6.0											5.0	6.0	6.0	1.0	
/linimum Split (s)		11.2											9.8	11.0	11.2	22.0	
Fotal Split (s)	0.0	24.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	56.0	0.0	17.0	17.0	24.0	22.0	
otal Split (%)	0.0%	30.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	70.0%	0.0%	21%	21%	30%	28%	
/laximum Green (s)		18.8											12.2	12.0	18.8	20.0	
'ellow Time (s)		4.2											3.8	4.0	4.2	2.0	
II-Red Time (s)		1.0											1.0	1.0	1.0	0.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
otal Lost Time (s)	4.0	5.2	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.8	4.0					
.ead/Lag													Lead	Lag			
.ead-Lag Optimize?													Yes	Yes			
/ehicle Extension (s)		2.0											2.0	2.0	2.0	2.0	
Recall Mode		C-Max											None	None	C-Max	None	
Walk Time (s)																7.0	
Flash Dont Walk (s)																13.0	
Pedestrian Calls (#/hr)																0	
Act Effct Green (s)		32.4									37.6						
Actuated g/C Ratio		0.40									0.47						
//c Ratio		0.71									0.18						
Control Delay		11.9									14.0						
Queue Delay		36.3									0.0						
Fotal Delay		48.3									14.0						
.OS		D									В						
Approach Delay		48.3									14.0						
Approach LOS		D									В						
Queue Length 50th (ft)		33									63						
Queue Length 95th (ft)		m45									33						
nternal Link Dist (ft)		83			139			218			70						
urn Bay Length (ft)																	
Base Capacity (vph)		1464									1632						
Starvation Cap Reductn		491									0						
pillback Cap Reductn		0									0						
torage Cap Reductn		0									0						
educed v/c Ratio		1.07									0.19						
ntersection Summary																	
rea Type:	Other																
Cycle Length: 80	Juiol																
Actuated Cycle Length: 80																	
Offset: 36 (45%), Referenced	to phase 2.1	FRT and 4	SRR Stor	t of Groom													
Vatural Cycle: 120	a to pridse 2:1		JDR, SIdi	tor Green													
Control Type: Actuated-Coor	hoted																
/aximum v/c Ratio: 1.35	uillateu																
ntersection Signal Delay: 40	4			l mi	orcoction												
ntersection Signal Delay: 40 ntersection Capacity Utilizat					tersection												
ntersection Capacity Utilizat Analysis Period (min) 15	1011 43.2%			IC	U LEVEL OF	Service A											
m Volume for 95th percent																	

m Volume for 95th percentile queue is metered by upstream signal.

	eet & I-90 EB On Ramp			
#27 #29	#29	#27 #29	#27 #29	
→ → ø2	↓ ø9	≪↑ 🖌 ₂3	\$ 4 ø4	
24 s	22 s	17 s	17 s	
#27				
√ ø6				
24 s				

	۶	-	\mathbf{r}	1	-	×	1	Ť	1	1	Ļ	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		^									††		
Volume (vph)	0	965	0	0	0	0	0	0	0	0	295	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		5.2									4.8		
Lane Util. Factor		0.95									0.95		
Frt		1.00									1.00		
Flt Protected		1.00									1.00		
Satd. Flow (prot)		3610									3610		
Flt Permitted		1.00									1.00		
Satd. Flow (perm)		3610									3610		
Peak-hour factor, PHF	0.93	0.93	0.93	0.92	0.92	0.92	0.92	0.92	0.92	0.96	0.96	0.96	
Adj. Flow (vph)	0	1038	0	0	0	0	0	0	0	0	307	0	
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0	
Lane Group Flow (vph)	0	1038	0	0	0	0	0	0	0	0	307	0	
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Turn Type													
Protected Phases		2									349		
Permitted Phases													
Actuated Green, G (s)		32.5									37.3		
Effective Green, g (s)		32.5									37.3		
Actuated g/C Ratio		0.41									0.47		
Clearance Time (s)		5.2											
Vehicle Extension (s)		2.0											
Lane Grp Cap (vph)		1467									1683		
v/s Ratio Prot		c0.29									c0.09		
v/s Ratio Perm													
v/c Ratio		0.71									0.18		
Uniform Delay, d1		19.8									12.5		
Progression Factor		0.32									1.24		
Incremental Delay, d2		0.3									0.0		
Delay (s)		6.6									15.5		
Level of Service		А									В		
Approach Delay (s)		6.6			0.0			0.0			15.5		
Approach LOS		А			А			А			В		
Intersection Summary													
HCM Average Control Delay			8.6	H	CM Level of	of Service			А				
HCM Volume to Capacity ratio			0.43										
Actuated Cycle Length (s)			80.0	Si	um of lost t	time (s)			10.0				
Intersection Capacity Utilization			43.2%	IC	U Level of	Service			А				
Analysis Period (min)			15										

	۶	-	\mathbf{i}	•	←	×.	1	Ť	1	4	ŧ	~	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations			1		\$			4Î			र्भ		
Volume (veh/h)	0	0	15	10	0	5	0	905	5	5	495	0	
Sign Control		Stop			Stop			Free			Free		
Grade		0%			0%			0%			0%		
Peak Hour Factor	0.92	0.92	0.88	0.88	0.88	0.88	0.80	0.80	0.80	0.97	0.97	0.97	
Hourly flow rate (vph)	0	0	17	11	0	6	0	1131	6	5	510	0	
Pedestrians													
Lane Width (ft)													
Walking Speed (ft/s)													
Percent Blockage													
Right turn flare (veh)													
Median type								None			None		
Median storage veh)													
Upstream signal (ft)											282		
pX, platoon unblocked	0.76	0.76	0.76	0.76	0.76		0.76						
vC, conflicting volume	1661	1658	510	1672	1655	1134	510			1138			
vC1, stage 1 conf vol													
vC2, stage 2 conf vol													
vCu, unblocked vol	1712	1709	192	1727	1705	1134	192			1138			
tC, single (s)	7.2	6.6	6.3	7.1	6.5	6.2	4.1			4.1			
tC, 2 stage (s)													
tF (s)	3.6	4.1	3.4	3.5	4.0	3.3	2.2			2.2			
p0 queue free %	100	100	97	78	100	98	100			99			
cM capacity (veh/h)	51	66	633	52	69	249	1050			614			
Direction, Lane #	EB 1	WB 1	NB 1	SB 1									
Volume Total	17	17	1138	515									
Volume Left	0	11	0	5									
Volume Right	17	6	6	0									
cSH	633	70	1700	614									
Volume to Capacity	0.03	0.24	0.67	0.01									
Queue Length 95th (ft)	2	21	0	1									
Control Delay (s)	10.8	72.2	0.0	0.2									
Lane LOS	В	F		А									
Approach Delay (s)	10.8	72.2	0.0	0.2									
Approach LOS	В	F											
Intersection Summary													
Average Delay			0.9										
Intersection Capacity Utilization			57.9%	IC	U Level of	Service			В				
Analysis Period (min)			15										

	۶	-	\mathbf{r}	4	←	•	1	1	1	1	ŧ	∢		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations		\$			\$			4			\$			
Volume (veh/h)	5	0	0	5	5	5	45	580	20	5	505	60		
Sign Control		Stop			Stop			Free			Free			
Grade		0%			0%			0%			0%			
Peak Hour Factor	0.63	0.63	0.63	0.58	0.58	0.58	0.77	0.77	0.77	0.97	0.97	0.97		
Hourly flow rate (vph)	8	0	0	9	9	9	58	753	26	5	521	62		
Pedestrians														
Lane Width (ft)														
Walking Speed (ft/s)														
Percent Blockage														
Right turn flare (veh)														
Median type								None			None			
Median storage veh)														
Upstream signal (ft)								224						
pX, platoon unblocked	0.80	0.80		0.80	0.80	0.80				0.80				
vC, conflicting volume	1458	1458	552	1445	1476	766	582			779				
vC1, stage 1 conf vol														
vC2, stage 2 conf vol														
vCu, unblocked vol	1447	1447	552	1431	1470	583	582			599				
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1				
tC, 2 stage (s)														
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2				
p0 queue free %	90	100	100	90	91	98	94			99				
cM capacity (veh/h)	77	99	538	86	96	413	997			786				
Direction, Lane #	EB 1	WB 1	NB 1	SB 1										
Volume Total	8	26	838	588										
Volume Left	8 8	26	838 58	588										
Volume Right	0 0	9	26	62										
cSH	77	123	20 997	786										
Volume to Capacity	0.10	0.21	0.06	0.01										
Queue Length 95th (ft)	0.10	0.21	0.06	0.01										
Control Delay (s)	8 57.4	42.0	5 1.5	0.2										
Lane LOS	57.4 F	42.0 E	1.5 A	0.2 A										
	F 57.4	42.0	A 1.5	0.2										
Approach Delay (s)	57.4 F	42.0 F	1.5	0.2										
Approach LOS	F	E											 	
Intersection Summary														
Average Delay			2.0											
Intersection Capacity Utilization			71.6%	IC	U Level of	Service			С					
Analysis Period (min)			15											

	≯	~	•	t	Ļ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	2011		د	4	2.511
Volume (veh/h)	0	25	60	530	540	70
Sign Control	Stop	23		Free	Free	.5
Grade	0%			0%	0%	
Peak Hour Factor	0.61	0.61	0.76	0.76	0.88	0.88
Hourly flow rate (vph)	0	41	79	697	614	80
Pedestrians	v		.,	077	0	
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				None	None	
Upstream signal (ft)				1042		
pX, platoon unblocked	0.86			1012		
vC, conflicting volume	1509	653	693			
vC1, stage 1 conf vol	1007	000	0,0			
vC2, stage 2 conf vol						
vCu, unblocked vol	1510	653	693			
tC, single (s)	6.5	6.3	4.1			
tC, 2 stage (s)	0.0	0.0	1.1			
tF (s)	3.6	3.4	2.2			
p0 queue free %	100	91	91			
cM capacity (veh/h)	100	460	907			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	41	776	693			
Volume Left	0	79	0			
Volume Right	41	0	80			
cSH	460	907	1700			
Volume to Capacity	0.09	0.09	0.41			
Queue Length 95th (ft)	7	7	0			
Control Delay (s)	13.6	2.2	0.0			
Lane LOS	В	А				
Approach Delay (s)	13.6	2.2	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			1.5			
Intersection Capacity Utilization			77.2%	IC	U Level of	Service
Analysis Period (min)			15			

≯	-	\mathbf{r}	1	+	•	•	1	1	1	Ŧ	1
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	¢			¢			\$			\$	
	Stop			Stop			Stop			Stop	
10	85	70	85	55	25	10	450	65	40	455	0
0.70	0.70	0.70	0.86	0.86	0.86	0.84	0.84	0.84	0.93	0.93	0.93
14	121	100	99	64	29	12	536	77	43	489	0
EB 1	WB 1	NB 1	SB 1								
236	192	625	532								
14	99	12	43								
100	29	77	0								
-0.24	0.05	-0.05	0.03								
		6.9									
			75.8								
С	С	F	F								
		82.2									
		F									
		74.1%	IC	U Level of	Service			D			
		15									
	10 0.70 14 EB 1 236 14 100 -0.24 7.9 0.52 437 19.0 19.0	↓ Stop 10 85 0.70 0.70 14 121 EB1 WB1 236 192 14 99 100 29 -0.24 0.05 7.9 8.4 0.52 0.45 437 415 19.0 17.9 19.0 17.9	Stop 10 85 70 0.70 0.70 0.70 14 121 100 EB1 WB 1 NB 1 236 192 625 14 99 12 100 29 77 -0.24 0.05 -0.05 7.9 8.4 6.9 0.52 0.45 1.20 437 415 527 19.0 17.9 131.3 19.0 17.9 131.3 C C F 82.2 F 74.1%	↓ Stop 10 85 70 85 0.70 0.70 0.70 0.86 14 121 100 99 EB 1 WB 1 NB 1 SB 1 236 192 625 532 14 99 12 43 100 29 77 0 -0.24 0.05 -0.05 0.03 7.9 8.4 6.9 7.0 0.52 0.45 1.20 1.04 437 415 527 518 19.0 17.9 131.3 75.8 C C F F 82.2 F 74.1% IC	Image: Stop Stop Stop 10 85 70 85 55 0.70 0.70 0.70 0.86 0.86 14 121 100 99 64 EB1 WB1 NB1 SB1 236 192 625 532 14 99 12 43 100 29 77 0 -0.24 0.05 -0.05 0.03 7.9 8.4 6.9 7.0 0.52 0.45 1.20 1.04 437 415 527 518 19.0 17.9 131.3 75.8 C C F F 82.2 F 74.1% ICU Level of	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c c c c c c } \hline \mathbf{A} & \mathbf{A} & \mathbf{Stop} & \mathbf{C} & \mathbf{F} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{F} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{F} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{F} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{F} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{F} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{F} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{F} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{F} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{F} & \mathbf{C} & $\mathbf{C}$$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

	۶	-	\mathbf{r}	4	-	•	•	Ť	1	\mathbf{b}	ŧ	4		
Vovement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations			1		\$			ę.			ا			
Volume (veh/h)	0	0	285	5	0	0	0	640	5	5	550	0		
Sign Control		Stop			Stop			Free			Free			
Grade		0%			0%			0%			0%			
Peak Hour Factor	0.77	0.77	0.77	0.42	0.42	0.42	0.89	0.89	0.89	0.90	0.90	0.90		
Hourly flow rate (vph)	0	0	370	12	0	0	0	719	6	6	611	0		
Pedestrians														
ane Width (ft)														
Walking Speed (ft/s)														
Percent Blockage														
Right turn flare (veh)														
Vedian type								None			None			
Median storage veh)														
Jpstream signal (ft)											282			
X, platoon unblocked	0.83	0.83	0.83	0.83	0.83		0.83							
C, conflicting volume	1344	1347	611	1714	1344	722	611			725				
C1, stage 1 conf vol														
C2, stage 2 conf vol														
/Cu, unblocked vol	1312	1315	425	1759	1312	722	425			725				
C, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1				
C, 2 stage (s)														
F (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2				
00 queue free %	100	100	29	26	100	100	100			99				
M capacity (veh/h)	113	131	524	16	132	430	942			883				
Direction, Lane #	EB 1	WB 1	NB 1	SB 1										
/olume Total	370	12	725	617										
/olume Left	0	12	0	6										
/olume Right	370	0	6	0										
:SH	524	16	1700	883										
/olume to Capacity	0.71	0.74	0.43	0.01										
Queue Length 95th (ft)	140	47	0.45	0.01										
Control Delay (s)	26.7	447.2	0.0	0.2										
ane LOS	20.7 D	-++7.2 F	0.0	0.2 A										
Approach Delay (s)	26.7	447.2	0.0	0.2										
Approach LOS	20.7 D	F	0.0	0.2										
Intersection Summary	U	'											 	
Average Delay			8.9											
Intersection Capacity Utilization			8.9 60.2%	10	U Level of	Sonvice			В					
			60.2% 15	IC	O LEVELO	Service			В					
Analysis Period (min)			15											

	۶	-	\mathbf{r}	4	←	•	•	Ť	1	1	ŧ	<		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations		\$			\$			4			\$			
Volume (veh/h)	85	5	15	15	0	5	0	615	10	5	535	5		
Sign Control		Stop			Stop			Free			Free			
Grade		0%			0%			0%			0%			
Peak Hour Factor	0.87	0.87	0.87	0.61	0.61	0.61	0.87	0.87	0.87	0.92	0.92	0.92		
Hourly flow rate (vph)	98	6	17	25	0	8	0	707	11	5	582	5		
Pedestrians														
Lane Width (ft)														
Walking Speed (ft/s)														
Percent Blockage														
Right turn flare (veh)														
Median type								None			None			
Vedian storage veh)														
Jpstream signal (ft)								224						
X, platoon unblocked	0.84	0.84		0.84	0.84	0.84				0.84				
/C, conflicting volume	1316	1313	584	1328	1310	713	587			718				
VC1, stage 1 conf vol														
/C2, stage 2 conf vol														
/Cu, unblocked vol	1280	1277	584	1294	1274	560	587			567				
C, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1				
C, 2 stage (s)														
F (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2				
p0 queue free %	17	96	97	77	100	98	100			99				
cM capacity (veh/h)	118	140	515	107	137	437	993			846				
Direction, Lane #	EB 1	WB 1	NB 1	SB 1										
/olume Total	121	33	718	592										
Volume Left	98	25	0	5										
Volume Right	17	8	11	5										
SH	133	132	993	846										
Volume to Capacity	0.90	0.25	0.00	0.01										
Queue Length 95th (ft)	149	23	0	0										
Control Delay (s)	117.4	41.0	0.0	0.2										
ane LOS	F	E		A										
Approach Delay (s)	117.4	41.0	0.0	0.2										
Approach LOS	F	E												
Intersection Summary													 	
Average Delay			10.7											
Intersection Capacity Utilization			46.4%	IC	U Level of	Service			А					
Analysis Period (min)			15											
			.5											

	≯	1	•	t	Ļ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	LDI	NDL	A		JUK
Volume (veh/h)	5	45	65	625	520	25
Sign Control	Stop	40	00	Free	Free	20
Grade	0%			0%	0%	
Peak Hour Factor	0.75	0.75	0.86	0.86	0%	0.87
Hourly flow rate (vph)	0.75	60	0.80	727	598	29
Pedestrians	1	00	70	121	090	29
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)				••		
Median type				None	None	
Median storage veh)						
Upstream signal (ft)				1042		
pX, platoon unblocked	0.93					
vC, conflicting volume	1490	612	626			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1489	612	626			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	94	88	92			
cM capacity (veh/h)	118	497	960			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	67	802	626			_
Volume Lotal Volume Left	6/	802 76	626 0			
Volume Right	60	0	29			
cSH	376	960	1700			
Volume to Capacity	0.18	0.08	0.37			
Queue Length 95th (ft)	16	6	0			
Control Delay (s)	16.6	2.0	0.0			
Lane LOS	С	A				
Approach Delay (s)	16.6	2.0	0.0			
Approach LOS	С					
Intersection Summary						
Average Delay			1.8			
Intersection Capacity Utilization			78.7%	IC	U Level of	Service
Analysis Period (min)			15			

	≯	-	\mathbf{r}	4	+	•	•	1	1	1	Ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		÷			¢			\$			¢	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	10	110	40	50	50	40	30	520	80	40	450	10
Peak Hour Factor	0.76	0.76	0.76	0.90	0.90	0.90	0.90	0.90	0.90	0.89	0.89	0.89
Hourly flow rate (vph)	13	145	53	56	56	44	33	578	89	45	506	11
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	211	156	700	562								
Volume Left (vph)	13	56	33	45								
Volume Right (vph)	53	44	89	11								
Hadj (s)	-0.12	-0.05	-0.03	0.02								
Departure Headway (s)	7.8	8.1	6.6	6.6								
Degree Utilization, x	0.45	0.35	1.28	1.03								
Capacity (veh/h)	442	426	558	547								
Control Delay (s)	17.1	15.4	158.8	72.7								
Approach Delay (s)	17.1	15.4	158.8	72.7								
Approach LOS	С	С	F	F								
Intersection Summary												
Delay			97.0									
HCM Level of Service			F									
Intersection Capacity Utilization			66.4%	IC	U Level of	Service			С			
Analysis Period (min)			15									

	٦	7	1	Ť	Ļ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	٢	1	٢	1	1	1
Volume (vph)	80	135	80	825	395	125
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Grade (%)	0%			0%	1%	
Storage Length (ft)	0	0	125			200
Storage Lanes	1	1	1			1
Taper Length (ft)	25	25	25	1001	1050	25
Satd. Flow (prot)	1641	1468	1787	1881	1853	1575
Flt Permitted	0.950 1641	1440	0.347 653	1001	1853	1575
Satd. Flow (perm) Right Turn on Red	1041	1468 Yes	003	1881	1823	1575 Yes
		147				136
Satd. Flow (RTOR) Link Speed (mph)	30	147		30	30	130
Link Distance (ft)	236			30 1342	2037	
Travel Time (s)	236			30.5	46.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	10%	10%	1%	1%	2%	2%
Adj. Flow (vph)	87	147	87	897	429	136
Shared Lane Traffic (%)	07	147	07	071	429	130
Lane Group Flow (vph)	87	147	87	897	429	136
Turn Type	07	pm+ov	pm+pt	577	727	pm+ov
Protected Phases	4	pin+0v 5	pin+pi 5	2	6	4
Permitted Phases		4	2	2	0	4
Detector Phase	4	5	5	2	6	4
Switch Phase		5	5	2	0	,
Minimum Initial (s)	6.0	6.0	6.0	10.0	10.0	6.0
Minimum Split (s)	20.0	11.0	11.0	20.0	20.0	20.0
Total Split (s)	20.0	11.0	11.0	40.0	29.0	20.0
Total Split (%)	33.3%	18.3%	18.3%	66.7%	48.3%	33.3%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag		Lead	Lead		Lag	
Lead-Lag Optimize?		Yes	Yes		Yes	
Recall Mode	None	None	None	None	None	None
Act Effct Green (s)	9.2	17.0	27.3	29.8	22.1	31.7
Actuated g/C Ratio	0.21	0.40	0.63	0.69	0.51	0.74
v/c Ratio	0.25	0.22	0.14	0.69	0.45	0.11
Control Delay	20.8	3.6	4.5	10.3	13.0	0.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	20.8	3.6	4.5	10.3	13.0	0.8
LOS	С	А	А	В	В	А
Approach Delay	10.0			9.8	10.0	
Approach LOS	А			А	В	
Queue Length 50th (ft)	22	0	8	144	90	0
Queue Length 95th (ft)	58	27	23	324	175	9
Internal Link Dist (ft)	156			1262	1957	
Turn Bay Length (ft)			125			200
Base Capacity (vph)	700	668	607	1456	1100	1319
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.12	0.22	0.14	0.62	0.39	0.10
Intersection Summary						
Area Type:	Other					
Cycle Length: 60	otho					
Actuated Cycle Length: 43						
Natural Cycle: 60						
Control Type: Semi Act-Unc	oord					
Maximum v/c Ratio: 0.69	Joona					
Intersection Signal Delay: 9.	9			In	itersection	10S·A
Intersection Capacity Utilizat	tion 56 8%					of Service E
Analysis Period (min) 15				IC.		. GOI VIGE L
r maryois r chou (min) 15						
Splits and Phases: 10: Riv	Verside MRTA	Drivoway	v & Grove	Street		
	VOLDING IND TH	, Driveway	J & GIUVE	JUCCI		
↑↑ _{ø2}						
10						

↑ ^{®2}		2 4 04	
40 s		20 s	
♠ ø5	φ 6		
11 s	29 s		

	≯	~	1	t	ţ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u>EDL</u>		NDL		<u></u>	
Volume (vph)	80	135	80	825	395	125
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Grade (%)	0%	1700	1700	0%	1%	1700
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.85	1.00	1.00	1.00	0.85
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00
Satd. Flow (prot)	1641	1468	1787	1881	1853	1575
Flt Permitted	0.95	1.00	0.35	1.00	1.00	1.00
Satd. Flow (perm)	1641	1468	653	1881	1853	1575
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	87	147	87	897	429	136
RTOR Reduction (vph)	0	113	0	097	429	58
Lane Group Flow (vph)	87	34	87	897	429	78
Heavy Vehicles (%)	10%	10%	1%	1%	2%	2%
Turn Type	1070		pm+pt	170	270	pm+ov
Protected Phases	4	pm+ov 5	pm+pt 5	2	6	p111+0V 4
Permitted Phases	4	5 4	2	2	0	4
Actuated Green, G (s)	6.1	10.3	28.7	28.7	19.5	25.6
Effective Green, g (s)	6.1	10.3	28.7	28.7	19.5	25.6
Actuated g/C Ratio	0.14	0.23	0.64	0.64	0.44	0.57
Clearance Time (s)	0.14 5.0	0.23	0.64 5.0	0.64 5.0	0.44	0.57
Vehicle Extension (s)	5.0 3.0	5.0 3.0	5.0 3.0	5.0 3.0	5.0 3.0	5.0 3.0
Lane Grp Cap (vph)	223	501	525	1205	807	1076
v/s Ratio Prot v/s Ratio Perm	c0.05	0.01 0.02	0.02 0.09	c0.48	0.23	0.01
	0.20			0.74	0.50	0.04
v/c Ratio	0.39	0.07	0.17	0.74	0.53	0.07
Uniform Delay, d1	17.7	13.5	3.8	5.5	9.3	4.3
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.1	0.1	0.1	2.5	0.7	0.0
Delay (s)	18.8	13.6	4.0	8.1	10.0	4.3
Level of Service	B	В	А	A	A	А
Approach Delay (s)	15.5			7.7	8.6	
Approach LOS	В			A	А	
Intersection Summary						
HCM Average Control Delay			9.0	HO	CM Level	of Service
HCM Volume to Capacity ratio			0.68			
Actuated Cycle Length (s)			44.8	Su	um of lost	time (s)
Intersection Capacity Utilization			56.8%		U Level a	
Analysis Period (min)			15			
c Critical Lane Group						

	٦	*	<	1	Ŧ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	۲	1	۲	1	1	1
Volume (vph)	160	315	120	485	735	105
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	125			200
Storage Lanes	1	1	1			1
Taper Length (ft)	25	25	25	1045	1001	25
Satd. Flow (prot)	1703 0.950	1524	1752 0.121	1845	1881	1599
Flt Permitted Satd. Flow (perm)	0.950	1524	223	1845	1881	1599
Right Turn on Red	1705	Yes	223	1040	1001	Yes
Satd. Flow (RTOR)		126				117
Link Speed (mph)	30	120		30	30	117
Link Distance (ft)	236			1067	276	
Travel Time (s)	5.4			24.3	6.3	
Peak Hour Factor	0.85	0.85	0.91	0.91	0.90	0.90
Heavy Vehicles (%)	6%	6%	3%	3%	1%	1%
Adj. Flow (vph)	188	371	132	533	817	117
Shared Lane Traffic (%)						
Lane Group Flow (vph)	188	371	132	533	817	117
Turn Type		pt+ov	pm+pt	_		pm+ov
Protected Phases	4	45	5	2	6	4
Permitted Phases			2	-	,	6
Detector Phase	4	4 5	5	2	6	4
Switch Phase Minimum Initial (s)	6.0		6.0	10.0	10.0	6.0
Minimum Initial (s) Minimum Split (s)	6.0 11.0		6.0 11.0	10.0	10.0	6.0 11.0
Total Split (s)	11.0	25.0	11.0	46.0	35.0	11.0
Total Split (%)	23.3%	41.7%	18.3%	40.0 76.7%	58.3%	23.3%
Yellow Time (s)	3.0	11.770	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0		2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	
Recall Mode	None		None	None	None	None
Act Effct Green (s)	8.7	19.8	39.0	39.0	28.0	41.7
Actuated g/C Ratio	0.15	0.34	0.67	0.67	0.48	0.72
v/c Ratio	0.73	0.61	0.43	0.43	0.90	0.10
Control Delay	44.0	15.9	8.4	5.5	28.8	0.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	44.0	15.9	8.4	5.5	28.8	0.8
LOS	D	В	А	A	C	А
Approach Delay	25.4			6.1	25.3	
Approach LOS	C 66	69	13	A 68	C 241	0
Queue Length 50th (ft) Queue Length 95th (ft)	66 #141	69 135	13 34	68 113	241 #461	9
Internal Link Dist (ft)	#141 156	130	34	987	#461 196	У
Turn Bay Length (ft)	100		125	707	170	200
Base Capacity (vph)	266	584	310	1316	982	1195
Starvation Cap Reductn	200	0	0	0	902	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.71	0.64	0.43	0.41	0.83	0.10
Intersection Summary	Other					
	Other					
Cycle Length: 60 Actuated Cycle Length: 57.8						
Natural Cycle: 60						
Control Type: Actuated-Uncoc	ordinated					
Maximum v/c Ratio: 0.90	Junateu					
Intersection Signal Delay: 19.4	4			In	itersectior	LOS' R
Intersection Capacity Utilizatio						f Service (
Analysis Period (min) 15						. 30 100 0
 # 95th percentile volume exc 	ceeds capac	ity, queue	may be lo	onger.		
Queue shown is maximum				3		
Jacob and Anno Maximum						
Splits and Phases: 10: Rive	erside MBTA	Driveway	& Grove S	Street		
4						

	* ₀₄	
46 s	14 s	
★ ø5 ↓ ø6		
11 s 35 s		

	≯	7	1	t	ţ	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations					<u></u>	
Volume (vph)	160	315	120	485	735	105
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util, Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.85	1.00	1.00	1.00	0.85
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00
Satd. Flow (prot)	1703	1524	1752	1845	1881	1599
Flt Permitted	0.95	1.00	0.12	1.00	1.00	1.00
Satd. Flow (perm)	1703	1524	224	1845	1881	1599
Peak-hour factor, PHF	0.85	0.85	0.91	0.91	0.90	0.90
Adj. Flow (vph)	188	371	132	533	817	117
RTOR Reduction (vph)	0	83	0	0	0	43
Lane Group Flow (vph)	188	288	132	533	817	74
Heavy Vehicles (%)	6%	6%	3%	3%	1%	1%
Turn Type	570	pt+ov	pm+pt	370	170	pm+ov
Protected Phases	4	4 5	5	2	6	4
Permitted Phases	+	τJ	2	2	0	6
Actuated Green, G (s)	8.7	19.7	39.0	39.0	28.0	36.7
Effective Green, g (s)	8.7	19.7	39.0	39.0	28.0	36.7
Actuated g/C Ratio	0.15	0.34	0.68	0.68	0.49	0.64
Clearance Time (s)	5.0	0.01	5.0	5.0	5.0	5.0
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	257	520	310	1247	913	1156
v/s Ratio Prot	c0.11	c0.19	0.04	0.29	c0.43	0.01
v/s Ratio Perm	00.11	CU. 17	0.04	0.27	CO.43	0.01
v/c Ratio	0.73	0.55	0.24	0.43	0.89	0.04
Uniform Delay, d1	23.4	15.4	9.5	4.3	13.5	4.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	10.2	1.00	0.9	0.2	11.2	0.0
Delay (s)	33.6	16.7	10.4	4.5	24.7	4.0
Level of Service	55.0 C	10.7 B	10.4 B	4.5 A	24.7 C	4.0 A
Approach Delay (s)	22.4	U	D	5.7	22.1	Л
Approach LOS	22.4 C			3.7 A	22.1 C	
	U			А	U	
Intersection Summary						
HCM Average Control Delay			17.1	H	CM Level	of Service
HCM Volume to Capacity ratio			0.76			
Actuated Cycle Length (s)			57.7		um of lost	
Intersection Capacity Utilization			66.7%	IC	U Level o	of Service
Analysis Period (min)			15			
 Critical Lane Group 						

	۶	\mathbf{r}	1	1	¥	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	٦	1	٦	↑	↑	1
Volume (vph)	80	40	80	825	395	125
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Grade (%)	0%	0	105	0%	1%	200
Storage Length (ft)	0	0	125 1			200 1
Storage Lanes Taper Length (ft)	25	1 25	25			25
Satd. Flow (prot)	25 1641	25 1468	25 1787	1881	1853	25 1575
Flt Permitted	0.950	1400	0.375	1001	1000	1375
Satd. Flow (perm)	1641	1468	705	1881	1853	1575
Right Turn on Red	.011	Yes	100		.000	Yes
Satd. Flow (RTOR)		43				136
Link Speed (mph)	30			30	30	
Link Distance (ft)	236			1342	2037	
Travel Time (s)	5.4			30.5	46.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	10%	10%	1%	1%	2%	2%
Adj. Flow (vph)	87	43	87	897	429	136
Shared Lane Traffic (%)						
Lane Group Flow (vph)	87	43	87	897	429	136
Turn Type		pt+ov	pm+pt	-		pm+ov
Protected Phases	4	45	5	2	6	4
Permitted Phases	4	4 5	2 F	2	,	6
Detector Phase Switch Phase	4	45	5	2	6	4
Minimum Initial (s)	6.0		6.0	10.0	10.0	6.0
Minimum Split (s)	11.0		11.0	15.0	15.0	11.0
Total Split (s)	12.0	23.0	11.0	48.0	37.0	12.0
Total Split (%)	20.0%	38.3%	18.3%	80.0%	61.7%	20.0%
Yellow Time (s)	3.0	00.070	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0		2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	
Recall Mode	None		None	None	None	None
Act Effct Green (s)	8.1	16.0	27.1	29.8	24.4	33.9
Actuated g/C Ratio	0.19	0.38	0.65	0.71	0.58	0.81
v/c Ratio	0.27	0.07	0.13	0.67	0.40	0.10
Control Delay	23.5	5.9	3.5	8.2	9.8	0.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	23.5	5.9	3.5	8.2	9.8	0.8
LOS	C	A	А	A	A	А
Approach Delay	17.7			7.8	7.7	
Approach LOS	B 20	0	7	A	A	0
Queue Length 50th (ft)		0	7	131	85	0 9
Queue Length 95th (ft)	68 156	19	16	227 1262	144 1957	9
Internal Link Dist (ft) Turn Bay Length (ft)	100		125	1202	1957	200
Base Capacity (vph)	344	572	652	1708	1378	1269
Starvation Cap Reductn	0	0	052	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.25	0.08	0.13	0.53	0.31	0.11
	5.20	0.00	0.10	0.00	5.51	0.11
Intersection Summary	Othor					
Area Type: Cycle Length: 60	Other					
Cycle Length: 60 Actuated Cycle Length: 41.8						
Natural Cycle: 45						
Control Type: Semi Act-Uncoo	rd					
Maximum v/c Ratio: 0.67	iu					
Intersection Signal Delay: 8.5				In	itersection	
Intersection Capacity Utilizatio	n 56.8%					of Service E
Analysis Period (min) 15	11 30.070			IC.	- Level L	I JUI VILE E
, and goto r chod (min) 15						
Splits and Phases: 10: River	rside MRTA	Driveway	& Grove	Street		
		Sinoway	3 5,010	54001		
√† ø2						

	≯	\mathbf{r}	•	Ť	Ļ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	٦	1	٢	1	1	1
Volume (vph)	80	40	80	825	395	125
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Grade (%)	0%			0%	1%	
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.85	1.00	1.00	1.00	0.85
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00
Satd. Flow (prot)	1641	1468	1787	1881	1853	1575
Flt Permitted	0.95	1.00	0.37	1.00	1.00	1.00
Satd. Flow (perm)	1641	1468	705	1881	1853	1575
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	87	43	87	897	429	136
RTOR Reduction (vph)	0	31	0	0	0	55
Lane Group Flow (vph)	87	12	87	897	429	81
Heavy Vehicles (%)	10%	10%	1%	1%	2%	2%
Turn Type		pt+ov	pm+pt			pm+ov
Protected Phases	4	4 5	5	2	6	4
Permitted Phases			2			6
Actuated Green, G (s)	4.9	12.9	29.6	29.6	21.6	26.5
Effective Green, g (s)	4.9	12.9	29.6	29.6	21.6	26.5
Actuated g/C Ratio	0.11	0.29	0.67	0.67	0.49	0.60
Clearance Time (s)	5.0		5.0	5.0	5.0	5.0
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	181	426	542	1251	899	1115
v/s Ratio Prot	c0.05	0.01	0.01	c0.48	0.23	0.01
v/s Ratio Perm			0.10			0.04
v/c Ratio	0.48	0.03	0.16	0.72	0.48	0.07
Uniform Delay, d1	18.6	11.3	3.3	4.8	7.7	3.8
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	2.0	0.0	0.1	2.0	0.4	0.0
Delay (s)	20.6	11.3	3.4	6.8	8.1	3.8
Level of Service	С	В	А	А	А	А
Approach Delay (s)	17.5			6.5	7.0	
Approach LOS	В			А	А	
Intersection Summary						
HCM Average Control Delay			7.5	H	CM Level	of Service
HCM Volume to Capacity ratio			0.68	IIX		
Actuated Cycle Length (s)			44.5	Si	im of lost	time (s)
Intersection Capacity Utilization			56.8%		U Level o	
Analysis Period (min)			15			
c Critical Lane Group						

	٦	*	<	1	ţ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	٦	1	٦	1	1	1
Volume (vph)	160	85	120	485	735	105
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	125			200
Storage Lanes	1	1 25	1 25			1 25
Taper Length (ft) Satd. Flow (prot)	25 1703	25 1524	25 1752	1845	1881	25 1599
Flt Permitted	0.950	1324	0.124	1040	1001	1377
Satd. Flow (perm)	1703	1524	229	1845	1881	1599
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		100				117
Link Speed (mph)	30			30	30	
Link Distance (ft)	236			1067	276	
Travel Time (s) Peak Hour Factor	5.4 0.85	0.85	0.91	24.3 0.91	6.3 0.90	0.90
Heavy Vehicles (%)	0.85	0.85 6%	3%	3%	0.90	0.90
Adj. Flow (vph)	188	100	132	533	817	117
Shared Lane Traffic (%)						
Lane Group Flow (vph)	188	100	132	533	817	117
Turn Type		pt+ov	pm+pt			pm+ov
Protected Phases	4	45	5	2	6	4
Permitted Phases		4.5	2	2	,	6
Detector Phase Switch Phase	4	4 5	5	2	6	4
Minimum Initial (s)	6.0		6.0	10.0	10.0	6.0
Minimum Split (s)	11.0		11.0	15.0	15.0	11.0
Total Split (s)	13.0	24.0	11.0	47.0	36.0	13.0
Total Split (%)	21.7%	40.0%	18.3%	78.3%	60.0%	21.7%
Yellow Time (s)	3.0		3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	0.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s) Total Lost Time (s)	0.0 5.0	0.0 5.0	0.0 5.0	0.0 5.0	0.0 5.0	0.0 5.0
Lead/Lag	5.0	5.0	5.0 Lead	5.0	5.0 Lag	5.0
Lead-Lag Optimize?			Yes		Yes	
Recall Mode	None		None	None	None	None
Act Effct Green (s)	8.4	19.9	35.2	35.2	27.2	42.4
Actuated g/C Ratio	0.16	0.37	0.65	0.65	0.50	0.78
v/c Ratio	0.71	0.16	0.40	0.44	0.86	0.09
Control Delay	44.5	4.7	7.3	5.4	24.3	0.7
Queue Delay Total Delay	0.0 44.5	0.0 4.7	0.0 7.3	0.0 5.4	0.0 24.3	0.0 0.7
LOS	44.5 D	4.7 A	7.3 A	5.4 A	24.3 C	0.7 A
Approach Delay	30.7	A	A	5.8	21.4	A
Approach LOS	50.7 C			J.0	21.4 C	
Queue Length 50th (ft)	68	0	12	63	231	0
Queue Length 95th (ft)	#152	24	30	104	#449	9
Internal Link Dist (ft)	156			987	196	
Turn Bay Length (ft)			125			200
Base Capacity (vph)	265	583	327	1417	1133	1236
Starvation Cap Reductn Spillback Cap Reductn	0 0	0 0	0 0	0 0	0 0	0 0
Splilback Cap Reducth	0	0	0	0	0	0
Reduced v/c Ratio	0.71	0.17	0.40	0.38	0.72	0.09
	0.71	5.17	0.10	0.00	5.72	5.07
Intersection Summary	Other					
Area Type: Cycle Length: 60	Other					
Actuated Cycle Length: 54.1						
Natural Cycle: 60						
Control Type: Actuated-Uncod	ordinated					
Maximum v/c Ratio: 0.86						
Intersection Signal Delay: 17.					itersection	
Intersection Capacity Utilization	on 66.7%			IC	CU Level c	f Service (
Analysis Period (min) 15						
# 95th percentile volume ex			may be lo	onger.		
Queue shown is maximum	after two cy	cies.				
Splits and Phases: 10: Rive	orsido MRTA	Drivoway	& Grove	Stroot		
	I SIDE MIR I A	Driveway	α GIOVE 3	Sueel		
↑ _{@2}						

a2			* 04	
47 s			13 s	
\$ ø5	₽ @6			
11 s	36 s			

	≯	7	1	t	ţ	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u></u>	1	NDL 1	<u> </u>	<u></u>	7
Volume (vph)	160	85	120	485	735	105
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.85	1.00	1.00	1.00	0.85
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00
Satd. Flow (prot)	1703	1524	1752	1845	1881	1599
Flt Permitted	0.95	1.00	0.12	1.00	1.00	1.00
Satd. Flow (perm)	1703	1524	229	1845	1881	1599
Peak-hour factor, PHF	0.85	0.85	0.91	0.91	0.90	0.90
Adj. Flow (vph)	188	100	132	533	817	117
RTOR Reduction (vph)	0	68	0	0	0	41
Lane Group Flow (vph)	188	32	132	533	817	76
Heavy Vehicles (%)	6%	6%	3%	3%	1%	1%
Turn Type	070	pt+ov	pm+pt	575	170	pm+ov
Protected Phases	4	4 5	5	2	6	4
Permitted Phases	4	40	2	2	0	6
Actuated Green, G (s)	8.4	17.8	36.6	36.6	27.2	35.6
Effective Green, g (s)	8.4	17.8	36.6	36.6	27.2	35.6
Actuated g/C Ratio	0.4	0.32	0.67	0.67	0.49	0.65
Clearance Time (s)	5.0	0.52	5.0	5.0	5.0	5.0
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	260	493	274	1228	930	1180
v/s Ratio Prot	260 c0.11	493	0.04	c0.29	c0.43	0.01
v/s Ratio Prot v/s Ratio Perm	CU. 11	0.02	0.04	CU.29	CU.43	0.01
v/c Ratio	0.72	0.07	0.28	0.43	0.88	0.04
	22.2	0.07				0.06
Uniform Delay, d1			9.1	4.3	12.4	
Progression Factor	1.00	1.00 0.1	1.00	1.00 0.2	1.00 9.4	1.00 0.0
Incremental Delay, d2	9.5	0.1	1.3			
Delay (s)	31.7		10.5	4.6	21.9	3.6
Level of Service	C	В	В	A	C	А
Approach Delay (s)	25.2			5.7	19.6	
Approach LOS	С			А	В	
Intersection Summary						
HCM Average Control Delay			15.6	H	CM Level	of Service
HCM Volume to Capacity ratio			0.82			
Actuated Cycle Length (s)			55.0		um of lost	
Intersection Capacity Utilization			66.7%	IC	U Level o	of Service
Analysis Period (min)			15			
c Critical Lane Group						

Grove Street at NB Ramps 2022 AM Build **Right-Turns on C-D Road Access** Roundabout

Lane Use	and Pe	rform	ance													
	[Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Cap.	Prob.
	L	Т	R	Total	ΗV	Cap.	Satn	Util.	Delay	Service	Vehicles	Distance	Length	Туре		Block.
	veh/h	veh/h	veh/h	veh/h	%	veh/h	v/c	%	sec		veh	ft	ft		%	%
South: NB I	Ramps															
Lane 1	57	258	0	314	3.0	528	0.595	100	19.3	LOS B	5.4	139.3	1600	-	0.0	0.0
Lane 2	0	0	448	448	3.0	828	0.541	100	12.1	LOS B	4.5	116.3	1600	-	0.0	0.0
Approach	57	258	448	763	3.0		0.595		15.0	LOS B	5.4	139.3				
East: Grove	e Street															
Lane 1	0	586	0	586	6.0	733	0.800	100	25.5	LOS C	11.7	305.8	1600	_	0.0	0.0
Lane 2	0	0	57	57	6.0	405	0.142	100	11.1	LOS B	0.7	18.5	1600	-	0.0	0.0
Approach	0	586	57	644	6.0		0.800		24.2	LOS C	11.7	305.8				
West: Grov	e Street															
Lane 1	302	634	0	936	2.0	1599	0.585	100	8.3	LOS A	0.0	0.0	1600	_	0.0	0.0
Approach	302	634	0	936	2.0		0.585		8.3	LOS A	0.0	0.0				
Intersection	n			2343	3.4		0.800		14.9	LOS B	11.7	305.8				

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay per lane.

RAMPS\RIGHT TURN CD ROAD ACCESS\AM NB Ramps.sip 8000997, VANASSE HANGEN BRUSTLIN INC., FLOATING

Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

HCM Delay Model used.

Processed: Monday, August 20, 2012 2:10:07 PM SIDRA INTERSECTION 5.1.3.1990 Project: \\vhb\proj\Wat-LD\10865.00\tech\Traffic\Sidra\2012 RESPONSE TO COMMENTS\NORTHBOUND

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA ---

www.sidrasolutions.com

- 7-

SIDRA ---

Grove Street at NB Ramps 2022 AM Build Full Access on C-D Road Roundabout

Lane Use and Performance																
		Deman T	d Flows R	Total	ΗV	Cap.	Deg. Satn	Lane Util.	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Lane Length	SL Type	Cap. Adi	Prob. Block.
	veh/h	veh/h		veh/h	%	veh/h	v/c	%	sec	0011100	veh	ft	ft	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	%	%
South: NB I	Ramps															
Lane 1	60	272	0	332	3.0	501	0.662	100	23.4	LOS C	7.0	179.3	1600	-	0.0	0.0
Lane 2	0	0	473	473	3.0	790	0.598	100	14.1	LOS B	5.9	152.2	1600	_	0.0	0.0
Approach	60	272	473	804	3.0		0.662		17.9	LOS B	7.0	179.3				
East: Grove	e Street															
Lane 1	0	451	0	451	3.0	753	0.599	100	14.7	LOS B	5.8	148.8	1600	-	0.0	0.0
Lane 2	0	0	54	54	3.0	418	0.130	100	10.5	LOS B	0.7	16.8	1600	_	0.0	0.0
Approach	0	451	54	505	3.0		0.599		14.2	LOS B	5.8	148.8				
North: Acce	ess Road	b														
Lane 1	1	0	103	104	2.0	643	0.162	100	7.5	LOS A	0.9	24.0	1600	-	0.0	0.0
Approach	1	0	103	104	2.0		0.162		7.5	LOS A	0.9	24.0				
West: Grov	e Street															
Lane 1	283	592	0	875	4.0	1566	0.559	100	8.0	LOS A	6.8	174.9	1600	_	0.0	0.0
Approach	283	592	0	875	4.0		0.559		8.0	LOS A	6.8	174.9				
Intersection	1			2289	3.3		0.662		12.8	LOS B	7.0	179.3				

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

HCM Delay Model used.

Processed: Monday, August 20, 2012 2:01:51 PM SIDRA INTERSECTION 5.1.3.1990 Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: \\vhb\proj\Wat-LD\10865.00\tech\Traffic\Sidra\2012 RESPONSE TO COMMENTS\NORTHBOUND RAMPS\FULL CD ROAD ACCESS\AM NB Ramps.sip

8000997, VANASSE HANGEN BRUSTLIN INC., FLOATING

Grove Street at NB Ramps 2022 PM Build **Right-Turns on C-D Road Access** Roundabout

Lane Use	and Pe	erform	ance													
		Deman	d Flows		1.15.7		Deg.	Lane	Average	Level of	95% Back		Lane	SL		Prob.
	L	T	R	Total	HV	Cap.	Satn	Util.	Delay	Service	Vehicles	Distance	Length	Туре		Block.
	veh/h	veh/h	veh/h	veh/h	%	veh/h	v/c	%	sec		veh	ft	ft		%	%
South: NB I																
Lane 1	59	140	0	199	3.0	690	0.288	100	8.8	LOS A	1.6	39.9	1600	-	0.0	0.0
Lane 2	0	0	425	425	3.0	1027	0.413	100	8.0	LOS A	2.6	67.3	1600	_	0.0	0.0
Approach	59	140	425	624	3.0		0.413		8.3	LOS A	2.6	67.3				
East: Grove	e Street															
Lane 1	0	941	0	941	3.0	1007	0.935	100	35.0	LOS D	24.3	621.9	1600	-	0.0	0.0
Lane 2	0	0	226	226	3.0	554	0.408	100	13.0	LOS B	2.4	62.1	1600	_	0.0	0.0
Approach	0	941	226	1167	3.0		0.935		30.8	LOS C	24.3	621.9				
West: Grov	e Street	t														
Lane 1	171	329	0	500	4.0	1568	0.319	100	5.0	LOS A	0.0	0.0	1600	-	0.0	0.0
Approach	171	329	0	500	4.0		0.319		5.0	LOS A	0.0	0.0				
Intersection				2290	3.2		0.935		19.0	LOS B	24.3	621.9				

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

HCM Delay Model used.

Processed: Monday, August 20, 2012 2:18:46 PM SIDRA INTERSECTION 5.1.3.1990

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

www.sidrasolutions.com Project: \\vhb\proj\Wat-LD\10865.00\tech\Traffic\Sidra\2012 RESPONSE TO COMMENTS\NORTHBOUND RAMPS\RIGHT TURN CD ROAD ACCESS\PM NB Ramps.sip

8000997, VANASSE HANGEN BRUSTLIN INC., FLOATING

- 7-

SIDRA ---

Grove Street at NB Ramps 2022 PM Build Full Access on C-D Road Roundabout

Lane Use and Performance																
		Deman	d Flows		ΗV	Cap.	Deg.	Lane	Average	Level of		of Queue	Lane	SL	Cap. I	
	L veh/h	l veh/h	R veh/h	Total veh/h		veh/h	Satn v/c	Util. %	Delay sec	Service	Vehicles veh	Distance ft	Length ft	Туре	Adj. E %	Block. %
South: NB		VOII/II	VOHI/H	VOII/II	70	VOI I/II	10	/0			Von				/0	,0
Lane 1	60	141	0	201	3.0	666	0.302	100	9.2	LOS A	1.8	45.6	1600	-	0.0	0.0
Lane 2	0	0	429	429	3.0	1004	0.427	100	8.4	LOS A	3.0	77.3	1600	_	0.0	0.0
Approach	60	141	429	630	3.0		0.427		8.6	LOS A	3.0	77.3				
East: Grove	e Street															
Lane 1	0	701	0	701	3.0	998	0.702	100	15.1	LOS B	8.3	212.7	1600	-	0.0	0.0
Lane 2	0	0	228	228	3.0	644	0.354	100	10.4	LOS B	2.1	52.9	1600	-	0.0	0.0
Approach	0	701	228	929	3.0		0.702		14.0	LOS B	8.3	212.7				
North: Acce	ess Road	d														
Lane 1	1	0	250	251	2.0	463	0.542	100	19.3	LOS B	4.5	113.2	1600	-	0.0	0.0
Approach	1	0	250	251	2.0		0.542		19.3	LOS B	4.5	113.2				
West: Grov	e Street	t														
Lane 1	158	304	0	462	4.0	1563	0.296	100	4.7	LOS A	2.6	65.9	1600	_	0.0	0.0
Approach	158	304	0	462	4.0		0.296		4.7	LOS A	2.6	65.9				
Intersection	n			2273	3.1		0.702		11.2	LOS B	8.3	212.7				

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

HCM Delay Model used.

Processed: Monday, August 20, 2012 2:07:05 PM SIDRA INTERSECTION 5.1.3.1990 Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: \\vhb\proj\Wat-LD\10865.00\tech\Traffic\Sidra\2012 RESPONSE TO COMMENTS\NORTHBOUND RAMPS\FULL CD ROAD ACCESS\PM NB Ramps.sip

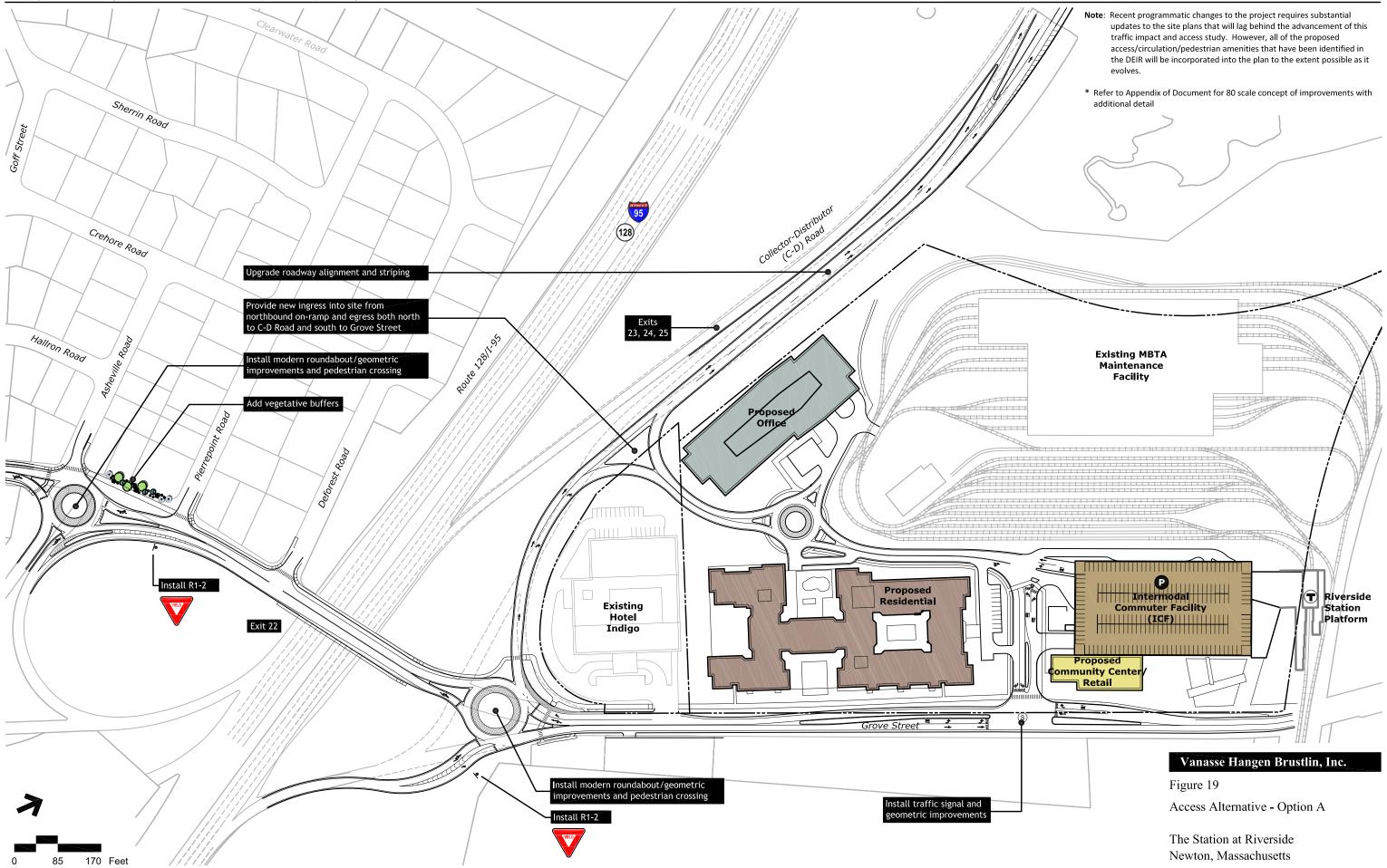
8000997, VANASSE HANGEN BRUSTLIN INC., FLOATING

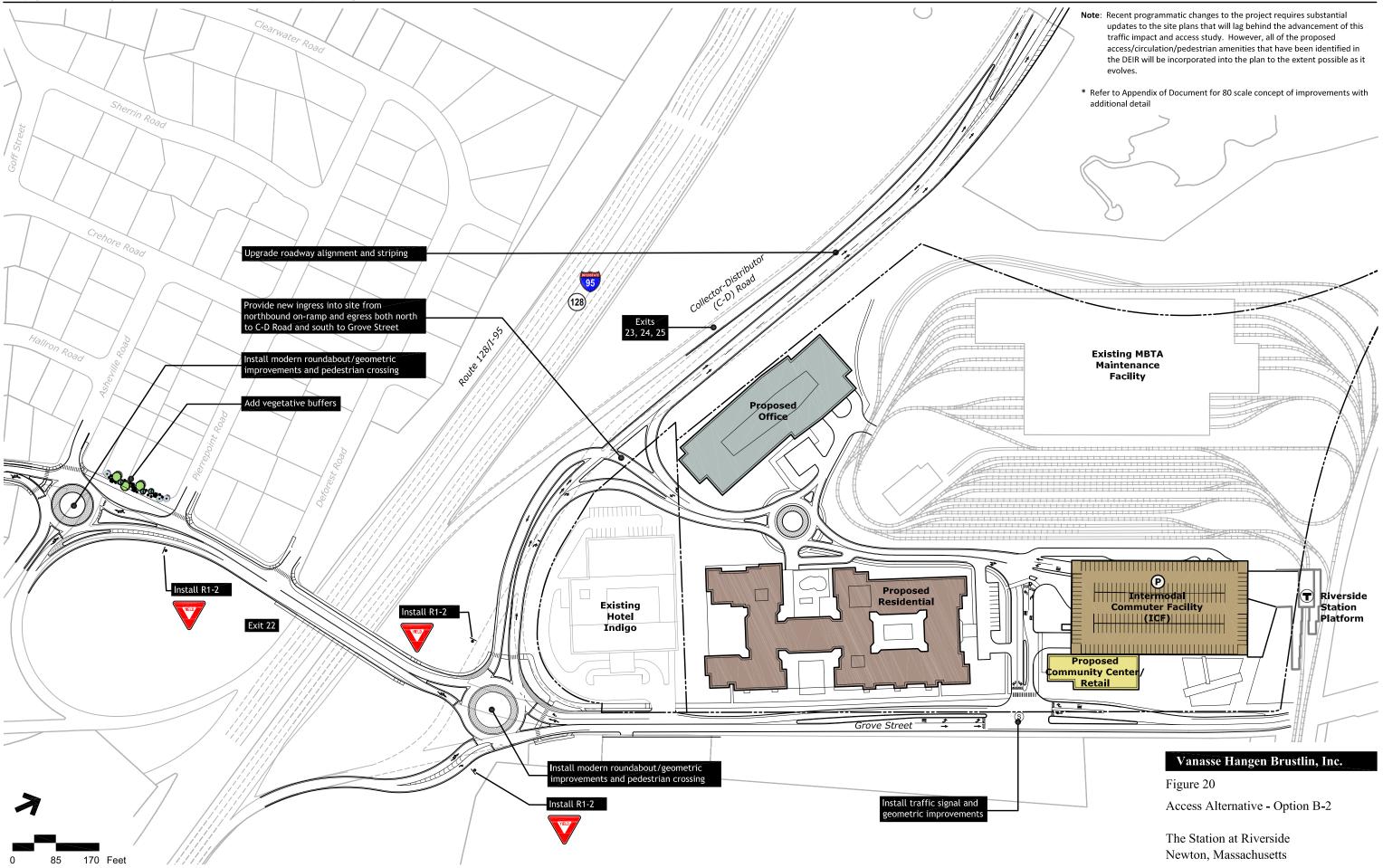
	≯	+	*	4	t	•	•	t	1	1	L,	ţ	~	÷	4		
Lane Group	EBL	EBT	EBR2	WBL	WBT	WBR	NBL	NBT	NBR	SBL2	SBL	SBT	SBR	NWL	NWR2	ø4	
Lane Configurations		\$			\$			4			Ä	4Î		Y			
Volume (vph)	15	310	90	10	270	175	35	435	5	140	0	450	30	0	15		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Storage Length (ft)	0			0 0		0 0	0 0		0 0		30 1		0 0	0			
Storage Lanes Taper Length (ft)	25			25		25	25		25		25		25	25			
Satd. Flow (prot)	0	1823	0	0	1747	0	0	1818	0	0	1736	1810	0	1611	0		
Flt Permitted		0.944			0.985			0.931			0.305						
Satd. Flow (perm)	0	1724	0	0	1723	0	0	1699	0	0	557	1810	0	1611	0		
Right Turn on Red			Yes			Yes							Yes		Yes		
Satd. Flow (RTOR)		10			22			20				3		600			
Link Speed (mph) Link Distance (ft)		30 1184			30 376			30 1200				30 268		30 491			
Travel Time (s)		26.9			8.5			27.3				6.1		11.2			
Peak Hour Factor	0.92	0.92	0.92	0.88	0.88	0.88	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.71	0.92		
Heavy Vehicles (%)	1%	1%	1%	3%	3%	3%	4%	4%	4%	4%	4%	4%	4%	0%	2%		
Adj. Flow (vph)	16	337	98	11	307	199	38	473	5	152	0	489	33	0	16		
Shared Lane Traffic (%)																	
Lane Group Flow (vph)	0	451	0	0	517	0	0	516	0	0	152	522	0	16	0		
Turn Type Protected Phases	Perm	2		Perm	2		Perm	2		custom	D.P+P	10		E		4	
Protected Phases Permitted Phases	3	3		3	3		2	2		1	1	12		5		4	
Detector Phase	3	3		3	3		2	2		1	2	12		5			
Switch Phase	5	5		5	5		2	2			1	12		5			
Minimum Initial (s)	10.0	10.0		10.0	10.0		15.0	15.0		10.0	10.0			4.0		15.0	
Minimum Split (s)	15.0	15.0		15.0	15.0		21.0	21.0		15.0	15.0			9.0		27.0	
Total Split (s)	36.0	36.0	0.0	36.0	36.0	0.0	45.0	45.0	0.0	15.0	15.0	60.0	0.0	9.0	0.0	27.0	
Total Split (%)	27.3%	27.3%	0.0%	27.3%	27.3%	0.0%	34.1%	34.1%	0.0%	11.4%	11.4%	45.5%	0.0%	6.8%	0.0%	20%	
Maximum Green (s)	31.0	31.0		31.0	31.0		39.0	39.0		10.0	10.0			4.0		21.0	
Yellow Time (s) All-Red Time (s)	4.0 1.0	4.0 1.0		4.0 1.0	4.0 1.0		4.0 2.0	4.0 2.0		4.0 1.0	4.0 1.0			4.0 1.0		4.0 2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	6.0	6.0	4.0	5.0	5.0	5.0	4.0	5.0	4.0		
Lead/Lag	Lead	Lead		Lead	Lead		Lag	Lag		Lead	Lead					Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes					Yes	
Vehicle Extension (s)	4.0	4.0		4.0	4.0		5.0	5.0		4.0	4.0			3.0		5.0	
Recall Mode	Max	Max		Max	Max		Max	Max		Max	Max			None		None	
Walk Time (s) Flash Dont Walk (s)																7.0 8.0	
Pedestrian Calls (#/hr)																5	
Act Effct Green (s)		31.3			31.3			39.4			50.6	55.6		4.0		0	
Actuated g/C Ratio		0.30			0.30			0.38			0.49	0.54		0.04			
v/c Ratio		0.86			0.96			0.80			0.39	0.54		0.03			
Control Delay		51.7			67.3			41.3			18.1	20.4		0.1			
Queue Delay		0.0			0.0			0.0			0.0	0.0		0.0			
Total Delay LOS		51.7 D			67.3 E			41.3 D			18.1 B	20.4 C		0.1 A			
Approach Delay		51.7			67.3			41.3			D	19.9		0.1			
Approach LOS		D			E			D				B		A			
Queue Length 50th (ft)		244			289			262			41	177		0			
Queue Length 95th (ft)		#604			#687			#646			122	457		0			
Internal Link Dist (ft)		1104			296			1120				188		411			
Turn Bay Length (ft)		E 07			E0/			645			30	071		400			
Base Capacity (vph) Starvation Cap Reductn		527 0			536 0			645 0			386 0	9/1		639 0			
Spillback Cap Reductn		0			0			0			0	0		0			
Storage Cap Reductn		0			0			0			0	0		0			
Reduced v/c Ratio		0.86			0.96			0.80			0.39	0.54		0.03			
Intersection Summary																	
Area Type:	Other																
Cycle Length: 132	ounor																
Actuated Cycle Length: 103.8	8																
Natural Cycle: 150																	
Control Type: Semi Act-Unco	bord																
Maximum v/c Ratio: 0.96	7			1	torcostion												
Intersection Signal Delay: 42. Intersection Capacity Utilizati					tersection		3										
Analysis Period (min) 15	100.370			IC.		JUNICE (
# 95th percentile volume ex	xceeds capad	city, queue	may be lo	onger.													
Queue shown is maximum				3													
0 11 15																	
	burn Street &	Common	wealth Ave	enue									<u> </u>				
🖈 ø1 🛛 📢	ø2						4	🗱 ø3)	k _{ø4}			* _{ø5}
15 s 4 5 s							3	6 s 👘					2	7 s 👘			9 s

	۶	-	\mathbf{r}	•	-	•	1	1	۲	×	L.	Ŧ	-	*	4	
Movement	EBL	EBT	EBR2	WBL	WBT	WBR	NBL	NBT	NBR	SBL2	SBL	SBT	SBR	NWL	NWR2	
Lane Configurations		\$			4			4			ă.	ĥ		Υ		
Volume (vph)	15	310	90	10	270	175	35	435	5	140	0	450	30	0	15	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		5.0			5.0			6.0			5.0	5.0		5.0		
Lane Util. Factor		1.00			1.00			1.00			1.00	1.00		1.00		
Frt		0.97			0.95			1.00			1.00	0.99		0.86		
Flt Protected		1.00			1.00			1.00			0.95	1.00		1.00		
Satd. Flow (prot)		1823			1747			1818			1736	1810		1611		
Flt Permitted		0.94			0.98			0.93			0.31	1.00		1.00		
Satd. Flow (perm)		1724			1723			1698			558	1810		1611		
Peak-hour factor, PHF	0.92	0.92	0.92	0.88	0.88	0.88	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.71	0.92	
Adj. Flow (vph)	16	337	98	11	307	199	38	473	5	152	0	489	33	0	16	
RTOR Reduction (vph)	0	7	0	0	16	0	0	0	0	0	0	2	0	16	0	
Lane Group Flow (vph)	0	444	0	0	501	0	0	516	0	0	152	520	0	0	0	
Heavy Vehicles (%)	1%	1%	1%	3%	3%	3%	4%	4%	4%	4%	4%	4%	4%	0%	2%	
Turn Type	Perm			Perm			Perm			custom	D.P+P					
Protected Phases		3			3			2			1	12		5		
Permitted Phases	3			3			2			1	2					
Actuated Green, G (s)		31.3			31.3			39.4			49.5	54.5		1.4		
Effective Green, q (s)		31.3			31.3			39.4			49.5	54.5		1.4		
Actuated g/C Ratio		0.28			0.28			0.35			0.44	0.49		0.01		
Clearance Time (s)		5.0			5.0			6.0			5.0			5.0		
Vehicle Extension (s)		4.0			4.0			5.0			4.0			3.0		
Lane Grp Cap (vph)		483			483			599			354	883		20		
v/s Ratio Prot		100			100			0,,,			0.04	c0.29		c0.00		
v/s Ratio Perm		0.26			c0.29			c0.30			0.15	00.27		00100		
v/c Ratio		0.92			1.04			0.86			0.43	0.59		0.01		
Uniform Delay, d1		39.0			40.2			33.6			21.0	20.6		54.5		
Progression Factor		1.00			1.00			1.00			1.00	1.00		1.00		
Incremental Delay, d2		25.0			51.0			15.0			3.8	2.9		0.2		
Delay (s)		64.0			91.2			48.7			24.8	23.4		54.7		
Level of Service		E			F			D			C	C		D		
Approach Delay (s)		64.0			91.2			48.7				23.7		54.7		
Approach LOS		E			F			D				C		D		
Intersection Summary																
HCM Average Control Delay			54.3	H	CM Level o	of Service			D							
HCM Volume to Capacity ratio			0.90													
Actuated Cycle Length (s)			111.7	Su	um of lost t	ime (s)			29.5							
Intersection Capacity Utilization			100.5%	IC	U Level of	Service			G							
Analysis Period (min)			15													
0.111.0.11.0.0.0.0.0.0.0.0.0.0.0.0.0.0.																

Lanes, Volumes, Timings
13: Auburn Street & Commonwealth Avenue

	٦	-	\rightarrow	1	←	•	1	1	1	1	L,	ţ	~	*	•	4		
ane Group	EBL	EBT	EBR2	WBL	WBT	WBR	NBL	NBT	NBR	SBL2	SBL	SBT	SBR	NWL	NWR	NWR2	ø4	
ane Configurations		\$			¢			\$			Ľ.	¢Î		Y				
olume (vph)	20	300	90	10	225	165	30	435	10	155	0	505	20	5	5	5		
leal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
torage Length (ft)	0			0		0	0		0		30		0	0	0			
iorage Lanes	0			0		0	0		0		1		0	1	0			
aper Length (ft)	25			25		25	25		25		25		25	25	25			
atd. Flow (prot)	0	1821	0	0	1774	0	0	1852	0	0	1770	1852	0	1704	0	0		
t Permitted		0.915			0.969			0.938			0.282			0.981				
atd. Flow (perm)	0	1670	0	0	1721	0	0	1742	0	0	525	1852	0	1704	0	0		
ght Turn on Red			Yes			Yes							Yes			Yes		
atd. Flow (RTOR)		11			27							2		5				
nk Speed (mph)		30			30			30				30		30				
nk Distance (ft)		1184			376			1200				268		491				
avel Time (s)		26.9			8.5			27.3				6.1		11.2				
eak Hour Factor	0.82	0.82	0.82	0.86	0.86	0.86	0.92	0.92	0.92	0.95	0.95	0.95	0.95	0.55	0.55	0.92		
eavy Vehicles (%)	1%	1%	1%	1%	1%	1%	2%	2%	2%	2%	2%	2%	2%	0%	0%	2%		
lj. Flow (vph)	24	366	110	12	262	192	33	473	11	163	0	532	21	9	9	5		
ared Lane Traffic (%)																		
ne Group Flow (vph)	0	500	0	0	466	0	0	517	0	0	163	553	0	23	0	0		
rn Type	Perm			Perm			Perm			D.P+P	D.P+P							
otected Phases		3			3			2		1	1	12		5			4	
ermitted Phases	3			3			2			2	2							
etector Phase	3	3		3	3		2	2		1	1	12		5				
vitch Phase																		
inimum Initial (s)	10.0	10.0		10.0	10.0		15.0	15.0		10.0	10.0			4.0			15.0	
inimum Split (s)	15.0	15.0		15.0	15.0		21.0	21.0		15.0	15.0			9.0			27.0	
otal Split (s)	32.0	32.0	0.0	32.0	32.0	0.0	39.0	39.0	0.0	15.0	15.0	54.0	0.0	9.0	0.0	0.0	27.0	
otal Split (%)	26.2%	26.2%	0.0%	26.2%	26.2%	0.0%	32.0%	32.0%	0.0%	12.3%	12.3%	44.3%	0.0%	7.4%	0.0%	0.0%	22%	
aximum Green (s)	27.0	27.0		27.0	27.0		33.0	33.0		10.0	10.0			4.0			21.0	
ellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0			4.0			4.0	
-Red Time (s)	1.0	1.0		1.0	1.0		2.0	2.0		1.0	1.0			1.0			2.0	
st Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	
tal Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	6.0	6.0	4.0	5.0	5.0	5.0	4.0	5.0	4.0	4.0		
ad/Lag	Lead	Lead	1.0	Lead	Lead	1.0	Lag	Lag	1.0	Lead	Lead	0.0	1.0	0.0	1.0	1.0	Lag	
ad-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes						Yes	
ehicle Extension (s)	4.0	4.0		4.0	4.0		5.0	5.0		4.0	4.0			3.0			5.0	
ecall Mode	Max	Max		Max	Max		Max	Max		Max	Max			None			None	
alk Time (s)	WIGA	IVIGA		INGA	IVIGA		INGA	IVIGA		IVIGA	IVIUA			None			7.0	
ash Dont Walk (s)																	8.0	
edestrian Calls (#/hr)																	5	
ct Effct Green (s)		27.4			27.4			33.4			44.6	49.7		4.1			5	
ctuated g/C Ratio		0.29			0.29			0.36			0.48	0.53		0.04				
c Ratio		1.01			0.89			0.83			0.40	0.56		0.29				
ontrol Delay		77.8			53.0			42.8			17.9	19.9		50.4				
ueue Delay		0.0			0.0			42.0			0.0	0.0		0.0				
otal Delay		77.8			53.0			42.8			17.9	19.9		50.4				
DS		77.0 E			53.0 D			42.0 D			17.9 B	19.9 B		50.4 D				
oproach Delay		77.8			53.0			42.8			D	19.5		50.4				
proach LOS		77.0 E			55.0 D			42.0 D				17.J B		50.4 D				
Jeue Length 50th (ft)		256			220			240			39	169		10				
Jeue Length 95th (ft)		200 #589			#548			#631			125	466		24				
ternal Link Dist (ft)		#589 1104			#548 296			#631 1120			120	400		411				
		1104			290			1120			30	100		411				
Irn Bay Length (ft)		405			E01			601				001		70				
ase Capacity (vph) arvation Cap Reductn		495 0			521 0			621 0			384 0	981 0		/9 0				
arvation Cap Reductin		0			0			0			0	0		0				
orage Cap Reductn		0			0			0				0		0				
					0.89						0 42							
educed v/c Ratio		1.01			0.89			0.83			0.42	0.56		0.29				
ersection Summary																		
	Other																	
cle Length: 122																		
tuated Cycle Length: 93.8																		
atural Cycle: 150																		
ontrol Type: Actuated-Unco	ordinated																	
aximum v/c Ratio: 1.01																		
ersection Signal Delay: 45.	4			In	tersection	LOS: D												
tersection Capacity Utilization					CU Level of		3											
nalysis Period (min) 15					. 5 20101 01	50.700 (-											
95th percentile volume ex	ceeds canac	ity nueue	may he le	nger														
Queue shown is maximum			may be lo	nger.														
Queue SHOWIT IS MAXIMUM	anel two cy	UICS.																
		C	woolth Ave	nue														
lite and Dhacoes 12. Auto	urn Stroot º																	
	urn Street &	Common	Wealth Ave	nuc					- A -					1				
	urn Street & ø2	Common	Wealth Ave	nuc			•	ø5	🔹 🕫	3					*1 ø4			


	≯	-	\mathbf{i}	1	+	•	1	Ť	۲	1	L,	ŧ	~	*	*	4	
Movement	EBL	EBT	EBR2	WBL	WBT	WBR	NBL	NBT	NBR	SBL2	SBL	SBT	SBR	NWL	NWR	NWR2	
Lane Configurations		¢			¢			\$			24	4Î		Y			
Volume (vph)	20	300	90	10	225	165	30	435	10	155	0	505	20	5	5	5	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		5.0			5.0			6.0			5.0	5.0		5.0			
Lane Util. Factor		1.00			1.00			1.00			1.00	1.00		1.00			
Frt		0.97			0.94			1.00			1.00	0.99		0.92			
Flt Protected		1.00			1.00			1.00			0.95	1.00		0.98			
Satd. Flow (prot)		1821			1774			1851			1770	1852		1703			
Flt Permitted		0.91			0.97			0.94			0.28	1.00		0.98			
Satd. Flow (perm)		1670			1722			1743			525	1852		1703			
Peak-hour factor, PHF	0.82	0.82	0.82	0.86	0.86	0.86	0.92	0.92	0.92	0.95	0.95	0.95	0.95	0.55	0.55	0.92	
Adj. Flow (vph)	24	366	110	12	262	192	33	473	11	163	0	532	21	9	9	5	
RTOR Reduction (vph)	0	8	0	0	20	0	0	0	0	0	0	1	0	5	0	0	
ane Group Flow (vph)	0	492	0	0	446	0	0	517	0	0	163	552	0	18	0	0	
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	2%	2%	2%	2%	2%	2%	2%	0%	0%	2%	
Furn Type	Perm			Perm			Perm			D.P+P	D.P+P						
Protected Phases		3			3			2		1	1	12		5			
Permitted Phases	3			3			2			2	2						
Actuated Green, G (s)		27.4			27.4			33.4			43.5	48.5		1.4			
Effective Green, g (s)		27.4			27.4			33.4			43.5	48.5		1.4			
Actuated g/C Ratio		0.27			0.27			0.33			0.43	0.48		0.01			
Clearance Time (s)		5.0			5.0			6.0			5.0			5.0			
/ehicle Extension (s)		4.0			4.0			5.0			4.0			3.0			
Lane Grp Cap (vph)		450			464			572			348	883		23			
//s Ratio Prot		100			101			0.2			0.05	c0.30		c0.01			
/s Ratio Perm		c0.29			0.26			c0.30			0.15	00.00		00101			
/c Ratio		1.09			0.96			0.90			0.47	0.63		0.79			
Jniform Delay, d1		37.2			36.6			32.6			20.4	19.8		50.0			
Progression Factor		1.00			1.00			1.00			1.00	1.00		1.00			
ncremental Delay, d2		70.1			33.3			20.2			4.5	3.3		94.5			
Delay (s)		107.2			69.9			52.8			24.9	23.2		144.5			
evel of Service		F			E			D			С	С		F			
Approach Delay (s)		107.2			69.9			52.8			0	23.5		144.5			
Approach LOS		F			E			D				C		F			
ntersection Summary																	
ICM Average Control Delay			60.1	H	CM Level o	of Service			E								
ICM Volume to Capacity ratio			0.96														
Actuated Cycle Length (s)			101.7	Su	um of lost t	ime (s)			29.4								
ntersection Capacity Utilization			104.9%		U Level of				G								
Analysis Period (min)			15														
Critical Lano Croup																	


	٦	-	\mathbf{r}	4	+	*	1	Ť	1	1	ŧ	-						
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	ø6	ø9				
Lane Configurations		t₽						4			र्स	77						
Volume (vph)	0	1830	5	0	0	0	5	0	10	0	15	1755						
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900						
Satd. Flow (prot)	0	3610	0	0	0	0	0	1698	0	0	1900	2842						
Flt Permitted								0.275										
Satd. Flow (perm)	0	3610	0	0	0	0	0	474	0	0	1900	2842						
Right Turn on Red			Yes			Yes			Yes			Yes						
Satd. Flow (RTOR)								17				1828						
Link Speed (mph)		30			30			30			30							
Link Distance (ft)		884			163			529			423							
Travel Time (s)		20.1			3.7			12.0			9.6							
Peak Hour Factor	0.93	0.93	0.93	0.92	0.92	0.92	0.60	0.60	0.60	0.96	0.96	0.96						
Heavy Vehicles (%)	0%	0%	0%	2%	2%	2%	0%	0%	0%	0%	0%	0%						
Adj. Flow (vph)	0	1968	5	0	0	0	8	0	17	0	16	1828						
Shared Lane Traffic (%)																		
Lane Group Flow (vph)	0	1973	0	0	0	0	0	25	0	0	16	1828						
Turn Type							Perm			Perm		custom						
Protected Phases		2						3			4	46	6	9				
Permitted Phases							3			4								
Detector Phase		2					3	3		4	4	46						
Switch Phase																		
Minimum Initial (s)		6.0					5.0	5.0		6.0	6.0		6.0	1.0				
Minimum Split (s)		11.2					9.8	9.8		11.0	11.0		11.2	22.0				
Total Split (s)	0.0	47.2	0.0	0.0	0.0	0.0	9.8	9.8	0.0	11.0	11.0	58.2	47.2	22.0				
Total Split (%)	0.0%	52.4%	0.0%	0.0%	0.0%	0.0%	10.9%	10.9%	0.0%	12.2%	12.2%	64.7%	52%	24%				
Maximum Green (s)		42.0					5.0	5.0		6.0	6.0		42.0	20.0				
Yellow Time (s)		4.2					3.8	3.8		4.0	4.0		4.2	2.0				
All-Red Time (s)		1.0					1.0	1.0		1.0	1.0		1.0	0.0				
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
Total Lost Time (s)	4.0	5.2	4.0	4.0	4.0	4.0	4.8	4.8	4.0	5.0	5.0	5.0						
Lead/Lag							Lead	Lead		Lag	Lag							
Lead-Lag Optimize?							Yes	Yes		Yes	Yes							
Vehicle Extension (s)		2.0					2.0	2.0		2.0	2.0		2.0	2.0				
Recall Mode		C-Max					None	None		None	None		C-Max	None				
Walk Time (s)														7.0				
Flash Dont Walk (s)														13.0				
Pedestrian Calls (#/hr)								o (40.5	70 /		0				
Act Effct Green (s)		46.0						9.6			19.5	70.6						
Actuated g/C Ratio		0.51						0.11			0.22	0.78						
v/c Ratio		1.07						0.38			0.04	0.70						
Control Delay		66.9						37.9			24.7	1.8						
Queue Delay		0.0						0.0			0.0	0.3						
Total Delay		66.9						37.9			24.7	2.2						
LOS		E						D			C	А						
Approach Delay		66.9						37.9			2.4							
Approach LOS		E						D			A	25						
Queue Length 50th (ft)		~691						4			6	25						
Queue Length 95th (ft)		#848			00			16			m9	1						
Internal Link Dist (ft)		804			83			449			343							
Turn Bay Length (ft)		1044						44			411	24.24						
Base Capacity (vph) Starvation Cap Reductn		1844 0						66 0			411 0	2624 285						
Spillback Cap Reductn		0						0			0	285 0						
a. a a																		
Storage Cap Reductn Reduced v/c Ratio		0 1.07						0 0.38			0 0.04	0 0.78						
		1.07						0.00			0.04	0.70						
Intersection Summary																		
Area Type:	Other																	
Cycle Length: 90																		
Actuated Cycle Length: 90																		
Offset: 0 (0%), Referenced to	phase 2:EB	T and 6:SI	BR, Start o	f Green														
Natural Cycle: 120																		
Control Type: Actuated-Coor	dinated																	
Maximum v/c Ratio: 1.07																		
Intersection Signal Delay: 35					tersection													
Intersection Capacity Utilizati	ion 73.7%			IC	U Level o	Service I)											
Analysis Period (min) 15																		
 Volume exceeds capacity 			infinite.															
Queue shown is maximun	n after two cy	cles.																
# 95th percentile volume ex			may be lo	nger.														
Queue shown is maximun																		
m Volume for 95th percenti	ile queue is n	netered by	upstream	signal.														
•		,																
Splits and Phases: 27: Wa	shington Stre	eet & Perki	ins Street															
#27 #29									#29					#27	#29	#27 #2	:9	
														1.4		1.4	-	

#27 #29 → → ø2 47.2 s	#29 ↓ ø9 22 s	#27 #29 ▲↑ ↓ ø3 9.8 s	#27 #29 4 11 s 04
#27 ↓ <i>ø</i> 6 47.2 s			

	≯	-	\mathbf{i}	4	+	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	≜ î⊧	EBR	WDL	WD1	WBR	NDL	4	NDR	JDL	4	11
Volume (vph)	0	1830	5	0	0	0	5	0	10	0	15	1755
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	1700	5.2	1700	1700	1700	1700	1700	4.8	1700	1700	5.0	5.0
Lane Util. Factor		0.95						1.00			1.00	0.88
Frt		1.00						0.91			1.00	0.85
Flt Protected		1.00						0.98			1.00	1.00
Satd. Flow (prot)		3609						1698			1900	2842
Flt Permitted		1.00						0.28			1.00	1.00
Satd. Flow (perm)		3609						475			1900	2842
Peak-hour factor, PHF	0.93	0.93	0.93	0.92	0.92	0.92	0.60	0.60	0.60	0.96	0.96	0.96
Adj. Flow (vph)	0.75	1968	5	0.72	0.72	0.72	8	0.00	17	0.70	16	1828
RTOR Reduction (vph)	0	0	0	0	0	0	0	15	0	0	0	398
Lane Group Flow (vph)	0	1973	0	0	0	0	0	10	0	0	16	1430
Heavy Vehicles (%)	0%	0%	0%	2%	2%	2%	0%	0%	0%	0%	0%	0%
Turn Type	070	070	070	210	210	270	Perm	070	070	Perm	070	custom
Protected Phases		2					r chil	3		7 CHII	4	4 6
Permitted Phases		2					3	5		4	7	40
Actuated Green, G (s)		45.9					5	9.6		т	19.5	70.4
Effective Green, g (s)		45.9						9.6			19.5	70.4
Actuated g/C Ratio		0.51						0.11			0.22	0.78
Clearance Time (s)		5.2						4.8			5.0	0.70
Vehicle Extension (s)		2.0						2.0			2.0	
Lane Grp Cap (vph)		1841						51			412	2223
v/s Ratio Prot		c0.55						JI			0.01	c0.50
v/s Ratio Perm		0.55						c0.02			0.01	0.50
v/c Ratio		1.07						0.19			0.04	0.64
Uniform Delay, d1		22.1						36.7			27.8	4.3
Progression Factor		1.00						1.00			0.93	4.04
Incremental Delay, d2		43.2						0.7			0.93	0.3
Delay (s)		65.2						37.3			25.9	17.7
Level of Service		60.2 E						57.5 D			23.7 C	B
Approach Delay (s)		65.2			0.0			37.3			17.7	D
Approach LOS		05.2 E			0.0 A			57.5 D			В	
		-			~			U			5	
Intersection Summary			10.0		0141							
HCM Average Control Delay			42.3	H	CM Level	of Service			D			
HCM Volume to Capacity ratio			0.87	<u> </u>	un of lost	line a (a)			15.0			
Actuated Cycle Length (s)			90.0		um of lost				15.0			
Intersection Capacity Utilization			73.7%	IC	U Level of	Service			D			
Analysis Period (min)			15									

Traffic and Pedestrian Plans

Parking Assessment

Transportation Land Development Environmental Services

Vanasse Hangen Brustlin, Inc.

PO Box 9151 101 Walnut Street Watertown, Massachusetts 02471 Telephone 617 924-1770 FAX 617 924-2286 www.vhb.com

Memorandum	To:	Mr. Kevin Daly The Walsh Company 99 Summer Street Boston, MA 02110	Date:	August 21, 2012
	From:	William Cranshaw, P.E. Project Manager, Planning.	Re:	Station at Riverside – Parking Justification

1.0 INTRODUCTION

The recently approved Mixed Use 3/Transit-Oriented District regulations require that the parking provided for the Station at Riverside project "is appropriate to the intensity of development, types of uses, hours of operation, availability of alternative modes of travel and encourages the use of alternatives without over-supplying parking."

To ensure that there is not an over-supply of parking provided by a transit-oriented development the regulations require that there be "a shared-parking analysis that demonstrates that the number of parking spaces to be provided is appropriate to the context, taking into consideration the mix of uses; the demand for parking spaces at different times of day, week and year; availability of alternative modes of transportation; and other site-specific influences on parking supply and demand, such as, but not limited to, Red Sox home games." This memorandum presents a detailed parking evaluation for the Station at Riverside project.

2.0 PROJECT DESCRIPTION

The Station at Riverside project is located at the existing Riverside MBTA station that is a regional transportation hub, and consists of two primary major development phases. The first is the construction of an Intermodal Commuter Facility (ICF) by the MBTA. In essence, the ICF is a consolidation of various transportation related activities including short and long-term commuter parking, local and regional bus services, and MBTA rail platform into a single new multi-level parking structure. The second major phase is the redevelopment of the existing surface commuter parking lot for a mixed-use, transit oriented development (TOD). Together, the two major phases constitute the Station at Riverside project containing the following overall building program:

- Building A is a 225,000 sf office building that includes a 571-space garage.
- Building B is a 290 unit residential building, with 5,000 sf of ancillary retail space. The building includes a 429-space parking garage and 12 surface spaces located on the east side of the building. The parking garage will be reserved for use by residents only.

- Building C consists of 15,000 sf of retail space and an 8,000 sf community center. Building C is adjacent to, and accessible from, the new MBTA parking garage.
- The 960-space MBTA parking lot will be replaced by a 1,005-space parking garage, an increase of 45 spaces.

Additionally, the project site is immediately adjacent to an existing 191-room, full-service hotel. The Indigo Hotel has dedicated parking for its overnight guests; however, potential overflow parking has been considered in the evaluation presented in this memorandum.

3.0 SHARED PARKING METHODOLOGY

The basic premise of shared parking is that a single parking space can serve the parking needs of two or more individual land uses. This occurs routinely in urban areas where, for example, a parking space used during the day by commuters is used during the evening by restaurant patrons. Suburban mixed-use developments can provide a similar synergy of parking utilization.

The Urban Land Institute has studied shared parking among mixed-use development and has developed methodology for evaluating shared parking that is documented in "Shared Parking", Second Edition, which was published in 2005. The ULI procedure involves the following steps:

- Gather and review project data such as dwelling units, restaurant seating, and square footage of retail and office space.
- Select base parking ratios for each land use. These ratios (e.g., x parking space per dwelling unit or y parking spaces per 1,000 sf of office space) tend to represent (1) the parking required for the peak hour of the peak day of the week during the peak month of the year, and (2) locations where there are few travel mode options other than personal vehicle use. The ULI *Shared Parking* report and the ITE *Parking Generation* report provide national standards for the base rates, but the use of locally calibrated rates based on zoning requirements or data collected at comparable facilities is encouraged.
- Adjust the base parking rates for non-auto mode applicable to the site. This should be done separately for employee and customer/visitor parking. The ULI *Shared Parking* report provides data separately for employee and customer/visitor parking demand.
- Determine the season, day and time of peak parking demand by evaluating the monthly, daily and hourly parking demand variations for each type of land use. Time-of-day, day-of-week, and monthly factors are provided in the ULI *Shared Parking* report.
- Make appropriate adjustments for "internal capture" of parking demand to eliminate double counting parking demand in situations where, for example, office employees are also retail customers.

Any shared parking evaluation should also include consideration of how "sharable" are the parking spaces. There may be parking policies that reserve some parking spaces for a single land use (such as reserved parking for residents), or as a practical reality the location of available parking is too distant from many destinations within the project site.

3.1 Base Parking Requirements

The zoning requirements for standalone uses provide a good starting point for the discussion of base parking requirements before adjustments for non-auto mode splits; seasonal, day-of-week, and time-of-

day parking occupancy patterns; and internal capture of parking demand. The City's zoning requirements for the uses proposed are as follows:

- Office: 1 space/250 sf of GFA up to 20,000 sf and 1 space/333 sf of GFA in excess of 20,000 sf
- Residential: 2 Spaces/Dwelling Unit but Board of Alderman may permit fewer by special permit, but no less than 1.25
- Retail: 1 Space/300 sf of GFA, plus 1 Space/3 employees on largest shift
- Public/Community: While no parking requirements have been established for this type of use, we have assumed a parking rate of 1 Space/150 sf of GFA. This is likely conservative since a majority of the use of this space will be from the neighborhoods surrounding the site and people may choose to walk to this facility.

4.0 PROPOSED PARKING EVALUATION

4.1 Availability of MBTA parking

Under existing conditions, the MBTA parking supply is more than adequate to accommodate typical daily parking demands. In fact, the parking supply is substantially underutilized. It is only during "game day" Red Sox events when the parking supply becomes fully utilized. With the proposed project in place, there is no reason to believe that the normal parking demands will change and therefore on typical days, there will be more parking that is needed within the IFC.

To substantiate the number of commuter parking spaces reasonably anticipated to be available in the new ICF a monitoring camera was positioned and parking occupancy data were gathered for the period of May 8 through July 31, 2012. Images from 9:15 am, 12:45 pm and 4:45 pm on each of the 85 days were reviewed and the parking occupancy determined. A sample of the images is shown below. The results of the parking occupancy counts are summarized in graphical form attached to this document.

Sample Camera Image – Wednesday

May 9, 2012. 12:45pm.

The study found that there were always at least 300 parking spaces available in the MBTA lot on weekdays. The only exception was the1 weekday when there was an afternoon Red Sox game. The MBTA parking was at capacity on that day.

4.2 Project-related Parking

The following presents an evaluation of the parking demands for each of the new buildings, as well as the effects from Red Sox parking and a full-capacity event at the Indigo Hotel and restaurant. Because Building B parking is reserved for residents only, and because the remaining uses are predominately office, the parking evaluation focuses on each building separately rather than a project-wide summary analysis. The per-building discussion provides a clearer understanding of the parking issues and the findings regarding the adequacy and appropriateness of the parking supply provided.

4.2 Project-related Parking

The parking associated with each of the three buildings is described separately in the sections that follow.

4.2.1 Building A

Building A contains 225,000 sf of office space and 571spaces of structured parking. The zoning regulations would otherwise require a minimum of 4 parking spaces per 1,000 sf for the first 20,000 sf, and 3 parking spaces per 1,000 sf thereafter. The total required parking, before transit-oriented design considerations, is therefore 696 spaces.

The building provides 571 parking spaces; or 82% of the base parking requirements of the zoning regulations. A study published in the ITE Compendium of Technical Papers titled *The Effect of Transit Service on Trips Generated by Suburban Development* concluded that "suburban office development located within 500 feet of a rail station can expect commuter trip transit mode shares of between 20 and 25 percent". Therefore, the assumption of 18% transit use by office commuters is appropriate for this site, and ensures that there is not an over-supply of parking.

As a worst-case scenario, even if the transit share of office commuters was only 10%, the parking demand would be 626 spaces, 55 more than the 571 provided in the office garage. Overflow parking of 55 cars could easily be accommodated in the ICF, which will typically have an estimated 300 available spaces.

4.2.2 Building B

The residential building will have 290 units, with 60% of the units being studio or one bedroom apartments. The project includes 15% affordable housing units. The building also includes 5,000 sf of ancillary retail space. The project provides 441 parking spaces, of which 12 are surface spaces and 429 are in the garage.

Building B: Residential Parking

The garage parking is reserved and assigned solely for residents. The 429 available spaces provides an average of 1.48 parking spaces per unit. The default parking requirement of the zoning regulations is a minimum of 2 spaces per apartment unit, the same as for single-family homes, although the zoning regulation recognizes that a lesser parking requirement may sometimes be appropriate. For those situations the zoning regulations provide a special permit process that allows parking as low as 1.25 spaces per unit.

4

The 1.48 parking spaces provided per unit is an adequate amount of parking for a location adjacent to a high-frequency transit service and given that some of the parking is "unbundled" from the base rent. Each unit has only 1 parking space included in the base rent and the other parking spaces are available at additional cost. The justification for the 1.48 spaces provided per residential unit is illustrated by the following table that compares the proposed parking at Riverside with parking provided at similar TOD locations.

Development	City	Transit Line	No. of Dwelling Units	No. of Parking Spaces	Spaces per Unit
Station at Riverside	Newton	Green Line	290	429	1.48
Woodland Station	Newton	Green Line	180	230	1.28
Station Landing – Phase I	Medford	Orange Line	292	414	1.42
Station Landing – Phase II	Medford	Orange Line	168	168	1.00

To some extent, it appears that the residential parking may be over-supplied. However, even if that turns out to be true there will not likely be any negative impacts such as encouraging excess automobile traffic activity. One reason is that some of the parking spaces are tandem spaces and if only one of the two paired spaces were assigned to a resident, the empty tandem space could not be used by others. Another reason is that the parking garage will be restricted and will not provide transient parking. Other than residential parking, the only other users that might be accommodated are employees of the Building B retail space, and, in the unlikely event it was necessary and mutually agreeable to all parties, employees from Building A or Building C.

Building B: Retail Parking

The retail component of Building B is 5,000 sf. The type of retail uses expected throughout the site is retail that is complimentary to the existing uses. These "service style" retail facilities may include a coffee shop, convenience store, dry cleaner, bank, ATM, restaurant, etc. Such types of uses will draw heavily on the traffic (both vehicular and pedestrian) that will already be present on the site for MBTA, office, and residential uses. Therefore both traffic and parking needs associated with the retail is not expected to fit "normal" traffic generation or parking need requirements.

The standard zoning requirements for retail call for 20 parking spaces. Such a parking demand is very likely too high given that much of the retail activity would involve "internal capture" of activity from on-site residents and office employees, and MBTA commuters. Nonetheless, it is useful to understand the worst-case parking scenario should the full 20-space demand be realized. There are 12 surface parking spaces provided and the remaining eight parking spaces could be provided by either (1) assigning retail employees to parking in the Building B garage, or more likely, (2) accommodating any overflow parking needs in the adjacent ICF/MBTA garage.

4.2.3 Building C

The building program in Building C consists of 15,000 sf of retail space and 8,000 sf of community space. Parking for this building will be provided entirely in the new ICF/MBTA garage.

Having the parking for Building C uses take place in the ICF/MBTA parking garage is a particularly effective way to ensure there is an adequate supply but not an over-supply of parking provided. The

parking demand for the retail use and community use is likely to peak in the evenings and on weekends, when MBTA-related parking demand is lowest.

Weekday, daytime parking demand represents the worst-case scenario for evaluating the adequacy of the parking supply. There are no generic national standards for parking demand related to "community space" but for the purposes of this analysis a conservative estimate of one car per 150 sf, the weekday, daytime parking demand for the community space would be 54 spaces.

Per the zoning regulations, the required parking for the retail space is 60 spaces (50 for patrons and 10 for employees). As a worst-case scenario, this assumes no internal capture of customer trips from on-site residents or office employees which is a very conservative assumption given the complementary nature of the retail planned.

In all, the weekday, daytime parking demand for the retail space and community space would be 120 spaces. This is 75 spaces more than the additional 45 MBTA spaces being created by the ICF phase of the project, but is well within the estimated 300 parking spaces typically available among the MBTA surface parking today.

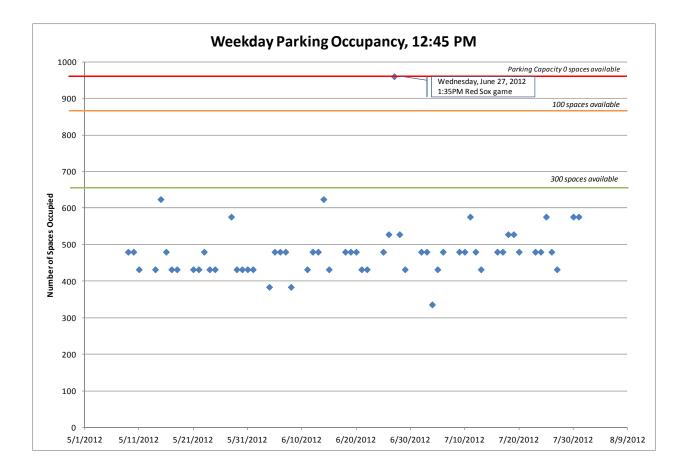
4.3 Event Activity

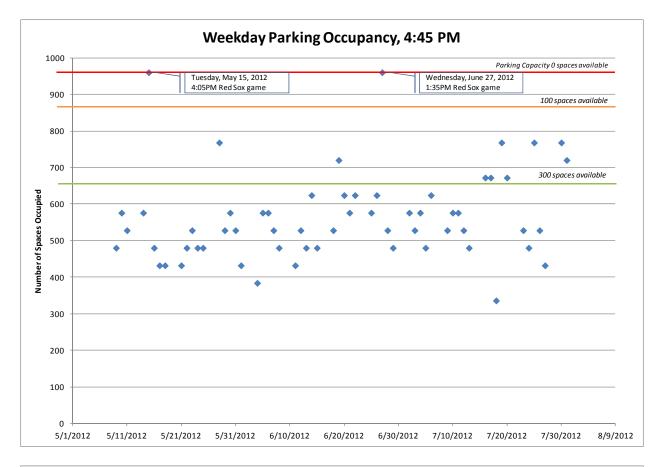
To ensure that the parking provided is appropriate, it is important to understand parking activity associated with events, as well as parking activity of typical daily use. Two situations are described below. The first is game day activity associated with the Boston Red Sox. The second is a full capacity event at the Indigo Hotel and restaurant

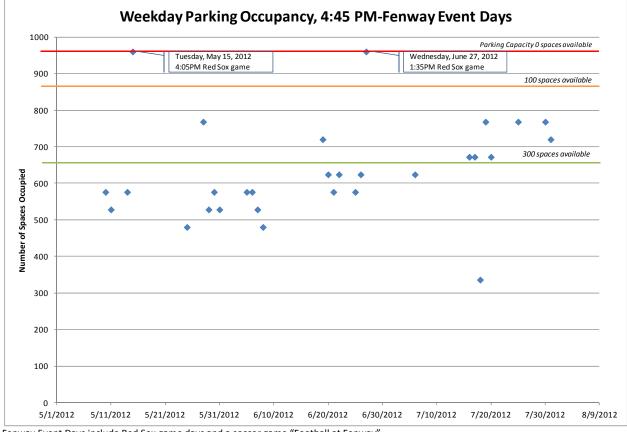
4.3.1 Red Sox Games

The 2012 Red Sox home schedule has five (non-holiday) weekday daytime games (start times range from 2:10 pm to 4:10 pm) and 41 weekday evening games (start time typically at 7:10 pm). During most days when there are Red Sox games it can be expected that the MBTA parking is at or near capacity where as under normal non-game day condition it is well below capacity.

The primary effect of the Riverside parking demand on the Red Sox parking is limited to the five weekday day games. Worst-case, the Station at Riverside project would utilize a maximum of 138 of the existing MBTA spaces (55 from Building A, 8 from Building B and a net of 75 from building C), but by the time the MBTA parking typically filled for evening games (about 5:30 pm) much of the office parking demand would have lessened and there would effectively be no overflow of the new Station at Riverside project parking competing with the existing Red Sox parking. For the five day games, however, any overflow from the Station at Riverside project would already be parked in the MBTA spaces before Red Sox parkers arrive. But given the low probability of overflow from the Station at Riverside project occurring in the MBTA parking, and given that daytime Red Sox parkers are already constrained by MBTA daily commuter parkers, the effect of the Station at Riverside project parking on the days of the five daytime home games would be negligible.

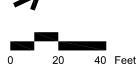

4.3.2 Indigo Hotel

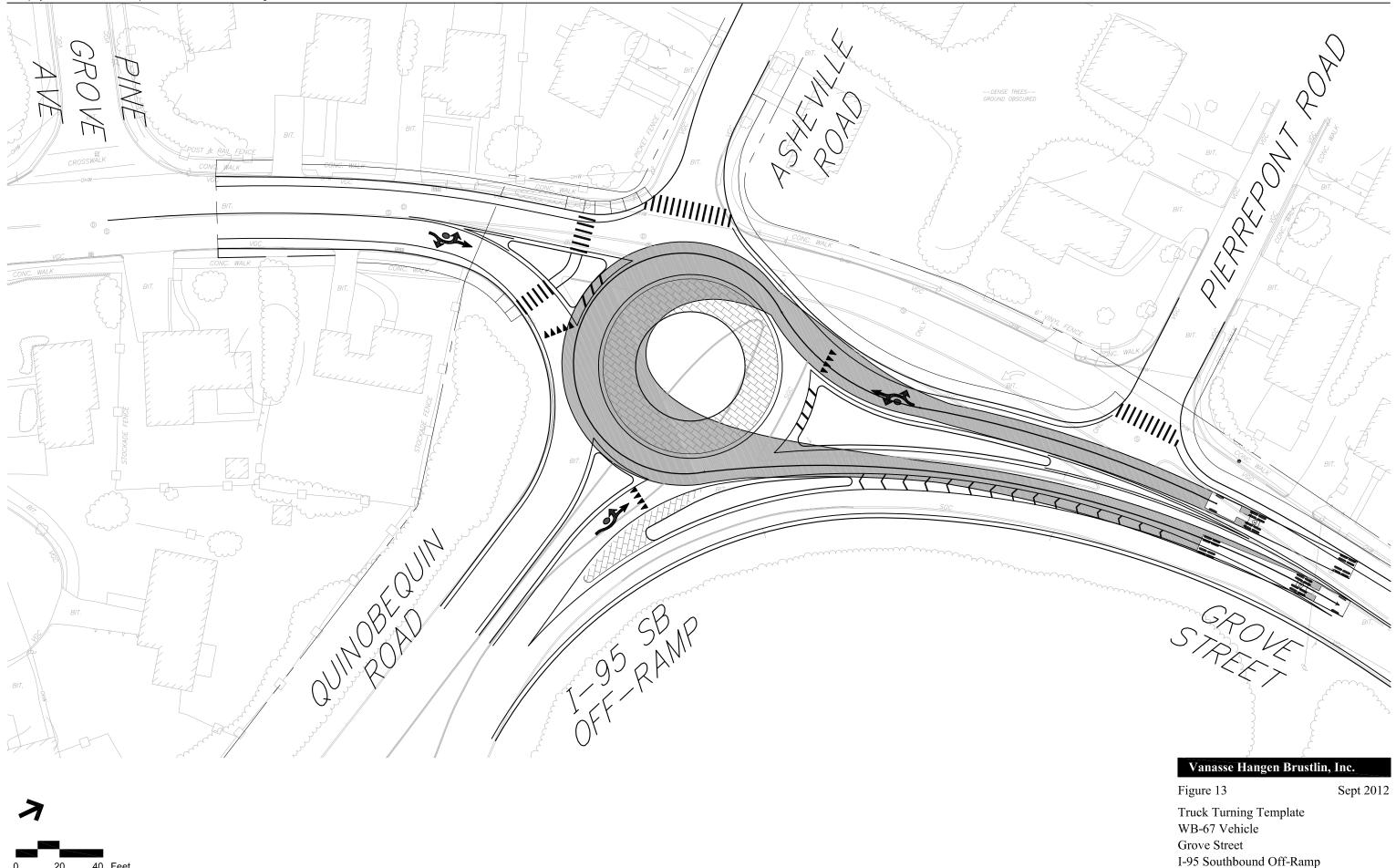

The Indigo Hotel has a restaurant that could be fully used on some nights, weekends, and holidays during the year. The parking requirement for the restaurant space is 84 parking spaces. The parking for a full event at the restaurant could be easily accommodated by either the parking at the MBTA or the office building parking garage. Many of the 571 office building garage parking spaces can be expected to be available at times when the Indigo restaurant is hosting a full-capacity event.


5.0 SUMMARY OF FINDINGS

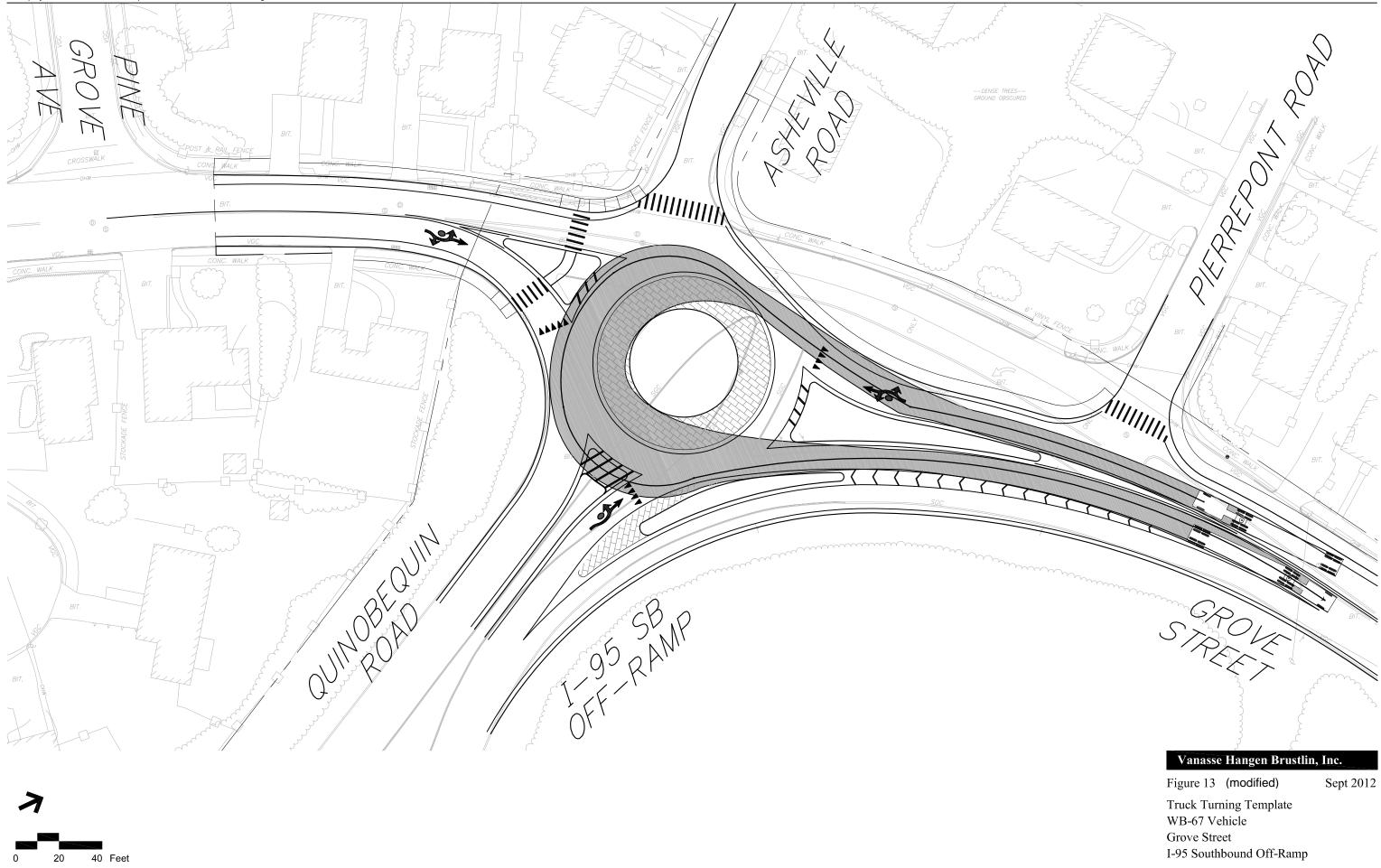
The parking provided for the project is consistent with the objectives of the transit-oriented-design zoning regulations established for the site. It is appropriate given the mix of uses; proximity of high-frequency transit; and differences in parking demand patterns by hour, day of week, and season. It does not provide an over-supply of parking.

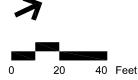
- Sufficient parking is provided for the office building assuming only an 18% transit mode share among commuters. If the transit use is only 10% then the maximum overflow of parking in the MBTA garage would be 75 cars, considerably less than the 300 spaces typically available.
- The residential building provides parking at 1.48 spaces per unit. This is higher than similar projects, but even if there is some excess parking it is not expected to have the adverse impacts of encouraging additional traffic. Any excess parking is likely to be among the less-desirable tandem parking spaces. Any excess parking might also be assigned to retail employees.
- The retail and community space may require up to 100 spaces for weekday, daytime parking. This is 55 spaces more than the additional 45 MBTA spaces being created by the garage project, but considerably less than the 300 spaces that are currently typically available in the MBTA parking lot.
- The parking for the project, being predominately for office employees, is complementary to the parking demand for most Red Sox games. The only conflict would be for the five weekday day games. The conflict is similar to that which exists now between MBTA commuter parking and the day game attendees.

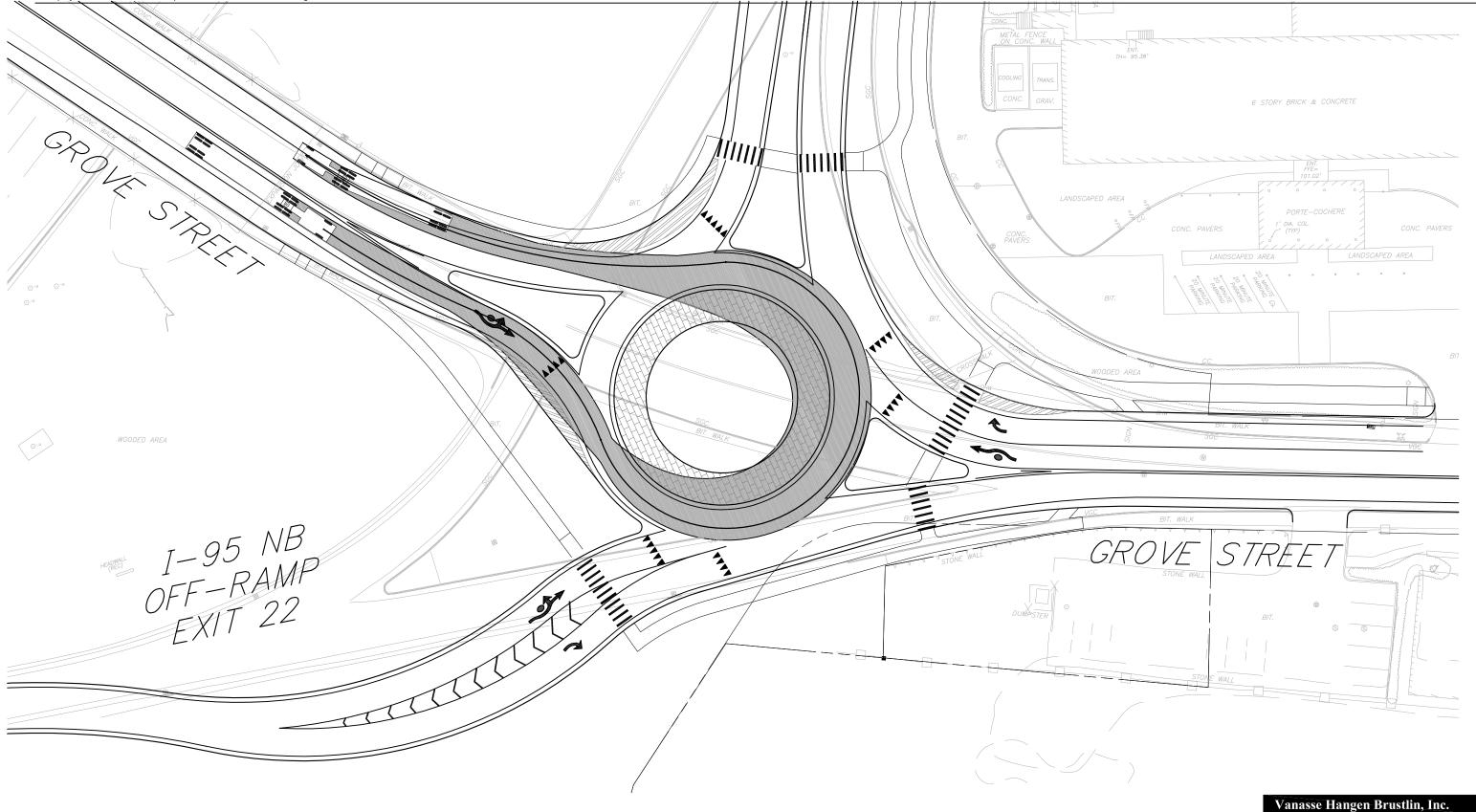





Fenway Event Days include Red Sox game days and a soccer game "Football at Fenway"


AutoTURN Truck Turning Movement Analysis





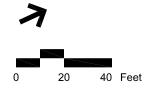
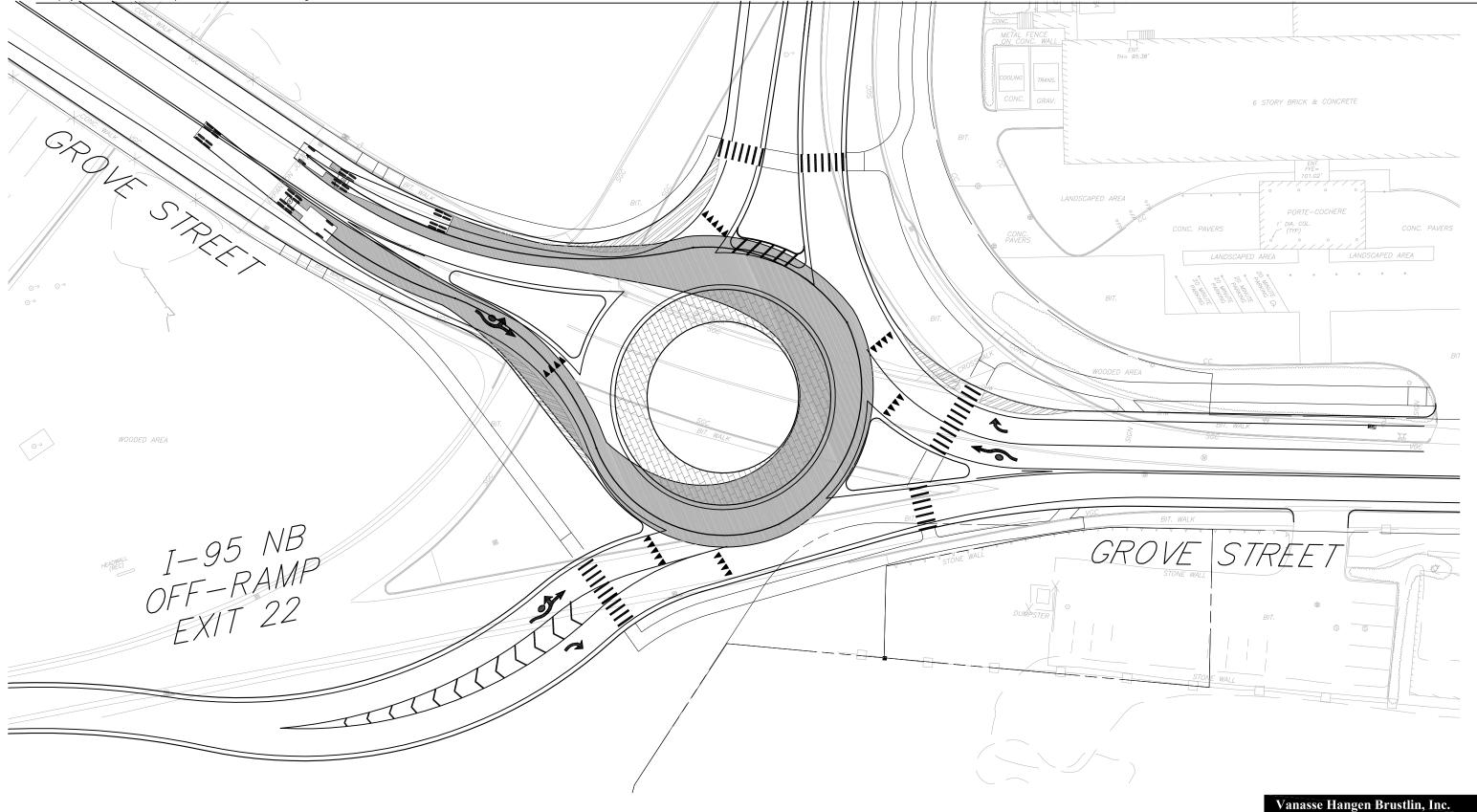



Figure 14 Truck Turning Template WB-67 Vehicle Grove Street I-95 Northbound Off-Ramp Sept 2012

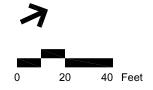


Figure 14 (modified)

Sept 2012

Truck Turning Template WB-67 Vehicle Grove Street I-95 Northbound Off-Ramp