

Appendix A Site Information

- ► Site Locus Map
- > FEMA Firmette Map
- > Existing Drainage Areas
- > Proposed Drainage Areas
- > Existing/Proposed Floodplain Limit Plan

Site Locus Plan

Figure 1

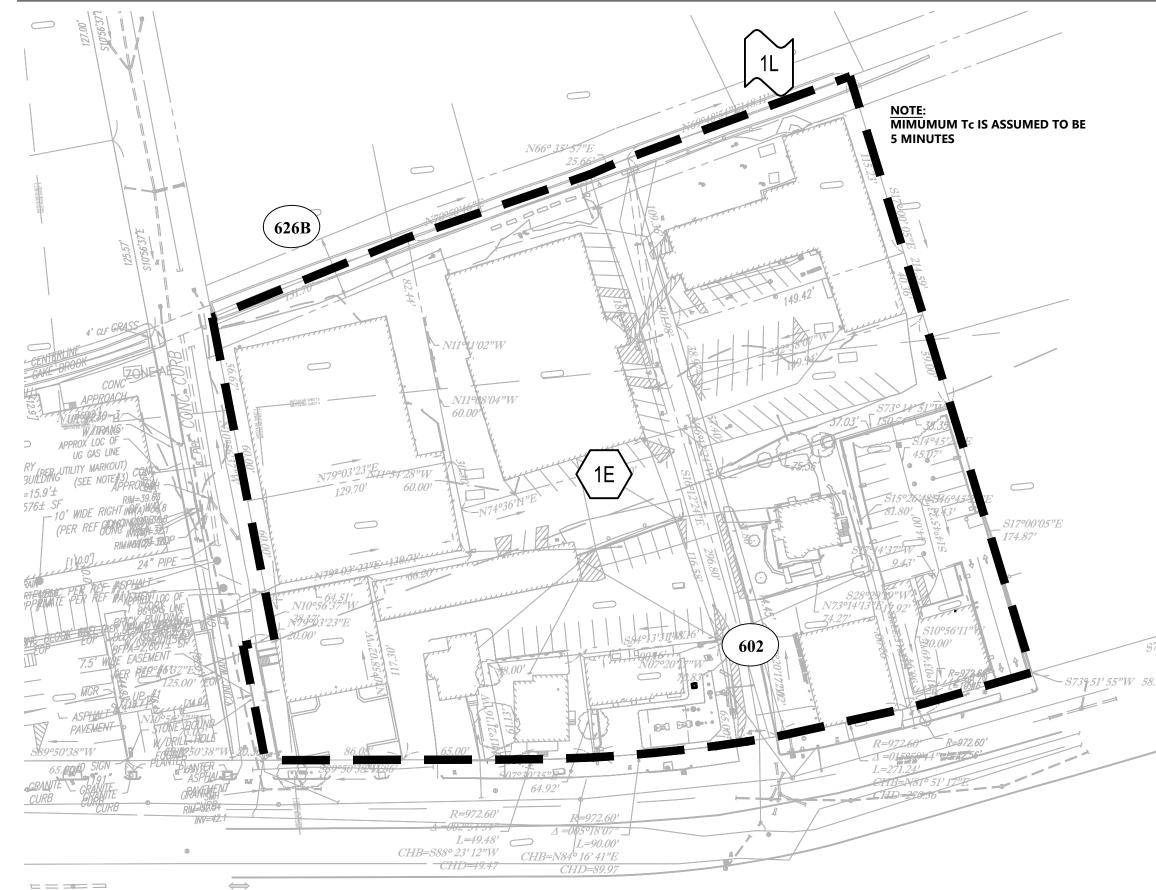
Mark Development West Newton, MA

National Flood Hazard Layer FIRMette

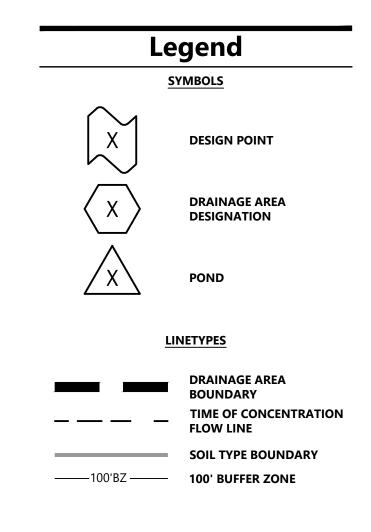
Legend

42°21'13.24"N SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF FLOOD HAZARD Area with Flood Risk due to Levee Zone D NO SCREEN Area of Minimal Flood Hazard Zone X Approx. Effective LOMRs **Project Site** OTHER AREAS Area of Undetermined Flood Hazard Zone D GENERAL - -- - Channel, Culvert, or Storm Sewer STRUCTURES IIIIII Levee, Dike, or Floodwall Zone AE 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation **Coastal Transect** City of Newton Base Flood Elevation Line (BFE) ~ 513~~~ 250208 Limit of Study Jurisdiction Boundary **Coastal Transect Baseline** OTHER **Profile Baseline** FEATURES Hydrographic Feature eff. 6/4/2010 **Digital Data Available** No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate AREA OF MINIMAL FLOOD HAZARD point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 6/14/2019 at 3:01:56 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, ≶ USGS The National Map: Orthoimagery. Data refreshed April, 2019. legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for

0	250	500	1,000


1,500

Feet 1:6,000


2,000

42°20'46.65"N

unmapped and unmodernized areas cannot be used for regulatory purposes.

SCS SOIL CLASSIFICATIONS

CANTON-URBAN LAND **COMPLEX, 3 TO 15 PERCENT** SLOPES, HSG B

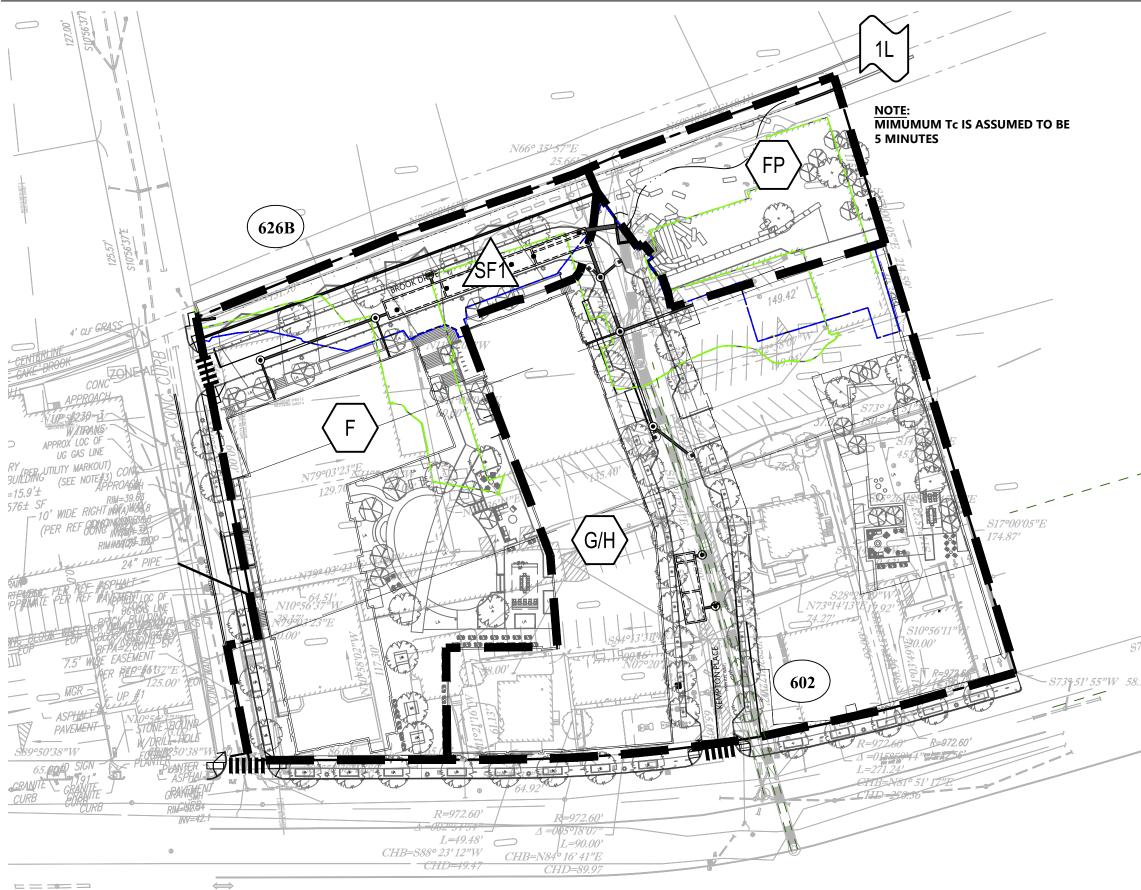
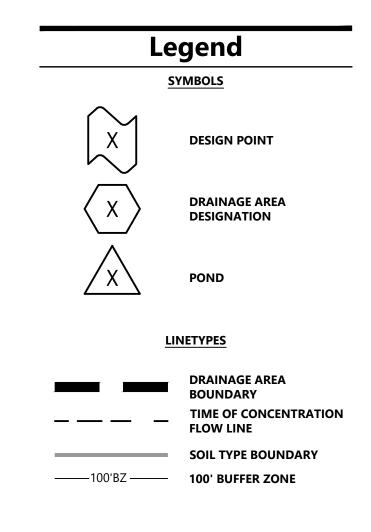

Existing Drainage Conditions

Figure 3


Mark Development West Newton, MA

April 2020 Revised May 2021

\\vhb\gbl\proj\Wat-LD\14517.00\cad\ld\Eng\Stormwater\14517.00-PR Watertshed-5-12-21.dwg

SCS SOIL CLASSIFICATIONS

CANTON-URBAN LAND **COMPLEX, 3 TO 15 PERCENT** SLOPES, HSG B

Proposed Drainage Conditions

Figure 4

Mark Development West Newton, MA

April 2020 Revised May 2021

\\vhb\gbl\proj\Wat-LD\14517.00\cad\ld\Eng\Stormwater\14517.00 Figure 5 - Existing-Proposed Floodplain Limit Plan.dwg

30 60 Feet 0

Legend

LINETYPES

EXISTING FLOODPLAIN LIMIT

PROPOSED FLOODPLAIN LIMIT

Floodplain Storage Volume Calculations

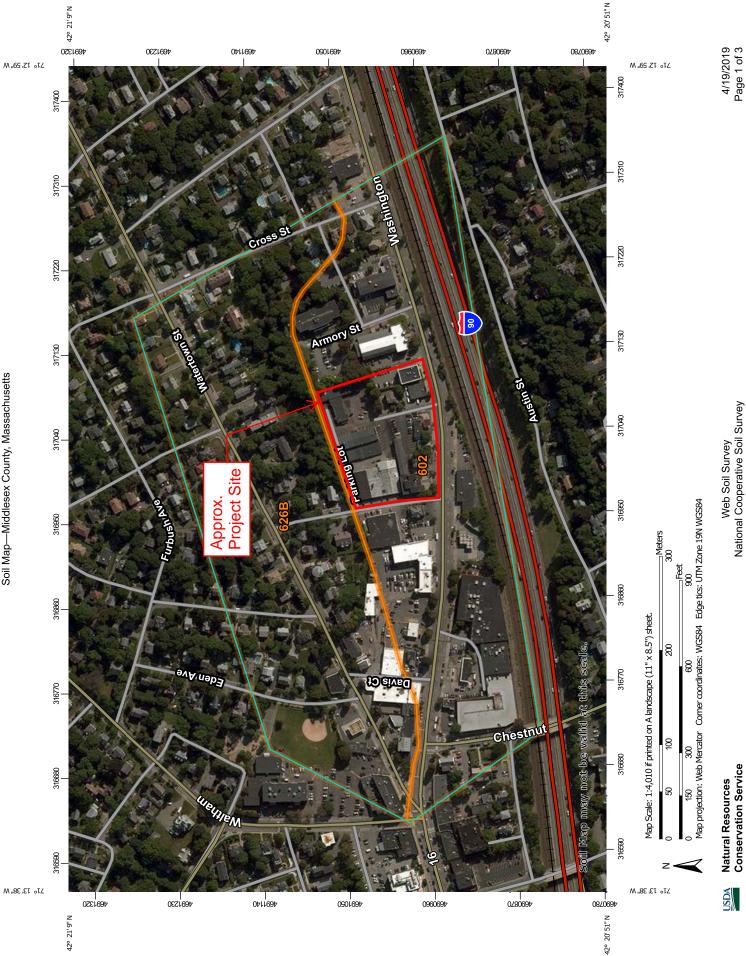
Existing Cumulative Floodplain Storage (CY) ¹	Proposed Incremental Floodplain Storage (CY) ²	Proposed Cumulative Floodplain Storage (CY) ²	Net Incremental Storage Increase (CY)
0.1	15.7	15.7	(+) 15.6
18.3	120.3	136.0	(+) 102.1
45.3	175.0	311.0	(+) 148
75.1	219.9	530.9	(+) 190.1
108.5	257.2	788.1	(+) 223.8
184.2	297.7	1085.8	(+) 222
483.7	447.6	1533.4	(+) 148.1
1017.3	737.9	2271.3	(+) 204.3
1793.9	798.3	3069.6	(+) 21.7
2365.5	616.7	3686.3	(+) 45.1
65.5	368	36.3	(+) 1320.8 (+55.8%)

2365.5

3686.3 1. Existing storage calculated from topographic survey by CPA as of May 18, 2019 below floodplain elevation 38.6 ft

2. Proposed storage calculated from proposed grading by VHB as of April 21, 2020 below floodplain elevation 38.6 ft

Existing/Proposed Floodplain Limit Plan Mark Development West Newton, MA


Figure 5

April 2020

Appendix B Standard 3 Computations and Supporting Information

► NRCS Web Soil Survey

4/19/2019 Page 1 of 3

Soil Map-Middlesex County, Massachusetts

ſ

The soil surveys that comprise your AOI were mapped at 1:25,000.	Warning: Soil Map may not be valid at this scale.	Enlargement of maps beyond the scale of mapping can cause	line placement. The maps do not show the small areas of	contrasting soils that could have been shown at a more detailed	90ald.	Please rely on the bar scale on each map sheet for map measurements.	Source of Map: Natural Resources Conservation Service	Web Soil Survey URL: Coordinate Svstem: Web Mercator (EPSG:3857)	Maps from the Web Soil Survey are based on the Web Mercator	projection, which preserves direction and shape but distorts	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more	accurate calculations of distance or area are required.	This product is generated from the USDA-NRCS certified data as of the version date(s) listed helow.	or and variable data(o) incod badow. Soil Survey Area: Middlesey County Massachusetts	Survey Area. Minutesex Soundy, Massachuseus Survey Area Data: Version 18, Sep 7, 2018	Soil map units are labeled (as space allows) for map scales	1:50,000 or larger.	Date(s) aerial images were photographed: Aug 10, 2014—Aug 25, 2014	The orthonhoto or other base map on which the soil lines were	compiled and digitized probably differs from the background	imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.		
Spoil Area Stony Spot	Very Stony Spot	Wet Spot	Other	Special Line Features	tures	Streams and Canals	ation Rails	Interstate Highways	US Routes	Major Roads	Local Roads	pu	Aerial Photography										
₩ <	08	Ð	\triangleleft	Ľ	Water Features	{	Transportation Rai	2	2	8	2	Background	A.										
Area of Interest (AOI) Area of Interest (AOI)		Soil Map Unit Polygons Soil Map Unit Lines	Soil Map Unit Points		Special Point Features Blowent	Borrow Pit	Clay Spot	Closed Depression	Gravel Pit	Gravelly Spot	Landfill	Lava Flow	Marsh or swamp	Mine or Quarry	Miscellaneous Water	Perennial Water	Rock Outcrop	Saline Spot	Sandy Spot	Severely Eroded Spot	Sinkhole	Slide or Slip	Sodic Spot
Area of Int	Soils) 1	:	Special		i Ж	\diamond	×	**	٩	~	-1	«	0	0	>	÷	° °	Ŵ	0	A	Q.

Map Unit Legend

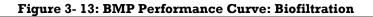
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
602	Urban land	24.7	51.3%		
626B	Merrimac-Urban land complex, 0 to 8 percent slopes	23.4	48.7%		
Totals for Area of Interest		48.0	100.0%		

Appendix C Standard 4 & 9 Computations and Supporting Information

- ► StormCAD Pipe Sizing Report
- > Water Quality Volume Calculations
- > TSS Removal Worksheets
- > Phosphorus Removal Calculations
- ► Sand Filter System Sizing
- > Operation & Maintenance Plan

StormCAD Pipe Sizing Report

Link Summary


SN Element ID	Element Type	From (Inlet) Node	To (Outlet) Node	Length	Inlet Invert Elevation	Invert	Average Slope	Diameter or Height	Manning's Roughness		Design Flow Capacity	Peak Flow/ Design Flow Ratio	Peak Flow Velocity	Depth		Total Time Reported Surcharged Condition
				(ft)	(ft)	(ft)	(%)	(in)		(cfs)	(cfs)		(ft/sec)	(ft)		(min)
1 Pipe - (11)	Pipe	RD-H1	DMH 8	19.34	37.30	36.92	1.9700	10.000	0.0120	0.00	3.33	0.00	0.00	0.00	0.00	0.00 Calculated
2 Pipe - (11) (1)	Pipe	DMH 8	DMH 7	21.05	36.92	36.50	1.9700	10.000	0.0120	1.20	3.33	0.36	5.61	0.35	0.41	0.00 Calculated
3 Pipe - (15)	Pipe	RD-F1	DMH 3	27.65	36.25	35.70	1.9900	10.000	0.0120	0.00	3.35	0.00	0.00	0.00	0.00	0.00 Calculated
4 Pipe - (16)	Pipe	RD-F2	DMH 4	36.62	36.25	35.75	1.3700	10.000	0.0120	0.00	2.77	0.00	0.00	0.00	0.00	0.00 Calculated
5 Pipe - (17)	Pipe	DMH 7	DMH 6	33.37	36.50	36.27	0.7000	12.000	0.0120	1.55	3.23	0.48	4.08	0.49	0.49	0.00 Calculated
6 Pipe - (18)	Pipe	DMH 6	DMH 5	73.51	36.17	35.66	0.7000	12.000	0.0120	1.54	3.23	0.48	4.10	0.49	0.49	0.00 Calculated
7 Pipe - (19)	Pipe	DMH 5	DMH 4	73.19	35.66	35.15	0.6900	15.000	0.0120	3.40	5.81	0.58	4.95	0.69	0.55	0.00 Calculated
8 Pipe - (20)	Pipe	DMH 4	WQS 1	17.71	35.15	35.00	0.8500	12.000	0.0120	3.40	3.55	0.96	5.16	0.78	0.78	0.00 Calculated
9 Pipe - (20) (1)	Pipe	WQS 1	DMH 3	36.27	34.75	34.60	0.4100	15.000	0.0120	3.40	4.50	0.75	4.04	0.81	0.65	0.00 Calculated
10 Pipe - (21)	Pipe	DMH 2	Out-1Pipe - (21)	45.63	31.90	31.58	0.7000	15.000	0.0120	0.71	11.72	0.06	2.66	0.21	0.17	0.00 Calculated
11 Pipe - (23)	Pipe	CB 3	DMH 7	23.83	36.77	36.60	0.7000	12.000	0.0120	0.37	3.23	0.11	3.13	0.23	0.23	0.00 Calculated
12 Pipe - (24)	Pipe	DMH 9	DMH 8	99.88	38.26	37.02	1.2400	12.000	0.0120	1.20	4.30	0.28	4.73	0.36	0.36	0.00 Calculated
13 Pipe - (25)	Pipe	CB 4	DMH 9	26.62	38.54	38.36	0.7000	12.000	0.0120	0.77	3.23	0.24	3.78	0.33	0.33	0.00 Calculated
14 Pipe - (26)	Pipe	CB 5	DMH 9	6.10	39.07	39.03	0.7000	12.000	0.0120	0.45	3.23	0.14	2.89	0.25	0.25	0.00 Calculated
15 Pipe - (27)	Pipe	CB 1	DMH 5	19.78	36.00	35.75	1.2600	12.000	0.0120	1.05	4.34	0.24	4.55	0.33	0.33	0.00 Calculated
16 Pipe - (29)	Pipe	CB 2	DMH 5	7.99	36.00	35.94	0.7000	12.000	0.0120	0.96	3.23	0.30	3.58	0.37	0.37	0.00 Calculated
17 Pipe - (30)	Pipe	DMH 3	Out-1Pipe - (30)	4.09	34.60	34.50	2.4500	12.000	0.0120	2.68	6.04	0.44	7.46	0.47	0.47	0.00 Calculated
18 Pipe - (31)	Pipe	SF-1	DMH 2	4.10	32.00	31.90	2.4400	12.000	0.0120	0.00	6.03	0.00	0.00	0.00	0.00	0.00 Calculated
19 Pipe - (32)	Pipe	DMH 3	DMH 2	33.01	34.60	33.00	4.8500	15.000	0.0120	0.71	15.41	0.05	6.42	0.18	0.15	0.00 Calculated
20 Pipe - (8)	Pipe	RD-G4	DMH 5	36.60	36.50	35.75	2.0500	10.000	0.0120	0.00	3.40	0.00	0.00	0.00	0.00	0.00 Calculated

Water Quality Volume Calculations

Biofiltration BMP Performance Table: Long-Term Phosphorus Load Reduction										
BMP Capacity: Depth of Runoff Treated from Impervious Area (inches)	0.1	0.2	0.4	0.6	0.8	1.0	1.5	2.0		
Cumulative Phosphorus Load Reduction	19%	34%	53%	64%	71%	76%	84%	89%		

Table 3- 16: Biofiltration BMP Performance Table

Impervious Area	57,502 Building F	WQV	3,019 Building F
	82,956 Building G/H		4,355 Building G/H
	15,665 Washington St		822 Washington St

TSS Removal Worksheets

TSS Removal Calculation Worksheet

VHB, Inc 101 Walnut Street Post Office Box 9151 Watertown, MA 02471 P 617.924.1770	Project Name: Project Number: Location: Discharge Point: Drainage Area(s):	Washington Street Mixed-Us 14517.00 Newton, MA	Sheet: Date: Computed by: Checked by:	1 of 1 23-Apr-2020 OMW HH
A	B	C	D	Е
BMP*	TSS Removal Rate*	Starting TSS Load**	Amount Removed (C*D)	Remaining Load (D- E)
Deep Sump and Hooded Catch Basin	25%	1.00	0.25	0.75
Sand Filter	80%	0.75	0.60	0.15
	0%	0.15	0.00	0.15
	0%	0.15	0.00	0.15
	0%	0.15	0.00	0.15

* BMP and TSS Removal Rate Values from the MassDEP Stormwater Handbook Vol. 1. Removal rates for proprietary devices are from approved studies and/or manufacturer data (attach study or data source, or remove this sentence if not applicable).

** Equals remaining load from previous BMP (E)

*** Stormceptor sizing calculation gives a TSS removal rate of 87%. To be conservative,

80% removal is used for this calculation (Change name of device and the claimed removal

rate shown on the calc. sheet. Remove this sentence if not applicable.

Treatment Train TSS Removal =

85%

Phosphorus Removal Calculations

Phosphorus Loading - Existing Conditions

Project Name: Dunstan East Mixed-Use Redevelopment

Project Location: Newton, MA

Proj. No.: 14517.00

Date: May 2021

Calculated by: DBL

Checked by:

Subcatchment Number	Land Cover within Use	Phosphorus Load Export Rate (Ibs/ac/year)*	Area** (acre)	Phosphorous Loading to BMP per Area (lb/yr)	Total Phosphorus Loading to BMP (lb/yr)	
Commercial	Directly Connected Impervious	2.32	3.23	7.49	7.54	
(Development)	Pervious (HGS B)	0.12	0.36	0.04		
Totals =			3.59		7.54	

* Per MA MS4 General Permit, Table 3-1, Average Annual Disttinct Phosphorus Load (P Load) export rates for use in exstimating phosphorus load reduction credits the MA MS4 Permit.

** Site Area includes only the proposed area of redevelopment and excludes the MBTA Rail Yard

Phosphorus Loading to BMPs - Proposed Conditions

Project Name: Dunstan East Mixed-Use Redevelopment

Project Location: Newton, MA

 Proj. No.:
 14517.00

 Date:
 May 2021

 Calculated by:
 DBL

 Checked by:
 Image: Checked by:

Subcatchment Number	Land Cover within Use	Phosphorus Load Export Rate (lbs/ac/year)*	Area (acre)	Phosphorous Loading to BMP per Area (lb/yr)	Total Phosphorus Loading to BMP (lb/yr)	Phosphorous Removal	Total Phosphorus Removal (lb/yr)
	Impervious (High- Density Residential)	232	3.00	6.96	7.03	65%	4.57
	Pervious (HGS B)	0.12	0.59	0.07			
Totals =			3.59		7.03		4.57

	<u>65%</u>
Total Phosphorus Removed	<u>4.57</u>
Proposed Phosphorus Load	7.03
Existing Phosphorus Load	7.54

* Per MA MS4 General Permit, Table 3-1, Average Annual Distinct Phosphorus Load (P Load) export rates for use in exstimating phosphorus load reduction credits the MA MS4 Permit.

Weighted Phosphorous Removal Calculation

Project Name: Dunstan East Mixed-Use Redevelopment

Project Location: Newton, MA

 Proj. No.:
 14517.00

 Date:
 May 2021

Calculated by: DBL

Checked by:

Subcatchment Number	Impervious Area (ac)	Infiltration Rate (in/hr)	Phosphorous Removal	A x PR
1S	3.00	0.00	65%	1.95
Totals =	3.00			1.95

<u>Weighted Phosphorous Removal:</u> S(AxPR) / SA = 6	65.0%
---	-------

<u>Note</u>: Phosphorous removal based on EPA "Stormwater Best Management Practices (BMP) Performance Analysis" assuming commercial and high density land uses. Refer to BMP Sizing Calculations for total phosphorous removal percentages by BMP type.

Sand Filter Sizing Calculations

		Project:	Duns	tan East		Project #				14517.
		Location:	New	ton, MA	Sheet		1 of 2			
		Calculated by:	DBL			Date:				5-May-
		Checked by:				Date:				
		Title	Sand	Filter Sizing C	alculations - Re	evised				
Sedimentation	Chambe	r Sizing (Sa	nd Fi	lter 1)						
$A_{s} = -Q/W \ln (1)$	-E)									
A 11 1		(6.2)								
$A_s = sedimenta$										
Q = discharge i		-								
W = particle set		• •			for slit)					
E = sediment re	emovaren	iciency (ass	ume u	.9 01 90%)						
(West Side)					(East Side)					
WQV =	2,445	ft ³			WQV =	4,287	ft ³			
Q =	0.028				Q =	0.050				
Q = W=	0.0004	-			W=	0.0004				
E=	0.0004				E=	0.0004				
	0.5					0.5				
A _s =	162.9	ft ²			A _s =	285.6	ft ²			
- 5					5					
A _s Provided =		390	ft ²	(10' x 39')	A _s Provided	=		292.5	ft ²	(7.5' x 39
										-
Filter Bed Sizir	ng (Sand I	Filter 1)								
	(sedime	nt chamber	' is coi	mbined for tot	tal flow)					
$A_f = (WQV \times d)/dt$	kt(h+d)									
A _f = filter bed s	urface are	ea (ft²)								
WQV = water q	uality volu	ume (ft ³)								
d = filter bed de										
k = hydraulic co		y of filter m	edia (ft/day)						
t = time of wate	er quality	volume to c	drain f	rom system (2	4 hours)					
h = average hei	ght of wa	ter above fi	lter be	ed during wate	er quality desig	n storm				
WQV =	6,732									
d =	1.5									
k =		ft/day								
t =		day								
h =	2.70	ft								
_		e.2								
A _f =	601.1	ft ²								
A _f = A _f Provided =	601.1 610									

\\vhb.com\gbl\proj\Wat-LD\14517.00\ssheets\14517.00 - Sand Filter Sizing Calculations-JNP-CONCEPT _2021-05-04

Water Quality Volume Storage Check

/-									
(F	ollowing G	eorgia Stor	rmwate	er Managen	nen	t Manual)			
Per Massachu	setts Storm	water Han	dhook \	/olume 2 Ch	nant	ter 2 design	of Sand		
Filter referenc									
		Stormwate			inua	וג			
As described t	-			-					
treatment syst	tem mus	t temporari	ily hold	at least 75%	% of	the (water	quality		
volume)". The		ne below tł	ne outfa	all weir mus	t be	e equal to at	least 75%	0	
of the require	d WQV.								
WQV =	6,732	ft ³							
75% WQV =	5,049								
	0,010								
V _s = volume w	ithin sedim	entation cl	namber	below the	top	of the sand	media		
V _t = volume w	ithin the vo	oids in the f	ilter be	d (assume 4	0%	voids)			
V _{temp} = tempo	rary volum	e stored ab	ove the	filter bed a	nd	low flow we	eir		
A _f = provided f	filter bed su	urface area	(ft ²)						
$A_s = provided$	sedimenta	tion surface	area (f	t ²)					
d = filter bed c									
h _f = average h	eight of wa	ter above f	ilter be	d during wa	ter	quality desi	gn storm		
h _s = height of s	sedimentat	ion chambe	ers belo	w top of sa	nd ı	media			
$V_s = A_s * h_s$		r . ²							
	682.5								
		ft							
V _s =	1,365	π							
$V_{t} = A_{f} * d * 0.4$	4								
	610	ft ²							
d =	1.5								
V _t =									
$V_{temp} = (A_f + A_s)$	s) * h _f								
A _f =	610	ft ²							
A _s =	682.5	ft ²							
h _f =	2.70	ft							
V _{temp} =	3,490	ft ³							
Total Provided	$WQV = V_s$	+ V _t + V _{temp}							
Total WQV =	5,221	ft ³	>	5.049	ft ³	Required			
	5,221			5,645		quireu			

\\vhb.com\gbl\proj\Wat-LD\14517.00\ssheets\14517.00 - Sand Filter Sizing Calculations-JNP-CONCEPT _2021-05-04

Project:	Dunstan East	Project #	14517.00
Location:	Newton, MA	Sheet	3 of 4
Calculated by	/: PTM	Date:	10-Jun-20
Checked by:		Date:	
Title	Sand Filter Sizing Calculations		

		er Sizing (Sai	,				_			
$A_s = -Q/W \ln Q$	(1-F)									
$n_{\rm s} = 0.07$ m										
A _s = sedimen	A_s = sedimentation surface area (ft ²)									
	Q = discharge rate from drainage area (ft3/s) = WQV/24hr									
-	W = particle settling velocity (0.0004 ft/s recommended for silt)									
	E = sediment removal efficiency (assume 0.9 or 90%)									
WQV =	1,137 f	t ³								
Q =	0.013 f	t ³ /s								
W=	0.0004 f	t/s								
E=	0.9									
A _s =	75.8 1	t ²								
		•								
A _s Provided =	198 1	ťť								
	-ina (Cand	Filtor 2)								
Filter Bed Siz	zing (Sand	The Z								
Filter Bed Siz	zing (Sand	The Z					_			
Filter Bed Siz		Titter 2)					_			
A _f =(WQV x c	l)/kt(h+d)									
	l)/kt(h+d)									
A _f =(WQV x c	l)/kt(h+d) I surface ar	ea (ft ²)								
$A_f = (WQV \times c)$ $A_f = filter bed$ WQV = water d = filter bed	l)/kt(h+d) l surface ar r quality vo depth (ft)	ea (ft ²) lume (ft ³)								
$A_{f} = (WQV \times c)$ $A_{f} = filter bed$ $WQV = water$ $d = filter bed$ $k = hydraulic$	l)/kt(h+d) l surface ar r quality vo depth (ft) conductivi	ea (ft ²) lume (ft ³) ty of filter me								
$A_{f} = (WQV \times c)$ $A_{f} = filter bed$ $WQV = water$ $d = filter bed$ $k = hydraulic$ $t = time of water$	l)/kt(h+d) l surface ar r quality vo depth (ft) conductivi ater quality	ea (ft ²) lume (ft ³) ty of filter me volume to di	rain from sy							
$A_{f} = (WQV \times c)$ $A_{f} = filter bed$ $WQV = water$ $d = filter bed$ $k = hydraulic$	l)/kt(h+d) l surface ar r quality vo depth (ft) conductivi ater quality	ea (ft ²) lume (ft ³) ty of filter me volume to di	rain from sy			gn storm				
$A_f = (WQV \times c)$ $A_f = filter bed$ WQV = water d = filter bed k = hydraulic t = time of water $h = average h$	l)/kt(h+d) I surface ar r quality vo depth (ft) conductivi ater quality neight of wa	ea (ft ²) lume (ft ³) ty of filter me volume to di ater above filt	rain from sy			gn storm				
$A_{f} = (WQV \times c)$ $A_{f} = filter bed$ $WQV = water$ $d = filter bed$ $k = hydraulic$ $t = time of wa$ $h = average h$ $WQV =$	l)/kt(h+d) I surface ar r quality vo depth (ft) conductivi ater quality neight of wa 1,137 f	ea (ft ²) lume (ft ³) ty of filter me volume to di ater above filt	rain from sy			gn storm				
$A_{f} = (WQV \times c)$ $A_{f} = filter bed$ $WQV = water$ $d = filter bed$ $k = hydraulic$ $t = time of wa$ $h = average h$ $WQV =$ $d =$	l)/kt(h+d) I surface ar r quality vo depth (ft) conductivi ater quality neight of wa 1,137 f 1.5 f	ea (ft ²) lume (ft ³) ty of filter me volume to di ater above filt t ³	rain from sy			gn storm				
$A_{f} = (WQV \times c)$ $A_{f} = filter bed$ $WQV = water$ $d = filter bed$ $k = hydraulic$ $t = time of water$ $h = average h$ $WQV =$ $d =$ $k =$	l)/kt(h+d) l surface ar r quality vo depth (ft) conductivi ater quality neight of wa 1,137 f 1.5 f 4 f	ea (ft ²) lume (ft ³) ty of filter me volume to dr ater above filt t ³ t t	rain from sy			gn storm				
$A_{f} = (WQV \times c)$ $A_{f} = filter bed$ $WQV = water$ $d = filter bed$ $k = hydraulic$ $t = time of wa$ $h = average h$ $WQV =$ $d =$ $k =$ $t =$ $t =$	l)/kt(h+d) I surface ar r quality vo depth (ft) conductivi ater quality neight of wa 1,137 f 1.5 f 4 f 1 c	ea (ft ²) lume (ft ³) ty of filter me volume to dr ater above filt t ³ t t/day day	rain from sy			gn storm				
$A_{f} = (WQV \times c)$ $A_{f} = filter bed$ $WQV = water$ $d = filter bed$ $k = hydraulic$ $t = time of water$ $h = average h$ $WQV =$ $d =$ $k =$	l)/kt(h+d) l surface ar r quality vo depth (ft) conductivi ater quality neight of wa 1,137 f 1.5 f 4 f	ea (ft ²) lume (ft ³) ty of filter me volume to dr ater above filt t ³ t t/day day	rain from sy			gn storm				
$A_{f} = (WQV \times c)$ $A_{f} = filter bed$ $WQV = water$ $d = filter bed$ $k = hydraulic$ $t = time of wa$ $h = average h$ $WQV =$ $d =$ $k =$ $t =$ $t =$	l)/kt(h+d) I surface ar r quality vo depth (ft) conductivi ater quality neight of wa 1,137 f 1.5 f 4 f 1 c	ea (ft ²) lume (ft ³) ty of filter me volume to dr ater above filt t ³ t t/day day t	rain from sy			gn storm				

Water Quality Volume Storage Check

	(Follo	owing Ge	orgia Stormwa	ter Manag	jement Mar	nual)			
Per Massachusetts Stormwater Handbook Volume 2 Chapter 2, design of Sand Filter references Georgia Stormwater Management Manual									
must temp	orarily ho	ld at leas	water Manager t 75% of the (w equal to at least	ater qualit	y volume)".	The total			
WQV =	1,137	ft ³							
5% WQV =	853	ft ³							
V _e = volume v	/ithin sed	imentatio	on chamber bel	ow the top	o of the sand	l media			
			the filter bed (a						
			d above the filt			eir			
A _f = provided									
A _s = provided									
d = filter bed	depth (ft)								
	-		ove filter bed du	-		ign storm			
h _s = height of	sedimen	tation cha	ambers below to	op of sand	media				
$V_s = A_s * h_s$									
A _s =	198.0	ft ²							
h _s =	2	ft							
V _s =	396	ft³							
V _t = A _f * d * 0	.4								
A _f =		ft ²							
d =	1.5								
V _t =	118.8	ft ³							
V _{temp} = (A _f + A	.) * h.								
A _f =	198	ft ²							
	198.0								
	0.90								
V _{temp} =	356	ft ³							
Total Provide	d WQV =	$V_s + V_t + V_t$	V _{temp}						
otal WQV =	871	ft ³	>	825	ft ³ Require	d			
	0/1		-	033	it require	u			

Operation & Maintenance Plan

Operation & Maintenance Plan

This Operation and Maintenance Plan has been developed to establish site management practices that improve the quality of stormwater discharges from the Project.

Description of Pollutant Sources

The Project Site consists of three multi-story mixed-use buildings, and subsequent parking along the north side of Washington Street between Dunston Street and Kempton Place in Newton, Massachusetts. The Site lies within the Charles River Watershed, and is bounded by the Cheese Cake Brook to the north.

Pollutant Control Approach

Maintenance of Pavement Systems

Standard Asphalt Pavement

Regular maintenance of pavement surfaces will prevent pollutants such as oil and grease, trash, and sediments from entering the stormwater management system. The following practices should be performed:

- Sweep or vacuum asphalt pavement areas semi-annually with a commercial cleaning unit and dispose of removed material.
- Check loading docks and dumpster areas frequently for spillage and/or pavement staining and clean as necessary.
- Routinely pick up and remove litter from the parking areas, islands, and perimeter landscaping.

Maintenance of Vegetated Areas

38

Proper maintenance of vegetated areas can prevent the pollution of stormwater runoff by controlling the source of pollutants such as suspended sediments, excess nutrients, and chemicals from landscape care products. Practices that should be followed under the regular maintenance of the vegetated landscape include:

- > Inspect planted areas on a semi-annual basis and remove any litter.
- \\vhb\gbl\projWat-LD\14517.00\Reports\Stormwater\Attachment s\C - TSS WQV\14517.00-O&M.docx
- Dunstan East Mixed-Use Redevelopment: Long Term Pollution Prevention Plan

- > Maintain planted areas adjacent to pavement to prevent soil washout.
- > Immediately clean any soil deposited on pavement.
- Re-seed bare areas; install appropriate erosion control measures when native soil is exposed or erosion channels are forming.
- Plant alternative mixture of grass species in the event of unsuccessful establishment.
- > The grass vegetation should be cut to a height between three and four inches.
- Pesticide/Herbicide Usage No pesticides are to be used unless a single spot treatment is required for a specific control application.
- Fertilizer usage should be avoided. If deemed necessary, slow release fertilizer should be used. Fertilizer may be used to begin the establishment of vegetation in bare or damaged areas, but should not be applied on a regular basis unless necessary.
- > Pet waste provision if applicable.

Management of Snow and Ice

Storage and Disposal

Snow shall be removed from the site shortly after snow events. The standard pavement surfaces will be sanded, and salt may be swept in the spring or removed as snow melts and drains through the stormwater management system. Key practices for the safe storage and disposal of snow include:

- Under no circumstances shall snow be disposed or stored in wetland resource areas.
- Under no circumstances shall snow be disposed or stored in stormwater basins, ponds, rain gardens, swales, channels, or trenches.
- Do not stockpile snow on permeable pavement surfaces. Sand and grit in snow will clog pavement.
- Plow parking areas paved with permeable asphalt pavement carefully. Plow blades should be set approximately 1" higher than usual to avoid scarring the pavement and loosening material that could potentially clog surface pores.
- Do not apply abrasives such as sand or grit on or adjacent to permeable asphalt pavement.
- Monitor application rates of deicing materials on permeable pavement areas and reduce application rate accordingly. Permeable pavements tend to require less deicer per unit area because the water is not required to remain liquid over the entire parking surface area before discharge.
- > Do not apply abrasives such as sand or grit on or adjacent to permeable pavers.
- > Avoid plowing of areas with permeable pavers.

Salt and Deicing Chemicals

The amount of salt and deicing chemicals to be used on the site shall be reduced to the minimum amount needed to provide safe pedestrian and vehicle travel. The following practices should be followed to control the amount of salt and deicing materials that come into contact with stormwater runoff:

- Devices used for spreading salt and deicing chemicals should be capable of varying the rate of application based on the site specific conditions.
- Specific environmentally sensitive areas, including the 100' buffer zone, should be designated as no and/or reduced salt areas.
- Sand and salt should be stockpiled under covered storage facilities that prevent precipitation and adjacent runoff from coming in contact with the deicing materials

Spill Prevention and Response Plan

Spill prevention equipment and training will be provided by the property management company.

Initial Notification

In the event of a spill the facility and/or construction manager or supervisor will be notified immediately.

FACILITY MANAGER

Name:	Home Phone:	
Phone:	E-mail:	
CONSTRUCTION MANAGER		
Name:	Home Phone:	
Phone:	E-mail:	

The supervisor will first contact the Fire Department and then notify the Police Department, the Public Health Commission and the Conservation Commission. The Fire Department is ultimately responsible for matters of public health and safety and should be notified immediately.

Further Notification

Based on the assessment from the Fire Chief, additional notification to a cleanup contractor may be made. The Massachusetts Department of Environmental Protection (DEP) and the EPA may be notified depending upon the nature and severity of the spill. The Fire Chief will be responsible for determining the level of cleanup and notification required. The attached list of emergency phone numbers shall be posted in the main construction/facility office and readily accessible to all employees. A hazardous waste spill report shall be completed as necessary using the attached form.

Emergency Notification Phone Numbers

1.	FACILITY MA	NAGER	
	Name:		Home Phone:
	Phone:		E-mail:
	ALTERENATE		
	Name:		Home Phone:
	Phone:		E-mail:
2.	FIRE DEPARTI	IENT	
	Emergency:	911	
	Business:	(617) 796-2210	
	POLICE DEPAR	RTMENT	
	Emergency:	911	
	Business:	(617) 796-2107	
3.	CLEANUP CON	ITRACTOR:	
-	Address:		
	Phone:		
4.		TTS DEPARTMENT OF	ENVIRONMENTAL PROTECTION
4.	MASSACHUSE Emergency:	TTS DEPARTMENT OF	ENVIRONMENTAL PROTECTION
4.	Emergency:	gion – Wilmington Office:	
4. 5.	Emergency: Northeast Re		
	Emergency: Northeast Re	gion – Wilmington Office:	
	Emergency: Northeast Re	gion – Wilmington Office: SPONSE CENTER	
	Emergency: Northeast Re NATIONAL RES Phone:	gion – Wilmington Office: SPONSE CENTER	(978) 694-3200
	Emergency: Northeast Re NATIONAL RES Phone:	gion – Wilmington Office: SPONSE CENTER (800) 424-8802	(978) 694-3200
	Emergency: Northeast Re NATIONAL RES Phone: ALTERNATE: L	gion – Wilmington Office: SPONSE CENTER (800) 424-8802	(978) 694-3200
5.	Emergency: Northeast Re NATIONAL RES Phone: ALTERNATE: U Emergency: Business:	gion – Wilmington Office: SPONSE CENTER (800) 424-8802 J.S. ENVIRONMENTAL F	(978) 694-3200
	Emergency: Northeast Re NATIONAL RES Phone: ALTERNATE: U Emergency: Business: CONSERVATIO	gion – Wilmington Office: SPONSE CENTER (800) 424-8802 J.S. ENVIRONMENTAL F	(978) 694-3200
5.	Emergency: Northeast Re NATIONAL RES Phone: ALTERNATE: U Emergency: Business:	gion – Wilmington Office: SPONSE CENTER (800) 424-8802 J.S. ENVIRONMENTAL F DI COMMISSION Jennifer Steel	(978) 694-3200
5.	Emergency: Northeast Re NATIONAL RES Phone: ALTERNATE: U Emergency: Business: CONSERVATIO Contact: Phone:	gion – Wilmington Office: SPONSE CENTER (800) 424-8802 J.S. ENVIRONMENTAL F DN COMMISSION Jennifer Steel (617) 796-1120	(978) 694-3200
5.	Emergency: Northeast Re NATIONAL RES Phone: ALTERNATE: L Emergency: Business: CONSERVATIO Contact: Phone: BOARD OF HE	gion – Wilmington Office: SPONSE CENTER (800) 424-8802 J.S. ENVIRONMENTAL F DN COMMISSION Jennifer Steel (617) 796-1120 ALTH	 PROTECTION AGENCY
5.	Emergency: Northeast Re NATIONAL RES Phone: ALTERNATE: U Emergency: Business: CONSERVATIO Contact: Phone:	gion – Wilmington Office: SPONSE CENTER (800) 424-8802 J.S. ENVIRONMENTAL F DN COMMISSION Jennifer Steel (617) 796-1120	 PROTECTION AGENCY

Hazardous Waste / Oil Spill Report

Date	Time	AM / PM
Exact location (Transformer #)		_
Type of equipment	Make	Size
S / N	Weather Conditions	
On or near Water	name of body of Water	
□ No		
Type of chemical/oil spilled		
Amount of chemical/oil spilled		
Cause of Spill		
Measures taken to contain or clean up spill		
Amount of chemical/oil recovered	Metho	d
Material collected as a result of cleanup:		
Drums containing		
Drums containing		
Drums containing		
Location and method of debris disposal		
Name and address of any person, firm, or co	prporation suffering dama	ges:
Procedures, method, and precautions institu	ted to prevent a similar of	ccurrence from recurring:
Spill reported to General Office by	Time	AM / PM
Spill reported to DEP / National Response C	enter by	
DEP Date Time	AM / PM In	spector
NRC Date Time	AM / PM In	spector
Additional comments:		

Assessment - Initial Containment

The supervisor or manager will assess the incident and initiate containment control measures with the appropriate spill containment equipment included in the spill kit kept on-site. A list of recommended spill equipment to be kept on site is included on the following page.

Fire / Police Department	911
Municipality Health Department	(617) 796-1420
Municipality Conservation Commission:	(617) 796-1120

Emergency Response Equipment

The following equipment and materials shall be maintained at all times and stored in a secure area for long-term emergency response need.

Supplies		Recommended Suppliers
SORBENT PILLOWS/"PIGS"	2	http://www.newpig.com
SORBENT BOOM/SOCK	25 FEET	Item # KIT276 – mobile container with two pigs,
SORBENT PADS	50	26 feet of sock, 50 pads, and five pounds of
LITE-DRI® ABSORBENT	5	absorbent (or equivalent)
POUNDS		http://www.forestry-suppliers.com
SHOVEL	1	Item # 43210 — Manhole cover pick (or
PRY BAR	1	equivalent)
GOGGLES	1 PAIR	Item # 33934 — Shovel (or equivalent)
GLOVES – HEAVY	1 PAIR	Item # 90926 — Gloves (or equivalent)
		Item # 23334 — Goggles (or equivalent)

Stormwater Operation and Maintenance Plan

Project Information

Site

Dunstan East Mixed-Use Redevelopment Washington Street Newton, MA

Owner

Mark Development, LLC 275 Grove Street Suite 2-150 Newton, MA 02466 (617) 614-9149

Site Supervisor

Site Manager Name Site Manager Address Site Manager City, State Zip Site Manager Phone Number

Name: _____

Telephone: _____

Cell phone: _____

46

Email: _____

Description of Stormwater Maintenance Measures

The following Operation and Maintenance (O&M) program is proposed to ensure the continued effectiveness of the stormwater management system. Attached to this plan are a Stormwater Best Management Practices Checklist and Maintenance Figure for use during the long term operation and maintenance of the stormwater management system.

Catch Basins

- All catch basins shall be inspected and as necessary at least four times a year and at the end of the foliage and snow removal seasons.
- Sediment (if more than six inches deep) and/or floatable pollutants shall be pumped from the basin and disposed of at an approved offsite facility in accordance with all applicable regulations.
- Any structural damage or other indication of malfunction will be reported to the site manager and repaired as necessary
- During colder periods, the catch basin grates must be kept free of snow and ice.
- During warmer periods, the catch basin grates must be kept free of leaves, litter, sand, and debris.

Roof Drain Leaders

- > Perform routine roof inspections quarterly.
- Keep roofs clean and free of debris.
- Keep roof drainage systems clear.
- > Keep roof access limited to authorized personnel.
- > Clean inlets draining to the subsurface bed twice per year as necessary.

Sand Filter System

- Eroded or barren spots should be reestablished immediately after inspection to prevent additional erosion and accumulation of sediment.
- Sediment should be removed from the basin as necessary. Removal procedures should not take place until the floor of the basin is thoroughly dry.

Inspections and Cleaning

- Sand Filter Systems should be inspected at least twice a year to ensure proper filtration and function.
- Vacuum trucks shall be used to remove and replace the top few inches of clogged sand as necessary to provide adequate infiltration.

47

Dunstan East Mixed-Use Redevelopment: Long Term Pollution Prevention Plan

Appendix D Standard 7 Supporting Information

► Redevelopment Checklist

Chapter 3

Checklist for Redevelopment Projects

Standard 7: A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3, and the pretreatment and structural stormwater best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions.

Redevelopment is defined to include

- Maintenance and improvement of existing roadways, including widening less than a single lane, adding shoulders, correcting substandard intersections, improving existing drainage systems, and repaving;
- Development rehabilitation, expansion and phased projects on previously developed sites, provided the redevelopment results in no net increase in impervious area; and
- Remedial projects specifically designed to provide improved stormwater management, such as projects to separate storm drains and sanitary sewers, and stormwater retrofit projects.

Components of redevelopment projects that include development of previously undeveloped sites do not meet this definition. The portion of the project located in a previously developed area must meet Standard 7, but project components within undeveloped areas must meet all the Standards.

MassDEP recognizes that site constraints often make it difficult to comply with all the Standards at a redevelopment site. These constraints are as follows:

Lack of space. Because of the presence of existing structures, on-site subsurface sewage disposal systems, stormwater best management practices, and water bodies and wetlands, and easements, the space available for the installation of additional stormwater BMPs may be quite limited. On many suites it may be difficult or impossible to use space-intensive BMPs such as wet detention basins.

Soils: The presence of bedrock or clay can limit the effectiveness of infiltration or detention BMPs. Often soils at redevelopment sites have been compacted by buildings and heavy traffic, impairing their ability to infiltrate stormwater into the ground.

Underground utilities. The presence of underground utilities including gas and water mains, sewer pipes and electric cable conduits can greatly reduce the amount of land available for BMPs.

This chapter provides specific guidance and checklists to ensure that the applicant has met his/her obligations under Standard 7. Because it may be difficult for a redevelopment project to comply with all the Stormwater Management Standards, Standard 7 provides that a redevelopment project is required to comply with the following Standards only "to the maximum extent practicable": Standard 2, Standard 3, and the pretreatment and structural stormwater best management practice requirements of Standards 4, 5, and 6. Existing outfalls shall be brought into compliance with Standard 1 only to the maximum extent practicable.

As set forth in Standard 7, the phrase "to the maximum extent practicable" means that:

- (1) Proponents of redevelopment projects have made all reasonable efforts to meet the requirements of Standards 2 and 3 and the pretreatment and structural stormwater best management practices requirements of Standards 4, 5, and 6 and to bring existing outfalls into compliance with Standard 1.
- (2) They have made a complete evaluation of possible stormwater management measures, including environmentally sensitive site design that minimizes land disturbance and impervious surfaces, low impact development techniques and structural stormwater BMPs; and
- (3) If not in full compliance with Standard 1 for existing outfalls, Standards 2 and 3 and the pretreatment and structural stormwater best management practice requirements of Standards 4, 5, and 6, they are implementing the highest practicable level of stormwater management.

Generally, an alternative is practicable if it can be implemented within the site being redeveloped, taking into consideration cost, land area requirements, soils and other site constraints. However, offsite alternatives may also be practicable. Proponents must document the evaluation of practicable alternatives with sufficient information to support the conclusions of the analysis.

At the same time, stormwater runoff from redevelopment projects must be properly managed. To this end, Standard 7 provides that redevelopment projects shall comply with all other requirements of the Stormwater Management Standards, including, without limitation, the pollution prevention requirements of Standards 4, 5, and 6, the erosion and sedimentation control requirements of Standard 8, the operation and maintenance requirements of Standard 9, and the prohibition of illicit discharge set forth in Standard 10. Proponents must also improve existing conditions.

Proponents of redevelopment projects shall document their compliance with these requirements. To assist proponents and reviewers in determining whether a redevelopment project complies with Standard 7, MassDEP has prepared the following redevelopment checklist.

[Proponents of MassHighway redevelopment projects and Conservation Commissions reviewing such projects may follow the guidelines for redevelopment provided in the MassHighway Stormwater Handbook for Highways and Bridges (May 2004 or latest version) in lieu of the guidance set forth in this chapter.¹ The MassHighway Stormwater Handbook was developed by the Massachusetts Highway Department and issued by joint correspondence of May 7, 2004 by MassHighway and MassDEP. It provides detailed guidance on the evaluation and implementation of stormwater management practices for MassHighway road and bridge redevelopment projects, including a methodology for screening and selecting Best Management Practices (BMPs). Proponents and reviewers of other public roadway redevelopment projects may find useful information in the MassHighway Stormwater Handbook.]

¹ The MassHighway Handbook published in 2004 must be revised to make it consistent with this Handbook.Volume 2: Technical Guide for Compliance with the MassachusettsChapter 3Page 2Stormwater Management StandardsPage 2Page 2

Redevelopment Checklist

Existing Conditions

• On-site: For all redevelopment projects, proponents should document existing conditions, including a description of extent of impervious surfaces, soil types, existing land uses with higher potential pollutant loads, and current onsite stormwater management practices.

Existing Conditions are included

• Watershed: Proponents should determine whether the project is located in a watershed or subwatershed, where flooding, low streamflow or poor water quality is an issue. Existing and proposed floodplains associated with the Cheese Cake Brook are shown on the plans.

The Project

Is the project a redevelopment project?

- Maintenance and improvement of existing roadways Yes
- Development of rehabilitation, expansion or phased project on redeveloped site, or Yes
- Remedial stormwater project Yes

For non-roadway projects, is any portion of the project outside the definition of redevelopment?

- Development of previously undeveloped area No
- Increase in impervious surface No

If a component of the project is not a redevelopment project, the proponent shall use the checklist set forth below to document that at a minimum the proposed stormwater management system fully meets each Standard for that component. The proponent shall also document that the proposed stormwater management system meets the requirements of Standard 7 for the remainder of the project.

The Stormwater Management Standards

The redevelopment checklist reviews compliance with each of the Stormwater Management Standards in order.

Standard 1: (Untreated discharges)

No new stormwater conveyances (e.g., outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth. Same rule applies for new developments and redevelopments.

Full compliance with Standard 1 is required for new outfalls.

• What BMPs are proposed to ensure that all new discharges associated with the discharge are adequately treated? – Deep Sump Catch Basins with Hoods and Subsurface Sand Filters

- What BMPs are proposed to ensure that no new discharges cause erosion in wetlands or waters of the Commonwealth? Deep Sump Catch Basins with Hoods and Subsurface Sand Filters, with appropriate erosion control measures and stream restoration at proposed headwalls.
- Will the proposed discharge comply with all applicable requirements of the Massachusetts Clean Waters Act and the regulations promulgated thereunder at 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00? Yes

Existing outfalls shall be brought into compliance with Standard 1 to the maximum extent practicable.

- Are there any existing discharges associated with the redevelopment project for which new treatment could be provided? Yes, and sand filters are proposed
- If so, the proponent shall specify the stormwater BMP retrofit measures that have been considered to ensure that the discharges are adequately treated and indicate the reasons for adopting or rejecting those measures. (See Section entitled "Retrofit of Existing BMPs".)
 Proposing Sand Filters to treat Kempton Place prior to discharging to the Cheese Cake Brook
- What BMPs have been considered to prevent erosion from existing stormwater discharges? - Erosion control, dissipation pads, new low points, and stream restoration at the proposed headwalls, allowing the flow from the headwalls to spread and prevent erosion to prevent flow directly into the Cheese Cake Brook

Standard 2: (Peak rate control and flood prevention)

Stormwater management systems must be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates. This Standard may be waived for land subject to coastal storm flowage.

Full compliance for any component that is not a redevelopment

Compliance to the Maximum Extent Practicable:

- Does the redevelopment design meet Standard 2, comparing post-development to predevelopment conditions? - Yes
- If not, the applicant shall document an analysis of alternative approaches for meeting the Standard. (See Menu of Strategies to Reduce Runoff and Peak Flows and/or Increase Recharge Menu included at the end of this chapter.)

Improvement of existing conditions:

- Does the project reduce the volume and/or rate of runoff to less than current estimated conditions? Has the applicant considered all the alternatives for reducing the volume and/or rate of runoff from the site? (See Menu.) Yes
- Is the project located within a watershed subject to damage by flooding during the 2-year or 10-year 24-hour storm event? If so, does the project design provide for attenuation of the 2-year and 10-year 24-hour storm event to less than current estimated conditions? Have measures been implemented to reduce the volume of runoff from the site resulting from the 2 year or 10 year 24 hour storm event? (See Menu.) Yes
- Is the project located adjacent to a water body or watercourse subject to adverse impacts from flooding during the 100-year 24-hour storm event? If so, are portions of the site available to increase flood storage adjacent to existing Bordering Land Subject to Flooding (BLSF)? Yes
- Have measures been implemented to attenuate peak rates of discharge during the 100-year 24hour storm event to less than the peak rates under current estimated conditions? Have measures

been implemented to reduce the volume of runoff from the site resulting from the 100-year 24hour storm event? (See Menu.) - Yes

Standard 3: (Recharge to Ground water)

Loss of annual recharge to ground water shall be eliminated or minimized through the use of infiltration measures, including environmentally sensitive site design, low impact development techniques, best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from the predevelopment conditions based on soil type. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusettss Stormwater Handbook.

Full compliance for any component that is not a redevelopment

Compliance to the Maximum Extent Practicable:

- Does the redevelopment design meet Standard 3, comparing post-development to predevelopment conditions? - No
- If not, the applicant shall document an analysis of alternative approaches for meeting the Standard? Standard won't be met due to groundwater depth
- What soil types are present on the site? Is the site is comprised solely of C and D soils and bedrock at the land surface?
- Does the project include sites where recharge is proposed at or adjacent to an area classified as contaminated, sites where contamination has been capped in place, sites that have an Activity and Use Limitation (AUL) that precludes inducing runoff to the groundwater, pursuant to MGL Chapter 21E and the Massachusetts Contingency Plan 310 CMR 40.0000; sites that are the location of a solid waste landfill as defined in 310 CMR 19.000; or sites where groundwater from the recharge location flows directly toward a solid waste landfill or 21E site?²
- Is the stormwater runoff from a land use with a higher potential pollutant load? No
- Is the discharge to the ground located within the Zone II or Interim Wellhead Protection Area of a public water supply? N/A
- Does the site have an infiltration rate greater than 2.4 inches per hour? No

Improvements to Existing Conditions:

- Does the project increase the required recharge volume over existing (developed) conditions? If so, can the project be redesigned to reduce the required recharge volume by decreasing impervious surfaces (make building higher, put parking under the building, narrower roads, sidewalks on only one side of street, etc.) or using low impact development techniques such as porous pavement? Yes: more pervious area is proposed, trees and landscaping improvements, no infiltration proposed under existing conditions, proposing sand filter BMPs.
- Is the project located within a basin or sub-basin that has been categorized as under high or medium stress by the Massachusetts Water Resources Commission, or where there is other evidence that there are rivers and streams experiencing low flow problems? If so, have measures been considered to replace the natural recharge lost as a result of the prior development? (See Menu.)
- Has the applicant evaluated measures for reducing site runoff? (See Menu.) Yes

Standard 4: (80% TSS Removal)

Stormwater management systems must be designed to remove 80% of the average annual postconstruction load of Total Suspended Solids (TSS). This standard is met when:

² A mounding analysis is needed if a site falls within this category. See Volume 3.

a. Suitable practices for source control and pollution prevention are identified in a long-term pollution prevention plan and thereafter are implemented and maintained;
b. Stormwater BMPs are sized to capture the required water quality volume determined in accordance with the Massachusetts Stormwater Handbook; and
c. Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook.

c. Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook. Full compliance for any component that is not a redevelopment

Full compliance with the long-term pollution plan requirement for new developments and redevelopments. – Project Complies

- Has the proponent developed a long-term pollution plan that fully meets the requirements of Standard 4? Yes
- Does the pollution prevention plan include the following source control measures? Yes
 - Street sweeping
 - Proper management of snow, salt, sand and other deicing chemicals
 - Proper management of fertilizers, herbicides and pesticides
 - Stabilization of existing eroding surfaces

Compliance to the Maximum Extent Practicable for the other requirements:

- Does the redevelopment design provide for treatment of all runoff from existing (as well as new) impervious areas to achieve 80% TSS removal? If 80% TSS removal is not achieved, has the stormwater management system been designed to remove TSS to the maximum extent practicable? Yes
- Have the proposed stormwater BMPs been properly sized to capture the prescribed runoff volume? N/A
 - One inch rule applies for discharge
 - within a Zone II or Interim Wellhead Protection Area,
 - near or to another critical area,
 - from a land use with a higher potential pollutant load
 - to the ground where the infiltration rate is greater than 2.4 inches per hour
- Has adequate pretreatment been proposed? N/A
 - 44% TSS Removal Pretreatment Requirement applies if:
 - Stormwater runoff is from a land use with a higher potential pollutant load
 - Stormwater is discharged
 - To the ground within the Zone II or Interim Wellhead Protection Area of a Public Water Supply
 - To the ground with an infiltration rate greater than 2.4 inches per hour
 - Near or to an Outstanding Resource Water, Special Resource Water, Cold-Water Fishery, Shellfish Growing Area, or Bathing Beach.

• If the stormwater BMPs do not meet all the requirements set forth above, the applicant shall document an analysis of alternative approaches for meeting the these requirements. (See Section on Retrofitting Existing BMPs (the "Retrofit Section"). -N/A

Improvements to Existing Conditions:

- Have measures been provided to achieve at least partial compliance with the TSS removal standard? Fully Complies
- Have any of the best management practices in the Retrofit Section been considered? N/A
- Have any of the following pollution prevention measures been considered? Yes

- Reduction or elimination of winter sanding, where safe and prudent to do so
- Tighter controls over the application of fertilizers, herbicides, and pesticides
- o Landscaping that reduces the need for fertilizer, herbicides and pesticides
- High frequency sweeping of paved surfaces using vacuum sweepers
- Improved catch basin cleaning
- Waterfowl control programs
- Are there any discharges (new or existing) to impaired waters? If so, see TMDL section. Site has TMDL phosphorous removal requirements, with which Project complies.

Standard 5 (Higher Potential Pollutant Loads (HPPL) - N/A

For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention, all land uses with higher potential pollutant loads cannot be completely protected from exposure to rain, snow, snow melt and stormwater runoff, the proponent shall use the specific stormwater BMPs determined by the Department to be suitable for such use as provided in the Massachusetts Stormwater Handbook. Stormwater discharges from land uses with higher potential pollutant loads shall also comply with the requirements of the Massachusetts Clean Waters Act, M.G.L. c. 21, §§ 26-53, and the regulations promulgated thereunder at 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00.

Full compliance for any component that is not a redevelopment.

Full compliance with pollution prevention requirements for new developments and redevelopments.

Pollution Prevention

- Has the proponent considered any of the following operational source control measures?
 - Formation of a pollution prevention team,
 - Good housekeeping practices,
 - Preventive maintenance procedures,
 - Spill prevention and clean up,
 - Employee training, and
 - Regular inspection of pollutant sources.
- Has the proponent considered implementation of any of the following operational changes to reduce the quantity of pollutants on site?
 - Process changes,
 - Raw material changes,
 - Product changes, or
 - Recycling.
- Has the proponent considered making capital improvements to protect the land uses with higher potential pollutant loads from exposure to rain, snow, snow melt, and stormwater runoff?
 - Enclosing and/or covering pollutant sources (e.g. placing pollutant sources within a building or other enclosure, placing a roof over storage and working areas, placing tarps under pollutant source)
 - Installing a containment system with an emergency shutoff to contain spills?
 - Physically segregating the pollutant source to prevent run-on of uncontaminated stormwater?

Massachusetts Stormwater Handbook

Treatment

- If applicable, compliance with the treatment and pretreatment requirements of Standard 5 only to the Maximum Extent Practicable by directing the stormwater runoff from land uses with higher potential pollutant loads to appropriate stormwater BMPs?
 - Are the BMPs selected capable of removing the pollutants associated with the higher potential pollutant load land ("LUHPPL") use?
 - Is the land use likely to generate stormwater with high concentrations of oil and grease? If so has an oil grit separator, sand filter, filtering bioretention area or equivalent been proposed for pretreatment?

Improvement of Existing Conditions.

- If the redevelopment converts a site from a non-LUHPPL use to a LUHPPL use, the applicant shall document how the stormwater BMPs shall be modified or replaced to come into compliance with Standard 5.
- What specific measures have been considered to offset the anticipated impacts of land uses with higher potential pollutant loads?
- If the redevelopment proposal is a brownfield project, the applicant shall demonstrate how the stormwater management measures have been designed to prevent mobilization or remobilization of soil and groundwater contamination. (See Brownfield section)

Other Requirements

• Does the discharge comply with all applicable requirements of the Massachusetts Clean Waters Act, 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00?

Standard 6 (Critical Areas) - N/A

Stormwater discharges to a Zone II or Interim Wellhead Protection Area of a public water supply and stormwater discharges near or any other critical area require the use of the specific source control and pollution prevention measures and the specific stormwater best management practices determined by the Department to be suitable for managing discharges to such area, as provided in the Massachusetts Stormwater Handbook. A discharge is near a critical area if there is a strong likelihood of a significant impact occurring to said area, taking into account site-specific factors. Stormwater discharges to Outstanding Resource Waters or Special Resource Waters shall be set back from the receiving water and receive the highest and best practical method of treatment. A "stormwater discharge," as defined in 314 CMR 3.04(2)(a)1. or (b), to an Outstanding Resource Water or Special Resource Water shall comply with 314 CMR 3.00 and 314 CMR 4.00. Stormwater discharges to a Zone I or Zone A are prohibited unless essential to the operation of the public water supply. Full compliance for component of project that is not a redevelopment

Full compliance with pollution prevention requirements for new developments and redevelopments.

If applicable, compliance to the Maximum Extent Practicable with the pretreatment and treatment requirements of Standard 6:

• Does the redevelopment project utilize the pretreatment, treatment and infiltration BMPs approved for discharges near or to critical areas?

• If the redevelopment project does not comply with Standard 6, the applicant shall document an analysis of alternative measures for meeting Standard 6. (See Section on Specific Redevelopment Projects.)

Improvements to Existing Conditions:

• Have measures to protect critical areas been considered, including additional pollution prevention measures and structural and non-structural BMPs?

Other Requirements

• Does the discharge comply with the Massachusetts Clean Waters Act, 314 CMR 3.00, 314 CMR 4.00, and 314 CMR 5.00?

Standard 8: (Erosion, Sediment Control)

A plan to control construction-related impacts, including erosion sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan), must be developed and implemented.

All redevelopment projects shall fully comply with Standard 8.

• Has the proponent submitted a construction period erosion, sedimentation and pollution prevention plan that meets the requirements of Standard 8?

Yes – the project is covered by a National Pollutant Discharge Elimination System Permit, but a Stormwater Pollution Prevention Plan will be submitted before land disturbance.

Standard 9: (Operation and Maintenance)

A long-term operation and maintenance plan must be developed and implemented to ensure that stormwater management systems function as designed.

All redevelopment projects shall fully comply with Standard 9.

• Has the proponent submitted a long-term Operation and Maintenance plan that meets the requirements of Standard 9? – Yes

Standard 10 (Illicit Discharges)

All illicit discharges to the stormwater management system are prohibited. All redevelopment projects shall fully comply with Standard 10.

- Are there any known or suspected illicit discharges to the stormwater management system at the redevelopment project site? No
- Has an illicit connection detection program been implemented using visual screening, dye or smoke testing? No
- Have an Illicit Discharge Compliance Statement and associated site map been submitted verifying that there are no illicit discharges to the stormwater management system at the site? No

Improvements to Existing Conditions:

• Once all illicit discharges are removed, has the proponent implemented any measures to prevent additional illicit discharges? – Yes, LTPPP & SWPPP

Figure 5-1

Menu of Strategies to Reduce Runoff or Peak Flows and/or Increase Recharge

- Rehabilitate the soils
- Plant trees and other vegetation
- Install a green roof
- Maximize naturally vegetated areas
- Reduce impervious surfaces
- Disconnect roof runoff from direct discharge to the drainage system
- Disconnect other existing paved areas from direct discharge to the drainage system, allowing controlled flow over pervious areas or through BMPs providing at least partial recharge
- Install porous pavement and/or other recharge measures (where sustainable and maintainable for promoting infiltration)
- Apply LID techniques for runoff reduction
- Install additional structural BMPs that are appropriate for redevelopment sites including infiltration trenches, subsurface structures, oil-grit separators, proprietary BMPs
- Retrofit existing BMPs

Retrofitting Existing BMPs

Many BMPs can be effectively retrofitted depending on site conditions and the water quantity or quality objectives trying to be achieved.³ The objective of stormwater retrofitting is to remedy problems associated with, and improve water quality mitigation functions of, older, poorly designed, or poorly maintained stormwater management systems. Prior to the development of the stormwater standards, site drainage design did not require stormwater detention for controlling post-development peak flows. As a result, drainage, flooding, and erosion problems can be common in many older developed areas of the state. Furthermore, a majority of the dry detention basins throughout the state have been designed to control peak flows, without regard to water quality mitigation. Therefore, many existing dry detention basins provide only minimal water quality benefit. Incorporating stormwater retrofits into existing developed sites or into redevelopment projects can reduce the adverse impacts of uncontrolled stormwater runoff.

Bioretention Area Retrofits - can be used as a stormwater retrofit, by modifying existing landscaped areas, or if a parking lot is being resurfaced. In highly urban watersheds, they are one of the few practical retrofit options.

Catch Basin Retrofits or Reconstruction - Older catch basins without sumps can be replaced with catch basins having four foot-deep sumps. Sumps provide storage volume for coarse sediments, assuming that accumulated sediment is removed on a regular basis. Hooded outlets, which are covers over the catch basin outlets that extend below the standing water line, can also be used to trap litter and other floatable materials. Leaching catch basins can be installed adjacent to deep sump catch basins to achieve 80% TSS removal. Be aware, however, that many products are being touted as catch basin inserts, but the effectiveness of these devices can vary significantly.

Dry Detention Basin Retrofits - Traditional dry detention basins can be modified to become extended dry detention basins, wet basins, or constructed stormwater wetlands for enhanced pollutant removal. This is one of the most commonly and easily implemented retrofits, since it typically requires little or no additional land area, capitalizes on an existing facility for which there is already some resident acceptance of stormwater management, and involves minimal impacts to environmental resources (Claytor, Center for Watershed Protection, 2000).

There are numerous retrofit options that will enhance the removal of pollutants in detention basins:

- Excavate the basin bottom to create more permanent pool storage.
- Raise the basin embankment to obtain additional storage for extended detention.
- Modify the outfall structure to create a two-stage release to better control small storms while not significantly compromising flood control detention for large storms.
- Increase the flow path from inflow to outflow and eliminate short-circuiting by using baffles, earthen berms or micro-pond topography to increase residence time.
- Incorporate stilling basins at inlets and outlets.
- Regrade the basin bottom to create a wetland area near the basin outlet or revegetate parts of the basin bottom with wetland vegetation to enhance pollutant removal, reduce mowing, and improve aesthetics.
- Create a wetland shelf along the perimeter of a wet basin to improve shoreline stabilization, enhance pollutant filtering, and enhance aesthetic and habitat functions.
- Create a low maintenance "no-mow" wildflower ecosystem in the drier portions of the basin.

³ Additional information on retrofitting stormwater BMPs can be found in the Urban Stormwater Retrofit Practices Manual. See <u>http://www.cwp.org/Downloads/ELC_USRM3app.pdf</u>.

- Provide a high flow bypass to avoid resuspension of captured sediments/pollutants during high flows.
- Eliminate low-flow bypasses.

Drainage Channel Retrofits - Existing channelized streams and drainage conveyances such as drainage channels can be modified to reduce flow velocities and enhance pollutant removal. Weir walls or riprap check dams placed across a channel create opportunities for ponding, infiltration, and establishment of wetland vegetation upstream of the retrofit. In-stream retrofit practices include stream bank stabilization of eroded areas and placement of habitat improvement structures (i.e., flow deflectors, boulders, pools/riffles, and low-flow channels) in natural streams and along stream banks. In-stream retrofits may require an evaluation of potential flooding and floodplain impacts resulting from altered channel conveyance, as well as requirements for local, state, or federal approval for work in wetlands and watercourses.

Parking Lots and Roadways- Parking lots offer ideal opportunities for a wide range of stormwater retrofits:

- 1. Incorporate bioretention areas into parking lot islands and landscaped areas; tree planter boxes can be converted into functional bioretention areas, rain gardens, or treebox filters to reduce and treat stormwater runoff.
- 2. Remove curbing and add slotted curb stops. Curbs along the edges of parking lots can sometimes be removed or slotted to re-route runoff to vegetated filter strips, water quality swales, grass channels, or bioretention facilities. The capacity of existing swales may need to be evaluated and expanded as part of this retrofit option.
- 3. Incorporate new treatment practices such as bioretention areas, sand filters, and constructed stormwater wetlands at the edges of parking lots.
- 4. In overflow parking or other low-traffic areas, asphalt can be replaced with porous pavement.

Sand Filter Retrofits - are suitable where space is limited, because they consume little surface space and have few site restrictions. Since sand filters cannot treat large drainage areas, retrofitting many small individual sites may be the only option. This option may be expensive.

Storm Drain Outfalls - New stormwater treatment practices can be constructed at the outfalls of existing drainage systems. The new stormwater treatment practices are commonly designed as *off-line devices* to treat the first flush volume and bypass larger storms. Water quality swales, bioretention areas, sand filters, constructed stormwater wetlands, and wet basins are commonly used for this type of retrofit. Other stormwater treatment practices may also be used if there is enough space for construction and maintenance.

Specific Redevelopment Projects

Redevelopment projects present unique challenges for controlling stormwater. It is possible that site constraints may prevent a redevelopment project from complying with one or more of the Stormwater Management Standards. Even if a redevelopment project cannot meet all of the Standards, there may be ample opportunity to improve existing site conditions depending on the other water quality or quantity issues in the watershed. The following special considerations provide unique opportunities for identifying how existing conditions may be improved:

- A. Groundwater Recharge Areas Redevelopment projects located within these areas (Zone II, Interim Wellhead Protection Areas (IWPA), aquifer protection districts, etc.) should place a high priority on ground water recharge BMPs.
 - 1) Disconnecting Rooftop Runoff In some instances, building roof drains connected to the stormwater drainage system can be disconnected and re-directed to vegetated filter strips, bioretention facilities, or infiltration structures (dry wells or infiltration trenches).
 - 2) Use of Porous Paving Materials Existing impermeable pavement in overflow parking or other low-traffic areas can sometimes be replaced with alternative permeable materials such as modular concrete paving blocks, modular concrete or plastic lattice, or cast-in-place concrete grids. Site-specific factors including traffic volumes, soil permeability, maintenance, sediment loads, and land use must be carefully considered prior to selection.
- B. Cold-Water Fisheries Redevelopment projects adjacent to these areas should place a high priority on mitigating potential thermal impacts. Techniques to consider include:
 - Maintain Time of Concentration Time of concentration (Tc) is based on the flow path and length, ground cover, slope and channel shape. When development occurs, Tc is often shortened due to the impervious area, causing greater flows to occur over a shorter period of time. Increasing the Tc will help to reduce the thermal impact of stormwater runoff from warm surface areas. Options to consider include:
 - Increasing the length of the runoff flow path
 - Increasing the surface roughness of the flow path
 - Detaining flows on site
 - Minimizing land disturbance
 - Creating flatter slopes.
 - Disconnecting impervious areas Breaking up large impervious expanses with vegetated zones will reduce the potential temperature increases of stormwater flowing across hot pavement.
- C. Brownfield Redevelopment Redeveloping urban and non-urban brownfield sites (which in Massachusetts includes most "disposal sites" under the Massachusetts Contingency Plan [MCP]) are a Commonwealth priority, with ramifications for urban sprawl as well as the remediation of historically contaminated properties. Proponents of brownfield redevelopment projects should evaluate BMPs that will prevent the significant uncontrolled mobilization or remobilization of soil or ground water contamination. BMP considerations at these sites should consider such factors as:
 - The location of stormwater infiltration units with respect to contaminated areas
 - Ground water mounding effects on the rate and direction of migration of ground water contaminants
 - The location of outfalls
 - Water quality BMPs.
- D. Runoff to Impaired Water Bodies If MassDEP has issued a Total Maximum Daily Load (TMDL) that establishes a waste load allocation for stormwater discharge and/or a TMDL Implementation Plan that identifies remedies aimed at reducing the amount of pollutants from stormwater discharges, proponents may be required to install stormwater BMPs that are consistent with the TMDL.

E. Runoff to Areas of Localized Flooding – Project proponents must also understand the potential impacts of stormwater runoff in areas prone to localized flooding. When completing the checklist, proponents should consider the capacity of the receiving water and/or storm drainage system. When evaluating discharges to areas subject to localized flooding, the proponent should evaluate the ability to maintain and/or improve existing site cover and reduce runoff volume.

Appendix E Standard 8 Supporting Information

- > Erosion & Sedimentation Control Measures
- > BMP Maintenance Checklist

Erosion & Sedimentation Control Measures

Erosion and Sedimentation Control Measures

The following erosion and sedimentation controls are for use during the earthwork and construction phases of the project. The following controls are provided as recommendations for the site contractor and do not constitute or replace the final Stormwater Pollution Prevention Plan that must be fully implemented by the Contractor and owner in Compliance with EPA NPDES regulations.

Siltsock Barriers

Siltsock barriers will be placed to trap sediment transported by runoff before it reaches the drainage system or leaves the construction site. Siltsocks will be set with a minimum of five feet storage area at toes of slopes greater than 4:1. Siltsocks shall have a two foot overlap at ends.

Silt Fencing

In areas where high runoff velocities or high sediment loads are expected, hay bale barriers will be backed up with silt fencing. This semi-permeable barrier made of a synthetic porous fabric will provide additional protection. The silt fences and hay bale barrier will be replaced as determined by periodic field inspections.

Catch Basin Protection

Newly constructed and existing catch basins will be protected with Flexstorm® Catch-It Inlet Filters and hay bale barriers (where appropriate) throughout construction.

Gravel and Construction Entrance/Exit

A temporary crushed-stone construction entrance/exit will be constructed. A cross slope will be placed in the entrance to direct runoff to a protected catch basin inlet or settling area. If deemed necessary after construction begins, a wash pad may be included to wash off vehicle wheels before leaving the project site.

Diversion Channels

Diversion channels will be used to collect runoff from construction areas and discharge to either sedimentation basins or protected catch basin inlets.

Temporary Sediment Basins

Temporary sediment basins will be designed either as excavations or bermed stormwater detention structures (depending on grading) that will retain runoff for a sufficient period of time to allow suspended soil particles to settle out prior to discharge. These temporary basins will be located based on construction needs as determined by the contractor and outlet devices will be designed to control velocity and sediment. Points of discharge from sediment basins will be stabilized to minimize erosion.

Vegetative Slope Stabilization

Stabilization of open soil surfaces will be implemented within 14 days after grading or construction activities have temporarily or permanently ceased, unless there is sufficient snow cover to prohibit implementation. Vegetative slope stabilization will be used to minimize erosion on slopes of 2:1 or flatter. Annual grasses, such as annual rye, will be used to ensure rapid germination and production of root mass. Permanent stabilization will be completed with the planting of perennial grasses or legumes. Establishment of temporary and permanent vegetative cover may be established by hydro-seeding or sodding. A suitable topsoil, good seedbed preparation, and adequate lime, fertilizer and water will be provided for effective establishment of these vegetative stabilization methods. Mulch will also be used after permanent seeding to protect soil from the impact of falling rain and to increase the capacity of the soil to absorb water.

Maintenance

- The contractor or subcontractor will be responsible for implementing each control shown on the Sedimentation and Erosion Control Plan. In accordance with EPA regulations, the contractor must sign a copy of a certification to verify that a plan has been prepared and that permit regulations are understood.
- The on-site contractor will inspect all sediment and erosion control structures periodically and after each rainfall event. Records of the inspections will be prepared and maintained on-site by the contractor.
- Silt shall be removed from behind barriers if greater than 6-inches deep or as needed.
- > Damaged or deteriorated items will be repaired immediately after identification.
- The underside of hay bales should be kept in close contact with the earth and reset as necessary.

- Sediment that is collected in structures shall be disposed of properly and covered if stored on-site.
- Erosion control structures shall remain in place until all disturbed earth has been securely stabilized. After removal of structures, disturbed areas shall be regraded and stabilized as necessary.

The sedimentation and erosion control plan is included in project plan set; a reduced version and Erosion Control Maintenance checklist is included here for quick reference.

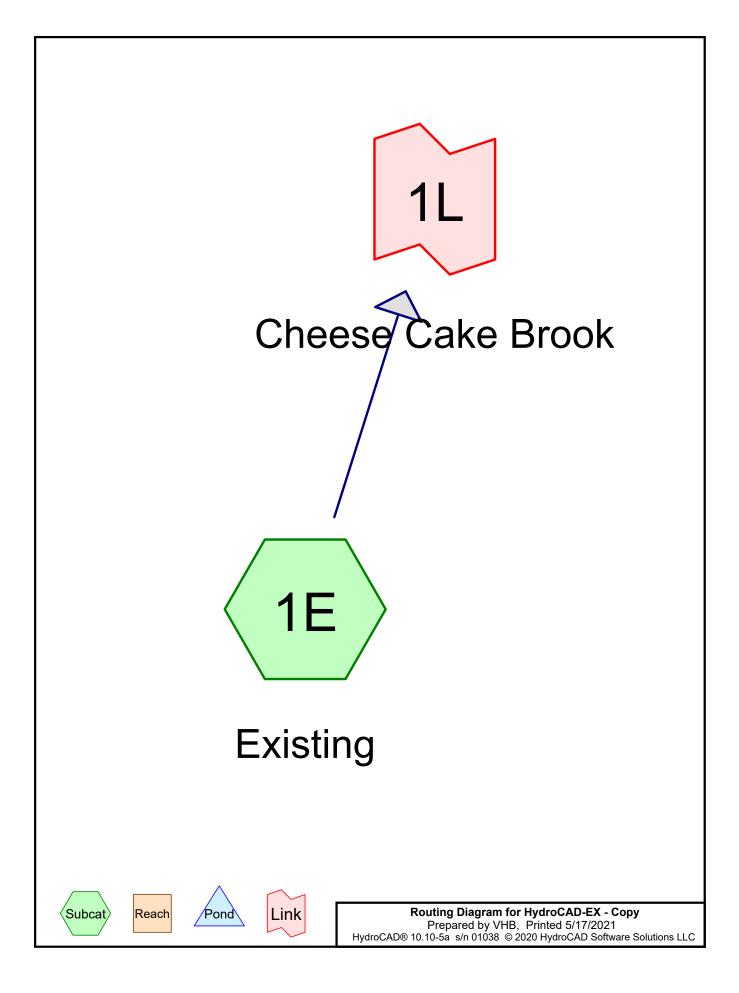
Construction Best Management Practices - Maintenance/Evaluation Checklist

Dunstan East Mixed-Use Redevelopment – Newton, MA Construction Period Best Management Practices – Maintenance/ Evaluation Checklist

Best Management Practice	Inspection Frequency	Date Inspected	Inspector	Minimum Maintenance and Key Items to Check	Cleaning/Repair Needed ☐yes	Date of Cleaning/Repair	Performed by:
Silt Sock	Weekly and after storm events			 Accumulated sediment Damaged or broken wattles Erosion overflowing top of wattle 	⊡yes ⊡no		
Gravel Construction Entrance	Weekly and after storm events			 Accumulated sediment Tracking of sediment outside limit of work 	⊡yes ⊡no		
Catch Basin Protection	Weekly and after storm events			 Accumulated sediment within silt sacks Rips or torn silt sacks 	⊡yes ⊡no		
Vegetated Slope Stabilization	Weekly and after storm events			 Ripping of blanket protection Erosion Non-growth in vegetation 	⊡yes ⊡no		

Stormwater Control Manager _____

Washington Street Mixed-Use Redevelopment – Newton, MA Long Term Operation and Maintenance – Maintenance/ Evaluation Checklist


Best Management Practice	Inspection Frequency	Date Inspected	Inspector	Minimum Maintenance and Key Items to Check	Cleaning/Repair Needed	Date of Cleaning/Repair	Performed by:
Catch Basin	Four times annually			 Accumulated sediment within sump Accumulated debris within catch basins 	⊡yes ⊡no		
Vegetated Slope Stabilization	Weekly and after storm events			 Ripping of blanket protection Erosion Non-growth in vegetation 	∏yes ⊡no		
Sand Filter	Monthly and after large storm events			 Accumulated sediment within sump Erosion of sand from overflowing top of weir 	□yes □no		

Stormwater Control Manager _____

Appendix F Hydrologic Analysis

- > HydroCAD Analysis: Existing Conditions
- > HydroCAD Analysis: Proposed Conditions

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
 1	2-Year	Type III 24-hr		Default	24.00	1	3.26	2
2	10-Year	Type III 24-hr		Default	24.00	1	5.13	2
3	25-Year	Type III 24-hr		Default	24.00	1	6.30	2
4	100-Year	Type III 24-hr		Default	24.00	1	8.78	2

Rainfall Events Listing (selected events)

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.360	61	>75% Grass cover, Good, HSG B (1E)
3.227	98	Paved parking, HSG B (1E)
3.586	94	TOTAL AREA

Ground Covers (all nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.000	0.360	0.000	0.000	0.000	0.360	>75% Grass cover, Good	1E
0.000	3.227	0.000	0.000	0.000	3.227	Paved parking	1E
0.000	3.586	0.000	0.000	0.000	3.586	TOTAL AREA	

Time span=0.00-25.00 hrs, dt=0.05 hrs, 501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1E: Existing

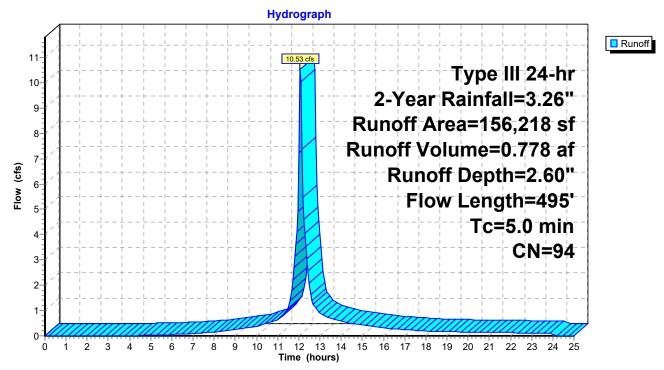
Runoff Area=156,218 sf 89.97% Impervious Runoff Depth=2.60" Flow Length=495' Tc=5.0 min CN=94 Runoff=10.53 cfs 0.778 af

Link 1L: Cheese Cake Brook

Inflow=10.53 cfs 0.778 af Primary=10.53 cfs 0.778 af

Total Runoff Area = 3.586 ac Runoff Volume = 0.778 af Average Runoff Depth = 2.60" 10.03% Pervious = 0.360 ac 89.97% Impervious = 3.227 ac

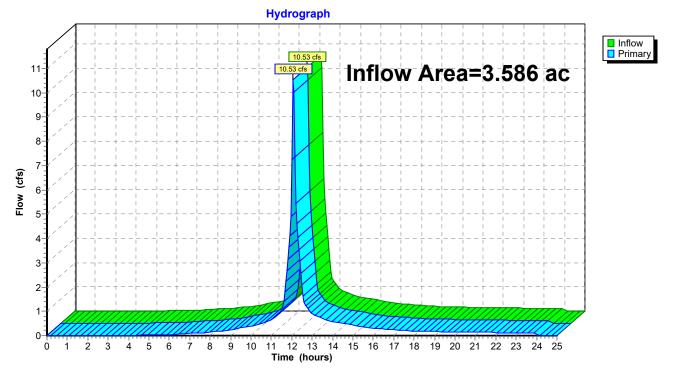
Summary for Subcatchment 1E: Existing


[49] Hint: Tc<2dt may require smaller dt

Runoff = 10.53 cfs @ 12.07 hrs, Volume= 0.778 af, Depth= 2.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.26"

 A	rea (sf)	CN E	Description		
	15,666	61 >	75% Gras	s cover, Go	bod, HSG B
 1	40,552	98 F	aved park	ing, HSG B	
1	56,218	94 V	Veighted A	verage	
	15,666	1	0.03% Per	vious Area	
1	40,552	8	9.97% Imp	pervious Ar	ea
 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.5	50	0.0400	1.59		Sheet Flow, Pavement Sheet Flow
 2.0	445	0.0350	3.80		Smooth surfaces n= 0.011 P2= 3.26" Shallow Concentrated Flow, Pavement Paved Kv= 20.3 fps
2.5	495	Total, I	ncreased t	o minimum	Tc = 5.0 min


Subcatchment 1E: Existing

Summary for Link 1L: Cheese Cake Brook

Inflow Area	=	3.586 ac, 89.97% Impervious, Inflow Depth = 2.60" for 2-Year event	
Inflow =	=	10.53 cfs @ 12.07 hrs, Volume= 0.778 af	
Primary =	=	10.53 cfs @ 12.07 hrs, Volume= 0.778 af, Atten= 0%, Lag= 0.0 min	۱

Primary outflow = Inflow, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs

Link 1L: Cheese Cake Brook

Time span=0.00-25.00 hrs, dt=0.05 hrs, 501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1E: Existing

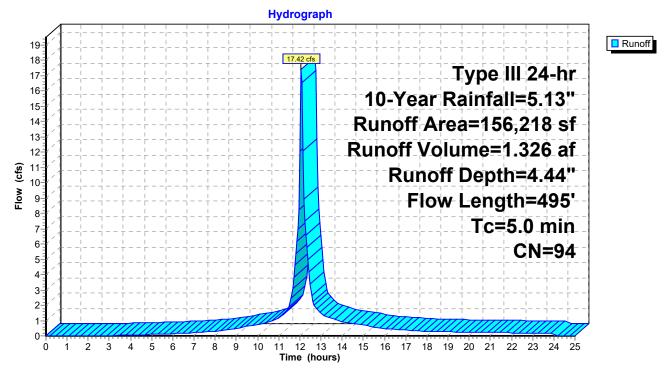
Runoff Area=156,218 sf 89.97% Impervious Runoff Depth=4.44" Flow Length=495' Tc=5.0 min CN=94 Runoff=17.42 cfs 1.326 af

Link 1L: Cheese Cake Brook

Inflow=17.42 cfs 1.326 af Primary=17.42 cfs 1.326 af

Total Runoff Area = 3.586 ac Runoff Volume = 1.326 af Average Runoff Depth = 4.44" 10.03% Pervious = 0.360 ac 89.97% Impervious = 3.227 ac

Summary for Subcatchment 1E: Existing

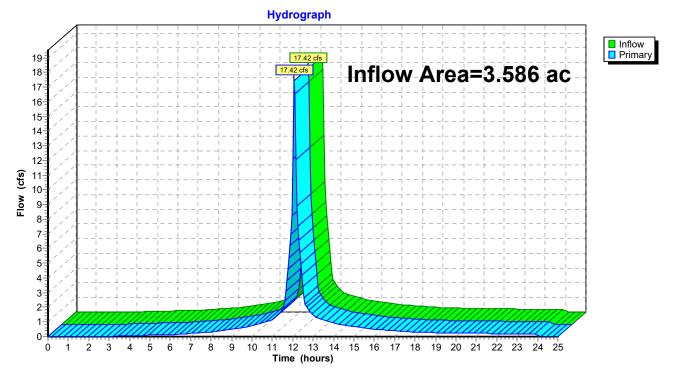

[49] Hint: Tc<2dt may require smaller dt

Runoff = 17.42 cfs @ 12.07 hrs, Volume= 1.326 af, Depth= 4.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.13"

	A	rea (sf)	CN E	Description					
		15,666	61 >	61 >75% Grass cover, Good, HSG B					
	1	40,552	98 F	98 Paved parking, HSG B					
	1	56,218	94 V	Veighted A	verage				
		15,666	1	0.03% Per	vious Area				
	1	40,552	8	9.97% Imp	pervious Are	ea			
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.5	50	0.0400	1.59		Sheet Flow, Pavement Sheet Flow			
						Smooth surfaces n= 0.011 P2= 3.26"			
	2.0	445	0.0350	3.80		Shallow Concentrated Flow, Pavement			
						Paved Kv= 20.3 fps			
	2.5	495	Total, I	ncreased t	o minimum	Tc = 5.0 min			

Subcatchment 1E: Existing



Summary for Link 1L: Cheese Cake Brook

Page 10

Inflow Area	a =	3.586 ac, 89.97% Impervious, Inflow Depth = 4.44" for 10-Year event
Inflow	=	17.42 cfs @ 12.07 hrs, Volume= 1.326 af
Primary	=	17.42 cfs @ 12.07 hrs, Volume= 1.326 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs

Link 1L: Cheese Cake Brook

Time span=0.00-25.00 hrs, dt=0.05 hrs, 501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1E: Existing

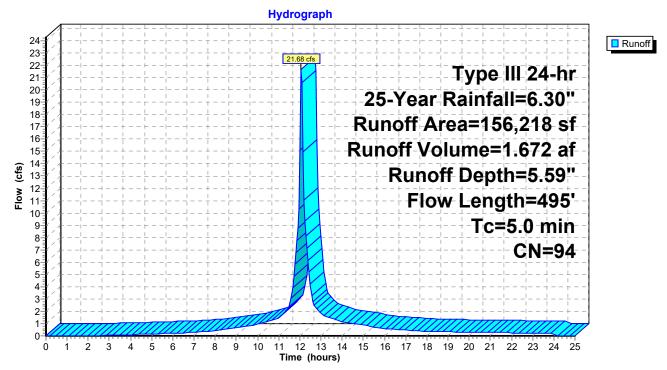
Runoff Area=156,218 sf 89.97% Impervious Runoff Depth=5.59" Flow Length=495' Tc=5.0 min CN=94 Runoff=21.68 cfs 1.672 af

Link 1L: Cheese Cake Brook

Inflow=21.68 cfs 1.672 af Primary=21.68 cfs 1.672 af

Total Runoff Area = 3.586 ac Runoff Volume = 1.672 af Average Runoff Depth = 5.59" 10.03% Pervious = 0.360 ac 89.97% Impervious = 3.227 ac

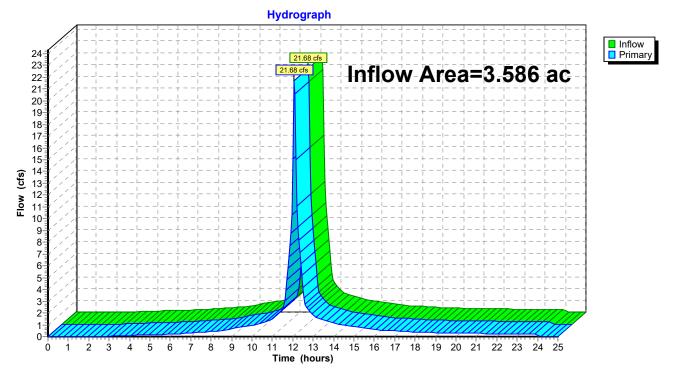
Summary for Subcatchment 1E: Existing


[49] Hint: Tc<2dt may require smaller dt

Runoff = 21.68 cfs @ 12.07 hrs, Volume= 1.672 af, Depth= 5.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.30"

_	A	rea (sf)	CN E	Description					
		15,666 61 >75% Grass cover, Good, HSG B							
	140,552 98 Paved parking, HSG B								
	1	56,218	94 V	Veighted A	verage				
				0.03% Per	vious Area				
	140,552 89.97% Impervious Area					ea			
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.5	50	0.0400	1.59		Sheet Flow, Pavement Sheet Flow			
						Smooth surfaces n= 0.011 P2= 3.26"			
	2.0	445	0.0350	3.80		Shallow Concentrated Flow, Pavement			
_						Paved Kv= 20.3 fps			
	2.5	495	Total, I	ncreased t	o minimum	Tc = 5.0 min			


Subcatchment 1E: Existing

Summary for Link 1L: Cheese Cake Brook

Inflow Area	a =	3.586 ac, 89.97% Impervious, Inflow Depth = 5.59" for 25-Year event
Inflow	=	21.68 cfs @ 12.07 hrs, Volume= 1.672 af
Primary	=	21.68 cfs @ 12.07 hrs, Volume= 1.672 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs

Link 1L: Cheese Cake Brook

Time span=0.00-25.00 hrs, dt=0.05 hrs, 501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1E: Existing

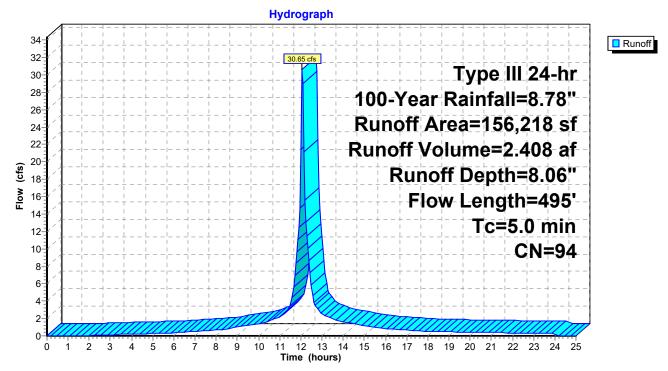
Runoff Area=156,218 sf 89.97% Impervious Runoff Depth=8.06" Flow Length=495' Tc=5.0 min CN=94 Runoff=30.65 cfs 2.408 af

Link 1L: Cheese Cake Brook

Inflow=30.65 cfs 2.408 af Primary=30.65 cfs 2.408 af

Total Runoff Area = 3.586 ac Runoff Volume = 2.408 af Average Runoff Depth = 8.06" 10.03% Pervious = 0.360 ac 89.97% Impervious = 3.227 ac

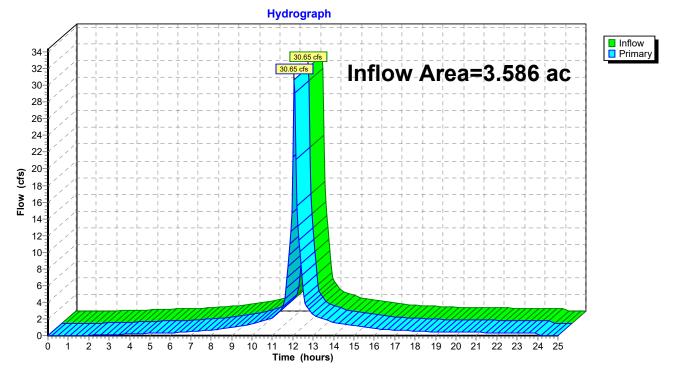
Summary for Subcatchment 1E: Existing

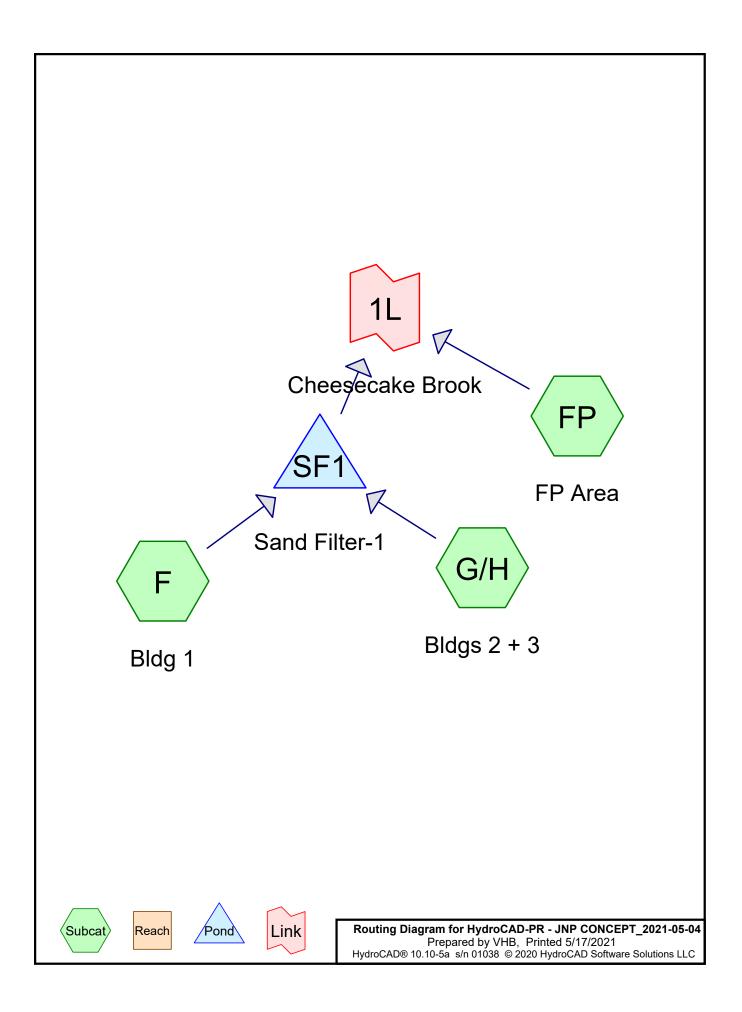

[49] Hint: Tc<2dt may require smaller dt

Runoff 30.65 cfs @ 12.07 hrs, Volume= 2.408 af, Depth= 8.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.78"

	Α	rea (sf)	CN E	Description							
		15,666	61 >	61 >75% Grass cover, Good, HSG B							
	1	40,552	98 F	98 Paved parking, HSG B							
	1	56,218	94 V	Veighted A	verage						
15,666 10.039				0.03% Per	vious Area						
	140,552 89.97% Impervious Area					ea					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
	0.5	50	0.0400	1.59		Sheet Flow, Pavement Sheet Flow					
	2.0	445	0.0350	3.80		Smooth surfaces n= 0.011 P2= 3.26" Shallow Concentrated Flow, Pavement Paved Kv= 20.3 fps					
	2.5	495	Total, I	ncreased t	o minimum	Tc = 5.0 min					


Subcatchment 1E: Existing


Summary for Link 1L: Cheese Cake Brook

Inflow Area	a =	3.586 ac, 89.97% Impervious, Inflow Depth = 8.06" for 100-Year event
Inflow	=	30.65 cfs @ 12.07 hrs, Volume= 2.408 af
Primary	=	30.65 cfs @ 12.07 hrs, Volume= 2.408 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs

Link 1L: Cheese Cake Brook

Eve	ent#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
	1	2-Year	Type III 24-hr		Default	24.00	1	3.26	2
	2	10-Year	Type III 24-hr		Default	24.00	1	5.13	2
	3	25-Year	Type III 24-hr		Default	24.00	1	6.30	2
	4	100-Year	Type III 24-hr		Default	24.00	1	8.78	2

Rainfall Events Listing (selected events)

HydroCAD-PR - JNP CONCEPT_2021-05-04

Prepared by VHB HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

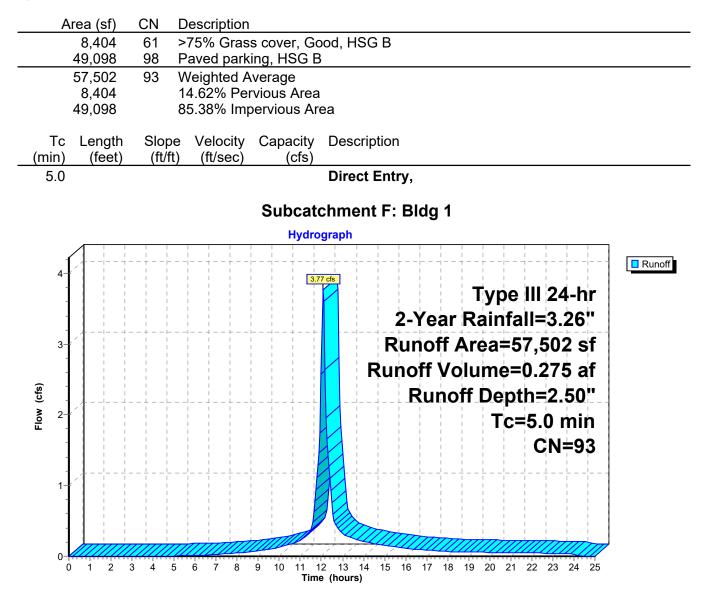
Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.582	61	>75% Grass cover, Good, HSG B (F, FP, G/H)
2.904	98	Paved parking, HSG B (F, G/H)
0.098	98	Unconnected pavement, HSG B (FP)
3.584	92	TOTAL AREA

				-			
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	0.582	0.000	0.000	0.000	0.582	>75% Grass cover, Good	F, FP,
							G/H
0.000	2.904	0.000	0.000	0.000	2.904	Paved parking	F, G/H
0.000	0.098	0.000	0.000	0.000	0.098	Unconnected pavement	FP
0.000	3.584	0.000	0.000	0.000	3.584	TOTAL AREA	

Ground Covers (all nodes)

HydroCAD-PR - JNP CONCEPT_20 Prepared by VHB	Type III 24-hr 2-Year Rainfall=3.26" Printed 5/17/2021						
HydroCAD® 10.10-5a s/n 01038 © 2020 Hydr	roCAD Software Solutions	LLC Page 5					
Time span=0.00-25.00 hrs, dt=0.05 hrs, 501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method							
SubcatchmentF: Bldg 1		85.38% Impervious Runoff Depth=2.50" .0 min CN=93 Runoff=3.77 cfs 0.275 af					
SubcatchmentFP: FP Area		27.12% Impervious Runoff Depth=0.67" djusted CN=66 Runoff=0.24 cfs 0.020 af					
SubcatchmentG/H: Bldgs 2 + 3		93.32% Impervious Runoff Depth=2.81" .0 min CN=96 Runoff=5.87 cfs 0.446 af					
Pond SF1: Sand Filter-1	Peak Elev=35.14'	Storage=380 cf Inflow=9.63 cfs 0.721 af Outflow=9.54 cfs 0.716 af					
Link 1L: CheesecakeBrook		Inflow=9.76 cfs 0.736 af Primary=9.76 cfs 0.736 af					


Total Runoff Area = 3.584 ac Runoff Volume = 0.741 af Average Runoff Depth = 2.48" 16.25% Pervious = 0.582 ac 83.75% Impervious = 3.002 ac HydroCAD-PR - JNP CONCEPT_2021-05-04 Typ Prepared by VHB HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment F: Bldg 1

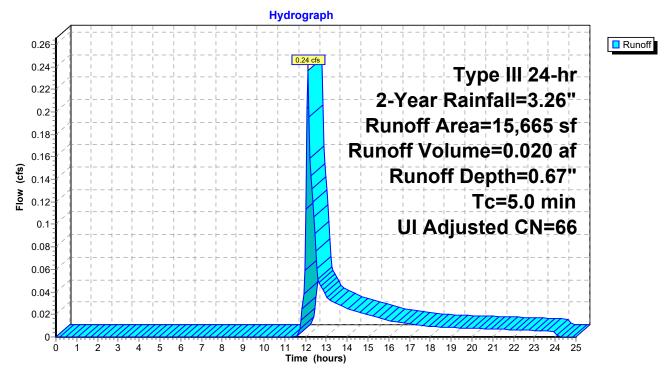
[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.77 cfs @ 12.07 hrs, Volume= 0.275 af, Depth= 2.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.26"

HydroCAD-PR - JNP CONCEPT_2021-05-04TypPrepared by VHBHydroCAD® 10.10-5as/n 01038© 2020HydroCAD Software Solutions LLC

Summary for Subcatchment FP: FP Area


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.24 cfs @ 12.10 hrs, Volume= 0.020 af, Depth= 0.67"

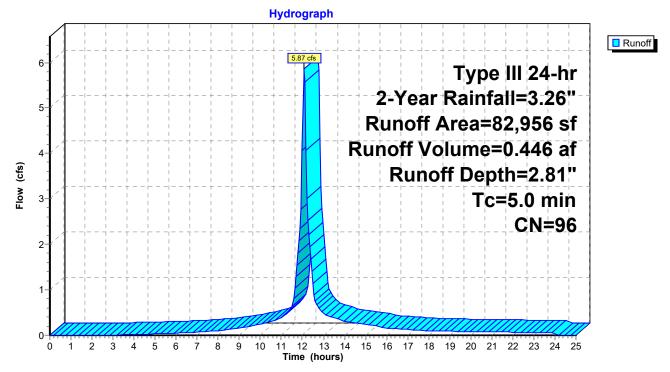
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.26"

A	rea (sf)	CN /	Adj Des	cription				
	11,416	61	>75	% Grass co	ver, Good, HSG B			
	4,249	98	Unc	onnected pa	avement, HSG B			
	15,665	71	66 Wei	ghted Avera	age, UI Adjusted			
	11,416		72.8	88% Perviou	us Area			
	4,249		27.1	12% Impervi	ious Area			
	4,249		100	100.00% Unconnected				
-		0		• • •				
Tc	Length	Slope	Velocity		Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
5.0					Direct Entry,			

Subcatchment FP: FP Area

HydroCAD-PR - JNP CONCEPT_2021-05-04TypPrepared by VHBHydroCAD® 10.10-5as/n 01038© 2020Prepared Software Solutions LLC

Summary for Subcatchment G/H: Bldgs 2 + 3


[49] Hint: Tc<2dt may require smaller dt

Runoff = 5.87 cfs @ 12.07 hrs, Volume= 0.446 af, Depth= 2.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.26"

A	rea (sf)	CN	Description						
	5,544	61	>75% Gras	>75% Grass cover, Good, HSG B					
	77,412	98	Paved park	Paved parking, HSG B					
	82,956	96	Weighted A	verage					
	5,544		6.68% Perv	vious Area					
	77,412 93.32% Impervious Are				rea				
Тс	Length	Slope	e Velocity	Capacity	Description				
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
5.0					Direct Entry,				

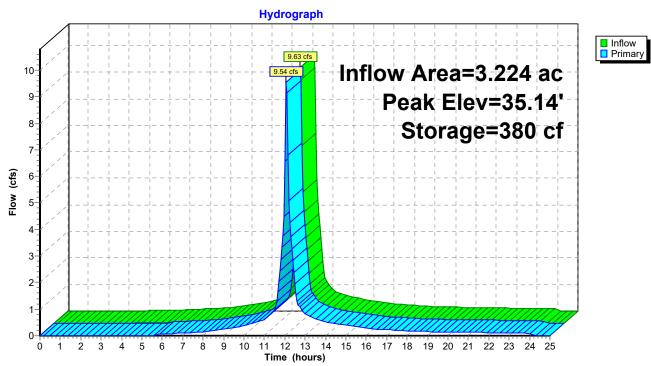
HydroCAD-PR - JNP CONCEPT_2021-05-04TypPrepared by VHBHydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Summary for Pond SF1: Sand Filter-1

Inflow Area =	3.224 ac, 90.07% Impervious, Inflow [Depth = 2.68" for 2-Year event
Inflow =	9.63 cfs @ 12.07 hrs, Volume=	0.721 af
Outflow =	9.54 cfs @ 12.07 hrs, Volume=	0.716 af, Atten= 1%, Lag= 0.1 min
Primary =	9.54 cfs @ 12.07 hrs, Volume=	0.716 af

Routing by Stor-Ind method, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 35.14' @ 12.07 hrs Surf.Area= 590 sf Storage= 380 cf Flood Elev= 36.00' Surf.Area= 883 sf Storage= 1,436 cf

Plug-Flow detention time= 8.9 min calculated for 0.716 af (99% of inflow) Center-of-Mass det. time= 4.3 min (784.0 - 779.7)

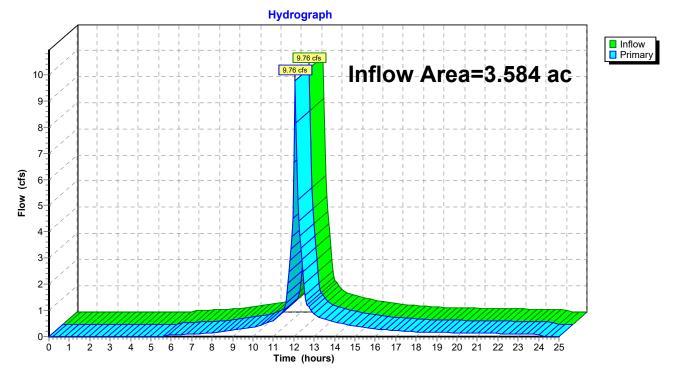

Volume	Invert	Avail.Stora	age	Storage Description
#1	34.50'	1,593 cf		10.00'W x 59.00'L x 2.70'H Prismatoid
#2	35.21'	1,053 cf		10.00'W x 39.00'L x 2.70'H Forebay-WestImpervious
#3	35.17'	1,170 cf		7.50'W x 39.00'L x 4.00'H Forebay-East
		3,81	6 cf	Total Available Storage
Device #1 #2	Routing Primary Device 1	30.20' 34.90'	24.0 24.0	et Devices "Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads 'Iong Sharp-Crested Rectangular Weir 2 End Contraction(s) Crest Height

Primary OutFlow Max=9.16 cfs @ 12.07 hrs HW=35.14' (Free Discharge)

-1=Orifice/Grate (Passes 9.16 cfs of 30.02 cfs potential flow)

2=Sharp-Crested Rectangular Weir (Weir Controls 9.16 cfs @ 1.61 fps)

Prepared by VHB HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC



Pond SF1: Sand Filter-1

Summary for Link 1L: Cheesecake Brook

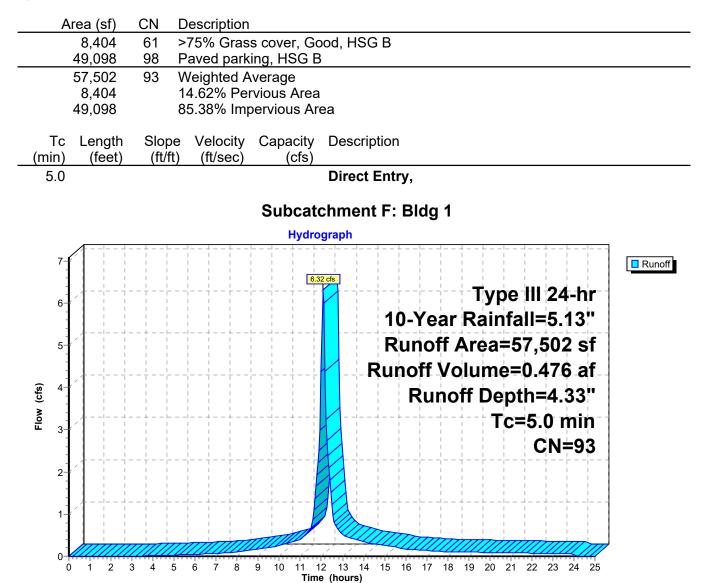
Inflow Area	a =	3.584 ac, 83.75% Impervious, Inflow Depth = 2.46" for 2-Year event
Inflow	=	9.76 cfs @ 12.07 hrs, Volume= 0.736 af
Primary	=	9.76 cfs @ 12.07 hrs, Volume= 0.736 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs

Link 1L: Cheesecake Brook

HydroCAD-PR - JNP CONCEPT_20 Prepared by VHB	21-05-04 Type III 24-hr 10-Year Rainfall=5.13" Printed 5/17/2021								
HydroCAD® 10.10-5a s/n 01038 © 2020 Hydr									
Time span=0.00-25.00 hrs, dt=0.05 hrs, 501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method . Pond routing by Stor-Ind method									
SubcatchmentF: Bldg 1	Runoff Area=57,502 sf 85.38% Impervious Runoff Depth=4.33" Tc=5.0 min CN=93 Runoff=6.32 cfs 0.476 af								
SubcatchmentFP: FP Area	Runoff Area=15,665 sf 27.12% Impervious Runoff Depth=1.82" Tc=5.0 min UI Adjusted CN=66 Runoff=0.74 cfs 0.054 af								
SubcatchmentG/H: Bldgs 2 + 3	Runoff Area=82,956 sf 93.32% Impervious Runoff Depth=4.66" Tc=5.0 min CN=96 Runoff=9.47 cfs 0.740 af								
Pond SF1: Sand Filter-1	Peak Elev=35.24' Storage=464 cf Inflow=15.79 cfs 1.216 af Outflow=15.49 cfs 1.210 af								
Link 1L: Cheesecake Brook	Inflow=16.19 cfs 1.264 af Primary=16.19 cfs 1.264 af								
Total Dupoff Area = 3.594	Lac Bunoff Volume = 1.270 of Average Bunoff Donth = 4.25								

Total Runoff Area = 3.584 acRunoff Volume = 1.270 afAverage Runoff Depth = 4.25"16.25% Pervious = 0.582 ac83.75% Impervious = 3.002 ac


HydroCAD-PR - JNP CONCEPT_2021-05-04TypePrepared by VHBHydroCAD® 10.10-5as/n 01038© 2020HydroCAD Software Solutions LLC

Summary for Subcatchment F: Bldg 1

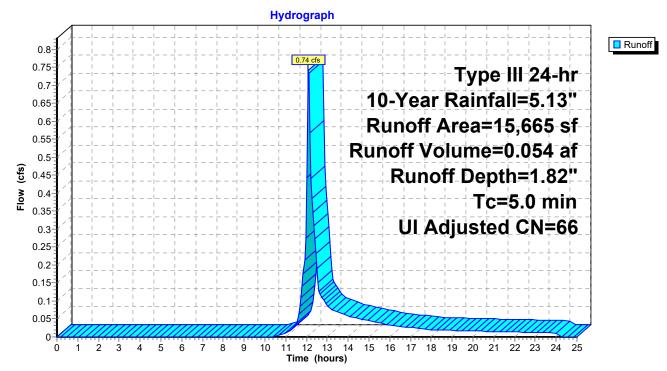
[49] Hint: Tc<2dt may require smaller dt

Runoff = 6.32 cfs @ 12.07 hrs, Volume= 0.476 af, Depth= 4.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.13"

HydroCAD-PR - JNP CONCEPT_2021-05-04TypePrepared by VHBHydroCAD® 10.10-5as/n 01038© 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment FP: FP Area


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.74 cfs @ 12.09 hrs, Volume= 0.054 af, Depth= 1.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.13"

A	rea (sf)	CN A	Adj Deso	cription	
	11,416	61	>759	% Grass co	ver, Good, HSG B
	4,249	98	Unco	onnected pa	avement, HSG B
	15,665	71	66 Weig	ghted Avera	age, UI Adjusted
	11,416		72.8	8% Perviou	us Area
	4,249 27.12% Impervious				ious Area
	4,249 100.00% Uncor				nnected
То	Longth	Slope	Volocity	Conacity	Description
	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.0					Direct Entry,

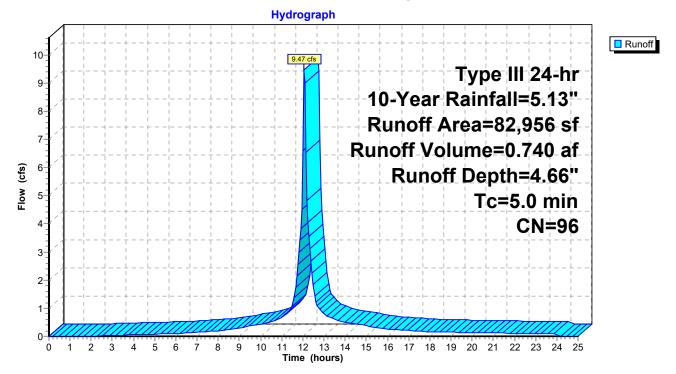
Subcatchment FP: FP Area

HydroCAD-PR - JNP CONCEPT 2021-05-04 Prepared by VHB HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment G/H: Bldgs 2 + 3

[49] Hint: Tc<2dt may require smaller dt

Runoff 9.47 cfs @ 12.07 hrs, Volume= 0.740 af, Depth= 4.66" =


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.13"

	Area (sf)	CN	Description				
	5,544	61	>75% Grass cover, Good, HSG B				
	77,412	98	Paved parking, HSG B				
	82,956	96	Weighted A	verage			
5,544 6.68% Pervious Area							
	77,412		93.32% Im	pervious Ar	ea		
_				• •			
To	5	Slop	,	Capacity	Description		
(min)) (feet)	(ft/ft) (ft/sec)	(cfs)			
5.0)				Direct Entry		

Direct Entry,

Subcatchment G/H: Bldgs 2 + 3

 HydroCAD-PR - JNP CONCEPT_2021-05-04
 Type

 Prepared by VHB
 HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Summary for Pond SF1: Sand Filter-1

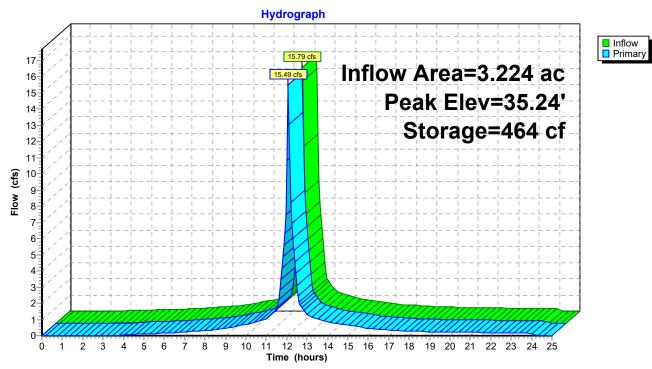
Inflow Area =	3.224 ac, 90.07% Impervious, Inflow	Depth = 4.52" for 10-Year event
Inflow =	15.79 cfs @ 12.07 hrs, Volume=	1.216 af
Outflow =	15.49 cfs @ 12.07 hrs, Volume=	1.210 af, Atten= 2%, Lag= 0.2 min
Primary =	15.49 cfs @ 12.07 hrs, Volume=	1.210 af

Routing by Stor-Ind method, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 35.24' @ 12.07 hrs Surf.Area= 883 sf Storage= 464 cf Flood Elev= 36.00' Surf.Area= 883 sf Storage= 1,436 cf

Plug-Flow detention time= 6.0 min calculated for 1.208 af (99% of inflow) Center-of-Mass det. time= 3.0 min (770.1 - 767.0)

Volume	Invert	Avail.Storage	e Storage Description
#1	34.50'	1,593 c	f 10.00'W x 59.00'L x 2.70'H Prismatoid
#2	35.21'	1,053 c ⁻	f 10.00'W x 39.00'L x 2.70'H Forebay-WestImpervious
#3	35.17'		f 7.50'W x 39.00'L x 4.00'H Forebay-East
		3,816 c	f Total Available Storage
Device #1 #2	Routing Primary Device 1	30.20' 24 34.90' 24	utlet Devices .0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads .0' long Sharp-Crested Rectangular Weir 2 End Contraction(s) 7' Crest Height

Primary OutFlow Max=14.95 cfs @ 12.07 hrs HW=35.23' (Free Discharge)

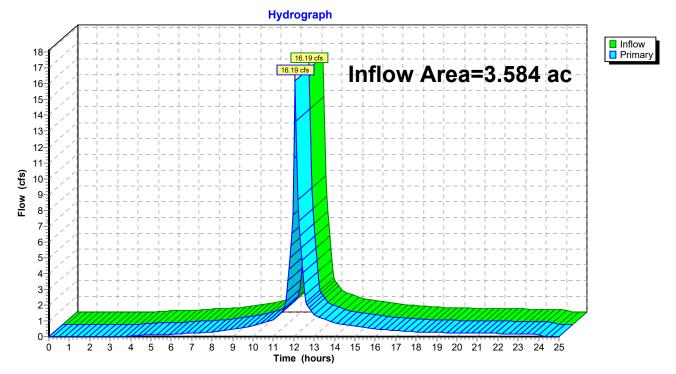

1-2=Sharp-Crested Rectangular Weir (Weir Controls 14.95 cfs @ 1.90 fps)

⁻¹⁼Orifice/Grate (Passes 14.95 cfs of 30.36 cfs potential flow)

HydroCAD-PR - JNP CONCEPT_2021-05-04

Prepared by VHB HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Page 17



Pond SF1: Sand Filter-1

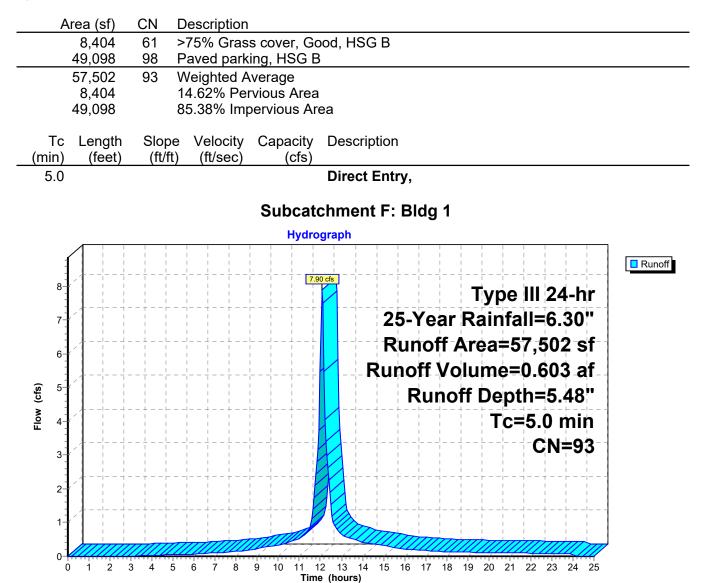
Summary for Link 1L: Cheesecake Brook

Inflow Are	a =	3.584 ac, 83.75% Impervious, Inflow Depth = 4.23" for 10-Year event	
Inflow	=	16.19 cfs @ 12.08 hrs, Volume= 1.264 af	
Primary	=	16.19 cfs @ 12.08 hrs, Volume= 1.264 af, Atten= 0%, Lag= 0.0 min	

Primary outflow = Inflow, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs

Link 1L: Cheesecake Brook

HydroCAD-PR - JNP CONCEPT_20 Prepared by VHB	21-05-04 Type III 24-hr 25-Year Rainfall=6.30" Printed 5/17/2021								
HydroCAD® 10.10-5a s/n 01038 © 2020 Hydr	roCAD Software Solutions LLC Page 19								
Time span=0.00-25.00 hrs, dt=0.05 hrs, 501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method . Pond routing by Stor-Ind method									
SubcatchmentF: Bldg 1	Runoff Area=57,502 sf 85.38% Impervious Runoff Depth=5.48" Tc=5.0 min CN=93 Runoff=7.90 cfs 0.603 af								
SubcatchmentFP: FP Area	Runoff Area=15,665 sf 27.12% Impervious Runoff Depth=2.66" Tc=5.0 min UI Adjusted CN=66 Runoff=1.11 cfs 0.080 af								
SubcatchmentG/H: Bldgs 2 + 3	Runoff Area=82,956 sf 93.32% Impervious Runoff Depth=5.83" Tc=5.0 min CN=96 Runoff=11.71 cfs 0.925 af								
Pond SF1: Sand Filter-1	Peak Elev=35.29' Storage=530 cf Inflow=19.61 cfs 1.527 af Outflow=19.24 cfs 1.522 af								
Link 1L: Cheesecake Brook	Inflow=20.35 cfs 1.602 af Primary=20.35 cfs 1.602 af								

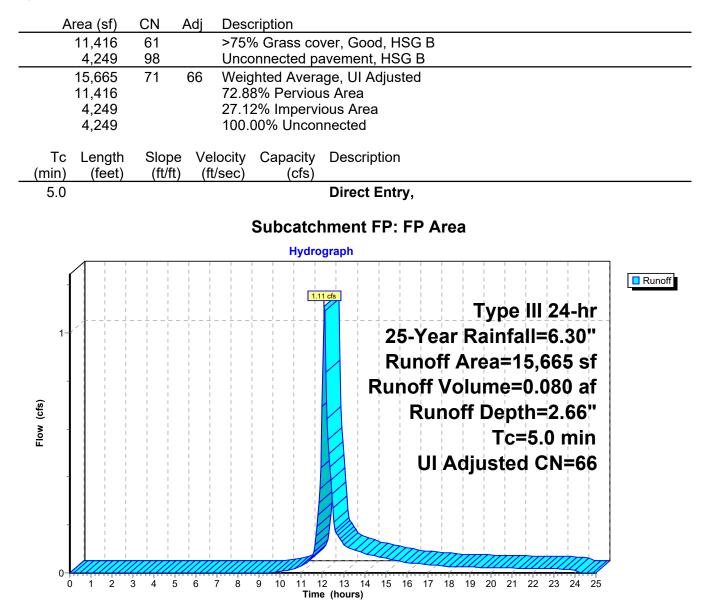

Total Runoff Area = 3.584 ac Runoff Volume = 1.607 af Average Runoff Depth = 5.38" 16.25% Pervious = 0.582 ac 83.75% Impervious = 3.002 ac HydroCAD-PR - JNP CONCEPT_2021-05-04TypePrepared by VHBHydroCAD® 10.10-5as/n 01038© 2020HydroCAD Software Solutions LLC

Summary for Subcatchment F: Bldg 1

[49] Hint: Tc<2dt may require smaller dt

Runoff = 7.90 cfs @ 12.07 hrs, Volume= 0.603 af, Depth= 5.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.30"


HydroCAD-PR - JNP CONCEPT_2021-05-04TypePrepared by VHBHydroCAD® 10.10-5as/n 01038© 2020HydroCAD® 10.10-5as/n 01038© 2020HydroCAD Software Solutions LLC

Summary for Subcatchment FP: FP Area

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.11 cfs @ 12.08 hrs, Volume= 0.080 af, Depth= 2.66"

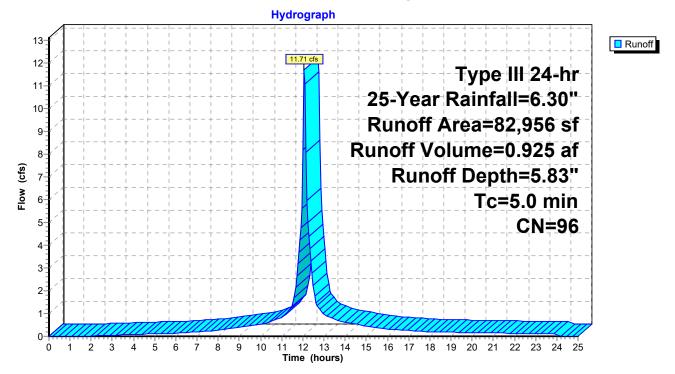
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.30"

HydroCAD-PR - JNP CONCEPT 2021-05-04 Prepared by VHB HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment G/H: Bldgs 2 + 3

[49] Hint: Tc<2dt may require smaller dt

Runoff 11.71 cfs @ 12.07 hrs, Volume= 0.925 af, Depth= 5.83" =


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.30"

_	Α	rea (sf)	CN	Description				
		5,544	61	61 >75% Grass cover, Good, HSG B				
_		77,412	98	Paved parking, HSG B				
		82,956	96	Weighted A	verage			
		5,544	6.68% Pervious Area					
		77,412	2 93.32% Impervious Area					
	-		~		o	D		
	Tc	Length	Slope		Capacity	Description		
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
	50					Direct Entry		

Direct Entry,

Subcatchment G/H: Bldgs 2 + 3

HydroCAD-PR - JNP CONCEPT_2021-05-04TypePrepared by VHBHydroCAD® 10.10-5as/n 01038© 2020 HydroCAD Software Solutions LLC

Summary for Pond SF1: Sand Filter-1

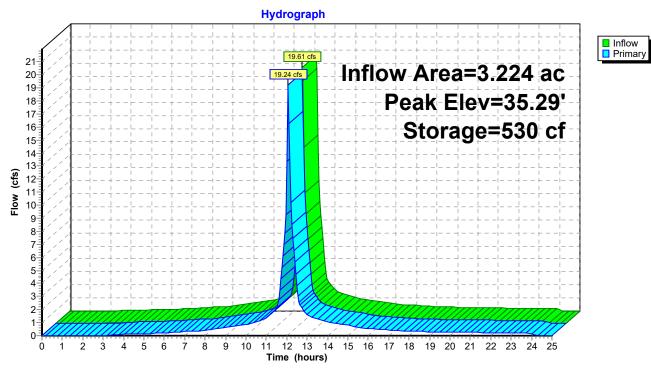
Inflow Area =	3.224 ac, 90.07% Impervious, Inflov	w Depth = 5.68" for 25-Year event
Inflow =	19.61 cfs @ 12.07 hrs, Volume=	1.527 af
Outflow =	19.24 cfs @ 12.07 hrs, Volume=	1.522 af, Atten= 2%, Lag= 0.2 min
Primary =	19.24 cfs $\overline{@}$ 12.07 hrs, Volume=	1.522 af

Routing by Stor-Ind method, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 35.29' @ 12.07 hrs Surf.Area= 883 sf Storage= 530 cf Flood Elev= 36.00' Surf.Area= 883 sf Storage= 1,436 cf

Plug-Flow detention time= 4.8 min calculated for 1.519 af (99% of inflow) Center-of-Mass det. time= 2.6 min (764.5 - 762.0)

Volume	Invert	Avail.Storage	Storage Description
#1	34.50'	1,593 cf	10.00'W x 59.00'L x 2.70'H Prismatoid
#2	35.21'	1,053 cf	10.00'W x 39.00'L x 2.70'H Forebay-WestImpervious
#3	35.17'	1,170 cf	7.50'W x 39.00'L x 4.00'H Forebay-East
		3,816 cf	Total Available Storage
Device #1 #2	Routing Primary Device 1	30.20' 24. 34.90' 24.	tlet Devices 0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads 0' long Sharp-Crested Rectangular Weir 2 End Contraction(s) ' Crest Height

Primary OutFlow Max=18.55 cfs @ 12.07 hrs HW=35.28' (Free Discharge)

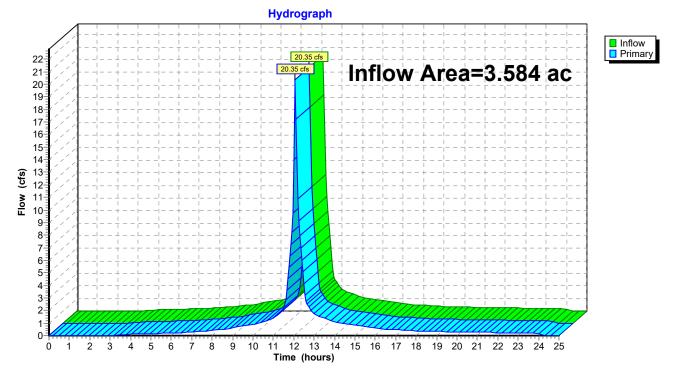

-1=Orifice/Grate (Passes 18.55 cfs of 30.55 cfs potential flow)

2=Sharp-Crested Rectangular Weir (Weir Controls 18.55 cfs @ 2.05 fps)

HydroCAD-PR - JNP CONCEPT_2021-05-04

Prepared by VHB HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Page 24



Pond SF1: Sand Filter-1

Summary for Link 1L: Cheesecake Brook

Inflow Area	a =	3.584 ac, 83.75% Impervious, Inflow Depth = 5.36" for 25-Year event	
Inflow	=	20.35 cfs @ 12.07 hrs, Volume=	
Primary	=	20.35 cfs @ 12.07 hrs, Volume= 1.602 af, Atten= 0%, Lag= 0.0 min	

Primary outflow = Inflow, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs

Link 1L: Cheesecake Brook

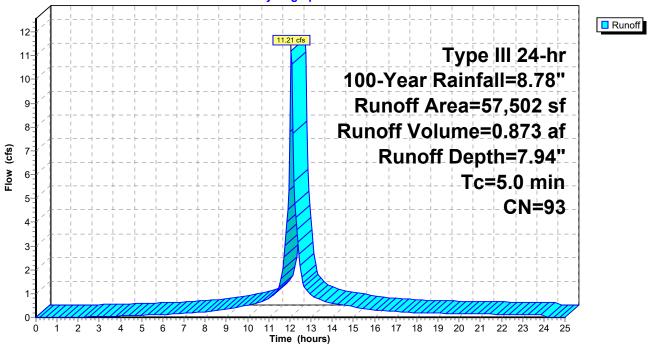
HydroCAD-PR - JNP CONCEPT_20 Prepared by VHB	21-05-04 Type III 24-hr 100-Year Rainfall=8.78" Printed 5/17/2021					
HydroCAD® 10.10-5a s/n 01038 © 2020 Hydr						
Time span=0.00-25.00 hrs, dt=0.05 hrs, 501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method						
SubcatchmentF: Bldg 1	Runoff Area=57,502 sf 85.38% Impervious Runoff Depth=7.94" Tc=5.0 min CN=93 Runoff=11.21 cfs 0.873 af					
SubcatchmentFP: FP Area	Runoff Area=15,665 sf 27.12% Impervious Runoff Depth=4.66" Tc=5.0 min UI Adjusted CN=66 Runoff=1.96 cfs 0.140 af					
SubcatchmentG/H: Bldgs 2 + 3	Runoff Area=82,956 sf 93.32% Impervious Runoff Depth=8.30" Tc=5.0 min CN=96 Runoff=16.43 cfs 1.317 af					
Pond SF1: Sand Filter-1	Peak Elev=35.39' Storage=657 cf Inflow=27.64 cfs 2.190 af Outflow=27.19 cfs 2.185 af					
Link 1L: Cheesecake Brook	Inflow=29.16 cfs 2.325 af Primary=29.16 cfs 2.325 af					
Total Dunoff Area = 2 594	Les Dunoff Valume = 2 220 of Average Dunoff Denth = 7 90					

Total Runoff Area = 3.584 ac Runoff Volume = 2.330 af Average Runoff Depth = 7.80" 16.25% Pervious = 0.582 ac 83.75% Impervious = 3.002 ac HydroCAD-PR - JNP CONCEPT_2021-05-04Type IPrepared by VHBHydroCAD® 10.10-5as/n 01038© 2020 HydroCAD Software Solutions LLC

 Type III 24-hr
 100-Year Rainfall=8.78"

 Printed
 5/17/2021

 ns LLC
 Page 27


Summary for Subcatchment F: Bldg 1

[49] Hint: Tc<2dt may require smaller dt

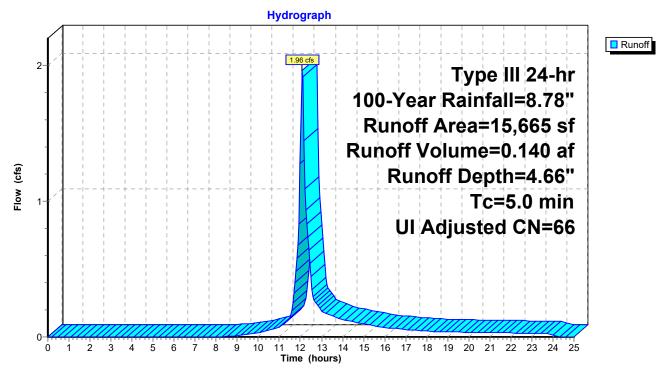
Runoff = 11.21 cfs @ 12.07 hrs, Volume= 0.873 af, Depth= 7.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.78"

Area (sf)	CN E	Description			
8,404				bod, HSG B	
49,098	98 F	aved park	ing, HSG B	}	
57,502		Veighted A			
8,404		-	rvious Area		
49,098	8	5.38% Imp	pervious Ar	ea	
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
5.0				Direct Entry,	
Subcatchment F: Bldg 1					
			Subcate	chment F: Bldg 1	
				chment F: Bldg 1 ^{ograph}	
12-1			Hydro	-	
			Hydro	ograph	
;			Hydro	Degraph	
			Hydro	pgraph	

HydroCAD-PR - JNP CONCEPT_2021-05-04Type IPrepared by VHBHydroCAD® 10.10-5as/n 01038© 2020HydroCAD Software Solutions LLC

Summary for Subcatchment FP: FP Area


[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.96 cfs @ 12.08 hrs, Volume= 0.140 af, Depth= 4.66"

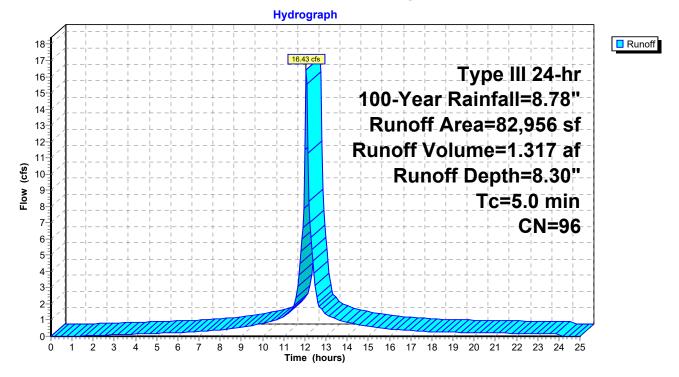
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.78"

A	rea (sf)	CN A	Adj Des	cription		
	11,416	61	>75	% Grass co	ver, Good, HSG B	
	4,249	98	Unc	onnected pa	avement, HSG B	
	15,665	71	66 Wei	ghted Avera	age, UI Adjusted	
	11,416		72.8	88% Perviou	is Area	
	4,249	9 27.12% Impervious Area				
	4,249 100.00% Unconnected					
Та	Longth	Slope	Volocity	Consoity	Description	
Tc (min)	Length	Slope	Velocity	- 1 /	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
5.0					Direct Entry,	

Subcatchment FP: FP Area

HydroCAD-PR - JNP CONCEPT_2021-05-04TypePrepared by VHBHydroCAD® 10.10-5as/n 01038© 2020HydroCAD Software Solutions LLC

Summary for Subcatchment G/H: Bldgs 2 + 3


[49] Hint: Tc<2dt may require smaller dt

Runoff = 16.43 cfs @ 12.07 hrs, Volume= 1.317 af, Depth= 8.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.78"

A	rea (sf)	CN	Description			
	5,544	61	>75% Gras	s cover, Go	ood, HSG B	
	77,412	98	Paved park	ing, HSG B	В	
	82,956	96	Weighted A	verage		
	5,544	4 6.68% Pervious Area				
	77,412		93.32% Imp	pervious Ar	rea	
Тс	Length	Slope		Capacity	Description	
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)		
5.0					Direct Entry,	

Subcatchment G/H: Bldgs 2 + 3

 HydroCAD-PR - JNP CONCEPT_2021-05-04
 Type I

 Prepared by VHB
 HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Summary for Pond SF1: Sand Filter-1

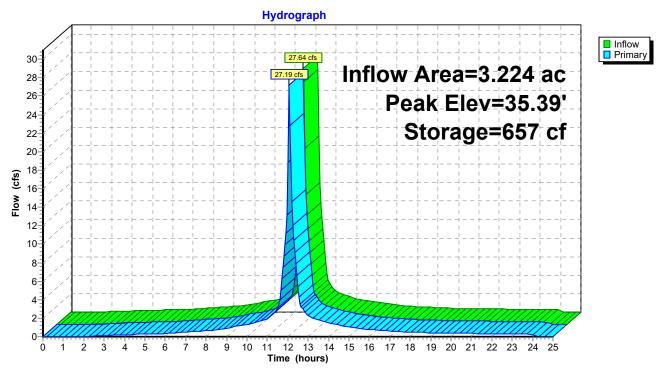
Inflow = 27.64 cfs @ 12.07 hrs, Volume= 2.190 af	
Outflow = 27.19 cfs @ 12.07 hrs, Volume= 2.185 af, Atten= 2%, Lag= 0.2 m	n
Primary = 27.19 cfs @ 12.07 hrs, Volume= 2.185 af	

Routing by Stor-Ind method, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 35.39' @ 12.07 hrs Surf.Area= 883 sf Storage= 657 cf Flood Elev= 36.00' Surf.Area= 883 sf Storage= 1,436 cf

Plug-Flow detention time= 3.5 min calculated for 2.181 af (100% of inflow) Center-of-Mass det. time= 2.0 min (756.7 - 754.7)

Volume	Invert	Avail.Storage	e Storage Description	
#1	34.50'	1,593 c	10.00'W x 59.00'L x 2.70'H Prismatoid	
#2	35.21'	1,053 c	10.00'W x 39.00'L x 2.70'H Forebay-WestImpervious	
#3	35.17'	1,170 c	7.50'W x 39.00'L x 4.00'H Forebay-East	
		3,816 c	f Total Available Storage	
Device #1 #2	Routing Primary Device 1	30.20' 24 34.90' 24	atlet Devices .0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads .0' long Sharp-Crested Rectangular Weir 2 End Contraction(s) " Crest Height	

Primary OutFlow Max=26.20 cfs @ 12.07 hrs HW=35.38' (Free Discharge)

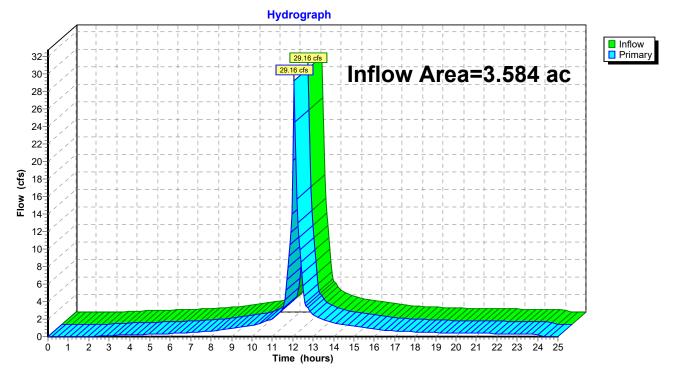

-1=Orifice/Grate (Passes 26.20 cfs of 30.91 cfs potential flow)

2=Sharp-Crested Rectangular Weir (Weir Controls 26.20 cfs @ 2.30 fps)

HydroCAD-PR - JNP CONCEPT_2021-05-04

Prepared by VHB HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Page 31



Pond SF1: Sand Filter-1

Summary for Link 1L: Cheesecake Brook

Inflow Area	a =	3.584 ac, 83.75% Impervious, Inflow Depth = 7.78" for 100-Year event	•
Inflow	=	29.16 cfs @ 12.07 hrs, Volume= 2.325 af	
Primary	=	29.16 cfs @ 12.07 hrs, Volume= 2.325 af, Atten= 0%, Lag= 0.0 mi	in

Primary outflow = Inflow, Time Span= 0.00-25.00 hrs, dt= 0.05 hrs

Link 1L: Cheesecake Brook